
Mathematics 115 Professor K. A. Ribet

Yet Another Midterm Exam October 27, 2011

Please put away all calculators, cell phones, books, iPads, iPods, laptops, etc., etc. You
may consult a single two-sided sheet of notes. Please write carefully and clearly in complete
sentences. Take pains to explain what you are doing since the grader cannot read your
mind.

The problems have equal weight (6 points each).

This document contains some quick and dirty “answers” written by Ribet. The intention
is not to write up model solutions but rather to give a sense of how things should go.

1. Prove that there are infinitely many prime numbers of the form 4k − 1.

This problem is similar to one on the homework due October 27. The idea is to adapt
Euclid’s proof that there are infinitely many primes. Suppose that we have a bunch of
primes p1, p2,. . . , pt, all congruent to 3 mod 4. To fix ideas, imagine that the sequence is
already pretty healthy: let’s say that we have p1 = 3, p2 = 7, p3 = 11 and t ≥ 3. Consider
the number

N = 4p1 · · · pt − 1,

which is congruent to 3 mod 4 and which is divisible by none of the pi. Let’s factor this
odd number: N = q1q2 · · · qs. The primes qi are all odd, so they are congruent to ±1
mod 4. They can’t all be congruent to +1 because then N would be +1 mod 4, which it
isn’t. Thus one of the primes, say qj , is 3 mod 4. Since N is not divisible by any of the
pi, qj must be distinct from all the pi. Therefore it’s a new prime that’s congruent to 3
mod 4, and we can append it to the list of pi. We can continue in this manner indefinitely
and make an arbitrarily long string of primes that are 3 mod 4. Accordingly, there are
infinitely many such primes.

2. Identify the smallest positive integer that is a non-square modulo the prime number
9000000001 = 9× 109 + 1.

Let p = 9000000001 = 9 × 109 + 1. Since p ≡ 1 mod 8, 2 is a square mod p. (So is 1,
by the way.) If q is an odd prime, we know that q is a square mod p if and only if p is a
square mod q; this follows from the fact that p is 1 mod 4. Clearly p is 1 mod 3 and p is 1
mod 5. Hence all positive integers ≤ 6 are squares mod p. We have(

p

7

)
=

(
2× 39 + 1

7

)
=

(
2× 33 + 1

7

)
=

(
−1

7

)
= −1.

Hence 7 is the smallest positive non-square mod p.



3. Let p be the prime number 101 = 102 + 1. Find all square roots of −1 mod p2.

Since p = 102 + 1, 10 and −10 are square roots of −1 mod! p. They are the square roots
because the polynomial f(x) = x2 + 1 can have only two square roots mod p. Because
f ′(10) = 20 and f ′(−10) = −20 are non-zero mod p, each of the two roots of f(x) lifts
uniquely to a root of f(x) mod p2. Clearly these two lifts are negatives of each other
because −r is a root of f(x) (mod anything) if and only if r is a root of f(x) modulo the
same number. We just have to find the square root of −1 mod p2 that lifts 10 and then
negate this answer to get the second square root of −1.

The general formula (à la Hensel) is that

a− f(a)

f ′(a)

is a root of f(x) mod p2 lifting a mod p as long as f(a) ≡ 0 mod p and f ′(a) 6≡ 0 mod p.
These conditions are satisfied when f(x) = x2 + 1 and a = 10. We have in this case
f(a) = p and 1/f ′(a) = 1/20 = −5; this reciprocal needs to be calculated only mod p. If
I’m not mistaken,

a− f(a)

f ′(a)
= 515

in our case. This seems to be correct since 5152 + 1 = 2 · 13 · 1012. Summary: the two
square roots of −1 mod p2 are ±515.

4. Let N = 259 = 7× 37. How many roots does the polynomial x36 − 1 have modulo N?
How many roots does the polynomial x9 − 1 have modulo N?

If a positive power of a number a mod N is 1, then a is invertible mod N . So this
problem is really about (Z/NZ)∗, which can (and almost certainly should) be viewed as
(Z/7Z)∗ × (Z/37Z)∗. In other words, I hope that you brought the Chinese Remainder
Theorem into the exam room with you. When we think of elements of (Z/NZ)∗ as pairs
(a, b) with a ∈ (Z/7Z)∗ and b ∈ (Z/37Z)∗, we see that the number of solutions to x36 = 1
(for instance) in Z/NZ is the product of the number of a such that a36 = 1 and the number
of b such that b36 = 1. In fact, by Fermat’s little theorem, a6 = 1 for all a and b36 = 1
for all b. Hence x36 − 1 has (7− 1)(37− 1) = 216 roots mod N . Now how many a satisfy
a9 = 1? These are the a such that a3 = 1; such a are exactly the squares mod 7, and there
are three of them. How many b satisfy b9 = 1? There are 9 such b, as we can see in various
ways, for example by Corollary 2.42 on page 104 of the textbook. (The b in question are
the powers of g4, where g is a generator mod 37.) The number of 9th roots of 1 mod N is
3× 9 = 27.



5. Suppose p > 3 is a prime ≡ 3 mod 4 for which P = 2p + 1 is also a prime; for example,
we could have p = 11 or p = 23 (so that P would be 23 or 47).

a. Explain why we have 2(P−1)/2 ≡ 1 mod P .

The congruence means that 2 is a square mod P (Euler’s criterion). We know that 2 is a
square mod an odd prime if and only if the prime is ±1 mod 8. Our P is 7 mod 8, so it
qualifies.

b. Deduce that 2p − 1 is not prime.

By part (a), 2p − 1 = 2(P−1)/2 − 1 is divisible by P . Thus we will know that 2p − 1 is
composite as soon as we know that (2p − 1)/P 6= 1. The equality (2p − 1)/P = 1 would
translate to

2p + 1 = 2p − 1,

which looks kind of absurd. It is correct for p = 3 (which we excluded), in which case both
sides of the equation are 7. To get a contradition, it would be enough to prove 2n > n+ 2
for n ≥ 3 because we could plug in p− 1 for n and get 2p−1 > p+ 1, 2p > 2p+ 2 and then
2p − 1 > 2p + 1. I checked quickly that 2n > n + 2 comes easily by induction on n.


