
Mathematics 115 Professor K. A. Ribet

Final Examination December 14, 2012

Please put away all books, calculators, cell phones and other devices. You may con-
sult a single two-sided sheet of notes. Please write carefully and clearly in complete
sentences. Be careful to explain what you are doing since your exam book is your
only representative while you are snowboarding.

1.(6 pts.) Find the number of primitive roots mod 1014.

First of all, it’s helpful to know that 101 is a prime number. I am hoping that you will
either recognize 101 as a prime or else notice that 101 isn’t divisible by any of the 2, 3, 5,
7. (This suffices as a check because 11 >

√
101.) When p is an odd prime, the number of

primitive roots mod p is ϕ(p− 1); the number of primitive roots mod p2 is (p− 1)ϕ(p− 1).
The number of primitive roots mod pn (n ≥ 2) is pn−2(p− 1)ϕ(p− 1). In our case, n = 4,
p − 1 = 100, ϕ(p − 1) = 40; the answer seems to be 1012 · 100 · 40. There is no need to
multiply out this product. If you do, odds are that you’ll get 40804000. By the way, this
number is ϕ(ϕ(1014)).

2.(8 pts.) Prove that there are infinitely many primes congruent to 2 mod 3.

It’s perhaps easier to prove that there are infinitely many odd primes congruent to 2 mod 3.
The argument is a variant of Euclid’s: Assume that p1, ..., pt are such primes and consider

P = 3p1 · · · pt + 2,

which is not divisible by 2, 3 or any of the pi. It’s 2 mod 3 and therefore must be divisible by
an odd number of primes ≡ 2 mod 3. We can add the smallest such prime factor of P to our
list. Since we can go on like this forever, there are an infinite number of odd primes that are
congruent to 2 mod 3. To illustrate the argument numerically, we take 2, 5, 11, 17, 23, 29,
41, 47, 53 and 59 as our primes p1, . . . , pt and get P = 11273747286617 = 719027·15679171.
The first factor is 2 mod 3, while the second is 1 mod 3. We add 719027 to the list 2, 5,
11, 17, 23, 29, 41, 47, 53 and 59 and go back to the formation of the product.

3.(8 pts.) Let p be the nth Fermat number 22
n

+ 1. Show that 2p ≡ 2 mod p.

Mod p, we have 22
n ≡ −1; squaring both sides, we get 22

n+1 ≡ 1 mod p. We are asked to
prove 2p−1 ≡ 1 mod p, so it’s enough to see that p−1 is a multiple of 2n+1, i.e., that p ≡ 1
mod 2n+1. But we know p ≡ 1 mod 22

n

, so it suffices to check that 2n+1 divides 22
n

. The
divisibility amounts to the inequality n+ 1 ≤ 2n, which one can check in various ways, for
example by writing 2n = (1 + 1)n as a sum of n + 1 binomial coefficients, all ≥ 1.

This problem gave students a lot of trouble. It’s not a good idea to try to prove that
p is prime because the fifth number 232 + 1 is divisible by 641. It’s also not fruitful to
use induction since different Fermat numbers are relatively prime. (You can’t deduce a
divisibility by 17 from a divisibility by 5, for instance.)



4.(5 pts.) Determine whether or not 1097 is a square modulo the prime number 1103.

Because 1103 is a prime, 1097 is a square modulo 1103 if and only if
(
1097
1103

)
= 1. (Note:

it turns out that
(
1097
1103

)
= −1. We can of course infer from this that 1097 is not a square

mod 1103 without the information that 1103 is prime.) Since 1097 is 1 mod 4,(
1097

1103

)
=

(
1103

1097

)
=

(
6

1097

)
=

(
2

1097

)(
3

1097

)
.

Because 1097 ≡ 1 mod 8, the first factor is 1. By quadratic reciprocity, we can switch the
“numerator” and “denominator” in the second factor. The second factor is thus seen to
be −1 because 1097 ≡ 2 mod 3. Hence the product is −1 and we conclude that 1097 is
not a square mod 1103.

5.(7 pts.) If n is a positive integer, establish the congruence

(4n + 1)2 ≡ 1 mod n(2n + 1).

Let p and q be the prime numbers 509 and 1019. Find all the square roots of 1 mod pq, ex-
plaining why your list is complete. (You can leave your answers in the form of unsimplified
arithmetic expressions, things like 2× 3− 17.)

We have (4n + 1)2 = 16n2 + 8n + 1 = 8(n(2n + 1)) + 1 ≡ 1 mod n(2n + 1). Thus 4n + 1
and its negative are square roots of 1 mod n(2n + 1). To this list of square roots of 1, we
can add 1 and −1. When n = 509, 2n + 1 = 1019. These numbers are distinct primes, so
there are exactly four square roots of 1 modulo n(2n+ 1). Numerically, these square roots
are ±1 and ±2037.

6.(7 pts.) If 1 ≤ k ≤ n, prove that the number of partitions of n into k parts coincides with the
number of partitions of n in which all parts are ≤ k and at least one part is equal to k.

See Theorem 10.3 on page 448 and the proof of the theorem. The point is that partitions
with the first property are the conjugates of the partitions with the second property.

7.(6 pts.) Let p be an odd prime and let c be a non-zero integer mod p.

a. For each a ∈ (Z/pZ)∗, show that there is exactly one such pair (x, y) ∈ Z/pZ×Z/pZ
satisfying x2 − y2 = c and x− y = a.

b. Find the number of pairs (x, y) such that x2 − y2 = c.

If x− y = a, to say that x2 − y2 = c is to say that x + y = ca−1. Using the techniques of
Math 54 (or high school algebra), we can solve the pair of equations

x− y = a, x + y = ca−1



to find unique values of x and y when a is given. (This works because we can divide by 2;
remember that p is an odd prime.) Hence the number of possible “pairs” as in the problem
is the number of possible as, namely p − 1. What’s going on here is that there are p + 1
points on the curve x2 − y2 = c in the projective plane over Z/pZ. However, two of these
points are “points at infinity,” so that there remain exactly p− 1 points in the regular old
affine plane. It’s interesting to contrast the situation with x2 + y2 = 1, where there are
again p + 1 projective points but the number of points at infinity depends on the residue
class of p mod 4.

8.(7 pts.) Find the sum of the points (2, 3) and (−1, 0) on the elliptic curve y2 = x3 + 1.

We find the sum by the chord and tangent process. The line joining (2, 3) and (−1, 0)
has equation y = x + 1. If (x, y) lies both on the line and on the elliptic curve, we have
x3+1 = y2 = (x+1)2 = x2+2x+1 and y = x+1. The equation x3+1 = x2+2x+1 simplifies
to x3 − x2 − 2x = 0. The cubic on the left has roots −1, 0 and 2. The first and third
roots correspond to the two points that were given initially, while the root 0 corresponds
to (0, 1), which is on both the line and the curve. The sum of (2, 3) and (−1, 0) is then
the point gotten by reflecting (0, 1) through the x-axis, which is (0,−1).

Happy Holidays—have a great break! I enjoyed getting to know you; please keep in touch.


