
Math 115 Professor K. A. Ribet
First Midterm Exam February 25, 1998

☞ Answer question #2 and three other questions.

1 (6 points). Find all solutions to the congruence x2 ≡ p mod p2 when p is a prime number.

There are no solutions. Indeed, if x satisfies the congruence, then x2 ≡ 0 mod p. Thus p divides x2, so
p divides x and thus p2 divides x2. Since we then have x2 ≡ 0 mod p2, we do not have x2 ≡ p mod p2.
(Hensel’s lemma has nothing to do with this problem: it doesn’t apply, so it gives no information.)

2 (9 points). Using the equation 7 · 529− 3 · 1234 = 1, find an integer x which satisfies the two congruences

x ≡
{ 123 mod 529

321 mod 1234
and an integer y such that 7y ≡ 1 mod 1234. (No need to simplify.)

This is the question that you were more or less promised. I would take x to be 123 · (−3) ·1234 + 321 ·7 ·529,
or 733317; you can reduce this mod 652786, getting 80531 instead. Take y to be 529.

3 (7 points). Suppose that p is a prime number. Which of the p + 2 numbers
(p+ 1

k

)
(0 ≤ k ≤ p + 1) are

divisible by p?

This was a “frequently omitted” question, but it’s reasonably easy. First proof: The formula
(
p+ 1
k

)
=

(p+ 1)!
k!(p+ 1− k)!

displays
(p+ 1

k

)
as a fraction whose numerator is divisible by p but not by p2 and whose

denominator is divisible by p only when k or p + 1 − k is one of the two numbers p, p + 1. Hence the
coefficient is divisible by p for all k except the values 0, 1, p, p+ 1. Among the p+ 2 numbers in question,
p − 2 of them are divisible by p. Second proof: Think about Pascal’s triangle and the fact that all the
numbers in the pth row are divisible by p (except for the two 1’s at the ends).

4 (7 points). Let p be a prime and let n be a non-negative integer. Suppose that a is an integer prime to p.
Show that b := ap

n

satisfies b ≡ a mod p and bp−1 ≡ 1 mod pn+1.

If a is as in the problem, then ap−1 ≡ 1 mod p by Fermat’s little theorem. Thus a is a root mod p of
f(x) = xp−1 − 1. Since f ′(a) is then prime to p, a can be refined in exactly one way to a root of f(x)
mod pn+1. In other words, there exists a unique b mod pn+1 which satisfies bp−1 ≡ 1 mod pn+1 and b ≡ a
mod p. The point of this problem is that you can actually exhibit a b that works. Namely, using Fermat’s
congruence ap ≡ a mod p, you easily prove ap

n

≡ a mod p by induction. Thus b is indeed the same as a
mod p. Also, a is prime to pn+1, so aφ(pn+1) ≡ 1 mod pn+1. Since φ(pn+1) = (p− 1)pn, this yields bp−1 ≡ 1
mod pn+1.

5 (6 points). Show that n4 + n2 + 1 is composite for all n ≥ 2.

I added this problem at the last minute, just taking it from the book (problem 33 on page 32). If you calculate
two or three of these numbers, you see that they are composite but are not systematically divisible by any
particular number. This suggests an algebraic factorization. The point turns out to be that n4 + n2 + 1 =
(n4 + 2n2 + 1)− n2 is a difference of two squares. It’s thus the product

(
n2 + 1 + n

) (
n2 + 1− n

)
. To prove

that this is a non-trivial factorization, you have to see that n2−n+1 is bigger than 1, but this is easy (graph
it, or something).


