Mathematics 116	Professor K. A. Ribet
First Midterm Exam	February 14, 2012

Please put away all books, calculators, cell phones and other devices. You may consult a single two-sided sheet of notes. Please write carefully and clearly in *complete sentences*. Take pain to explain what you are doing since your exam book is your only representative when you work is being graded.

- (6 points) **1.** Suppose that $a \in \mathbb{Z}/37\mathbb{Z}$ is such that the values of a^2 , a^4 , a^8 , a^{16} and a^{32} are respectively 11, 10, 26, 10 and 26. Compute a^{36058} . Find the number of elements b in $\mathbb{Z}/37\mathbb{Z}$ that satisfy $b^{32} = a^{32}$.
- (5 points) **2.** Consider the following sage transcript:

```
sage: p=1259
sage: g=Mod(1028,p)
sage: h=g^1238
sage: log(h,g)
609
```

Why is sage telling us that $\log(h, g)$ is 609, rather than 1238?

(5 points) **3.** Using the equation $1 = 1634152 \cdot 358703966558 - 1162438012471 \cdot 504265$, find an integer x satisfying

 $x \equiv \begin{cases} 99 \mod{1634152} \\ 123 \mod{1162438012471}. \end{cases}$

You do not need to simplify your answer.

- (7 points) 4. Let p be the prime 10007 and let g be the primitive root 5 mod p. Imagine that we will be using the baby-step giant-step algorithm to find the discrete logarithm of a number $h \in \mathbb{Z}/p\mathbb{Z}$ with respect to g: we will compare baby steps 1, g, g^2 , ... (the first list) with ratios h, hg^{-n} , hg^{-2n} , ... (the second list). If we follow the procedure that was outlined in class, what value n will we choose and how long will each of the lists be? In the case $h = g^{456}$, for which i will g^i occur on both lists?
- (8 points) 5. Let F be the field $\mathbf{F}_3[x]/(x^2-x-1)$. How many elements are in F? Let

$$a = x \mod (x^2 - x - 1)$$

be the image of x in F. Show that $a^4 = -1$ and also that a is a primitive root in F (i.e., a generator of the multiplicative group F^*).

(9 points) 6. In the ring $\mathbf{F}_2[z]$ of polynomials over the field with two elements, let $f = z^4 + z^3 + z + 1$ and $g = z^4 + 1$. Use the extended Euclidean algorithm to find the gcd d of f and g and to write d in the form af + bg with $a, b \in \mathbf{F}_2[z]$.