
Mathematics 115 Professor K. A. Ribet

Final Examination December 13, 2011

Please put away all calculators, cell phones and other electronic devices. You may consult
a single two-sided sheet of notes. Please write carefully and clearly in complete sentences.
Take pains to explain what you are doing since the grader cannot read your mind.

1.(6 pts.) Calculate the number of solutions to the congruence x3 ≡ 8 mod n, where n = 24·32·5·7.

Let N(i) be the number of solutions to the congruence mod i. By the Chinese Remainder
Theorem, N(n) = N(24)N(32)N(5)N(7). One can see in various ways that N(16) = 4;
the solutions to the congruence are x = 2, x = 6, x = 10 and x = 14. Similarly, N(9) = 3,
N(5) = 1, N(7) = 3. Hence N(n) = 4 · 3 · 1 · 3 = 36.

2.(8 pts.) Let n and d be positive integers. Assume that d2n is the sum of two integral squares.
Prove that n is also the sum of two integral squares. Further, suppose that n is the sum
of the squares of two rational numbers. Prove that n is the sum of the squares of two
integers.

If m is a positive integer, we learned during the semester that m is the sum of two integral
squares if and only if ordp(m) is even for each prime p ≡ 3 mod 4. Here ordp(m) is
the exponent of the highest power of p that divides m. For each relevant p, we have
ordp(d

2n) = ordp(n) + 2 ordp(d). Hence ordp(d
2n) is even if and only if ordp(n) is even.

Hence n is a sum of two squares if and only if d2n is such a sum; this proves the first
assertion. Note, by the way that it is not true (as some of you are writing) that a and b
have to be divisible by d when d2n = a2 +b2. For a specific example, take n = 2 and d = 5;
then 50 = 72 + 12 but the integers 7 and 1 are not divisible by 5.

For the second, we take d to be a common denominator for the two rational numbers.
Then d2n is the sum of the squares of two integers; the analogous statement holds for n
by the first part of the problem.

3.(6 pts.) Find an integer n so that n2 ≡ 5 mod 592 and n ≡ 8 mod 59.

You were expecting a Hensel Lemma problem, so you got one! The number 8 is a root of
f(x) = x2−5 mod p, where p is the prime 59. A refinement of this root mod 592 is given by
the formula 8− f(8)/f ′(8), where the inverse to f ′(8) needs to be computed only mod 59.
We have f(8) = 59, f ′(8) = 16. A quick computation (e.g., using the Euclidean algorithm)
shows that an inverse to 16 mod 59 is −11. (Indeed, −11 · 16 − 1 = −177 = (−3) · 59.)
Hence we can take n = 8 + 11 · 59. You can stop there or perhaps go on to compute the
value n = 657. We have f(n) = 431644 = 124 · 592.

4.(6 pts.) Let ζ = e2πi/p, where p ≥ 3 is prime. Show that
∑

a mod p

(
a

p

)
ζa =

∑
a mod p

ζa
2

.



Let S be the sum of the ζa for a a non-zero square mod p. Let N be the corresponding
sum over the non-squares a. There is only one remaining a, namely a = 0. The quantity
ζ0 is 1. In the formula to be proved, the left-hand side is S −N and the right-hand side
is 1 + 2S. The two sides are equal if S −N = 1 + 2S, i.e., if 0 = 1 + S +N . Because zeta
is a root of the polynomial 1 + x+ x2 + · · ·+ xp−1, we do have S +N + 1 = 0.

5.(7 pts.) Let p and q be odd primes, and let M be the Mersenne number 2q − 1.

a. If p divides M , prove that we have p ≡ 1 mod 2q.

If p divides M , we have 2q ≡ 1 mod p, which means that the order of 2 mod p is q. This
order a priori divides p− 1, so q divides p− 1. Equivalently, p ≡ 1 mod q. Since p and q
are odd, it follows that p ≡ 1 mod 2q.

b. Assume that p2 divides M . Show that 2(p−1)/2 ≡ 1 mod p2.

By the first part of the problem, (p − 1)/2 is a multiple of q, so it suffices to show that
2q ≡ 1 mod p2. But trivially we have 2q ≡ 1 mod M and p2 is a divisor of M .

If 2(p−1)/2 ≡ 1 mod p2, then 2(p−1) ≡ 1 mod p2, so that p is a Wieferich prime. There are
only two Wieferich primes known, namely 1093 and 3511. For neither of these is it true
that 2(p−1)/2 ≡ 1 mod p2. In other words, one knows no prime p for which 2(p−1)/2 ≡ 1
mod p2 and therefore (by the problem) no situation where a Mersenne number is divisible
by the square of a prime. In other words, one knows no Mersenne number that is not
square free. Are all Mersenne numbers actually square free? No one knows.

6.(8 pts.) Here are two formulas involving the Jacobi symbol:(
n

m

)
=

(
m

n

)
,

(
2

p

)
=

{
+1 if p ≡ ±1 mod 8,
−1 if p ≡ ±3 mod 8.

In the first, m and n are odd, positive and not both 3 mod 4. In the second, p is odd and
positive (but not necessarily prime). Show that the first formula implies the second:

a. Suppose that p is an odd integer greater than 8. Using the first of the two formulas,
justify each of the four numbered equalities(
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)
(i)
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)
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thereby obtaining
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Clearly
(
2
p

)
=
(
8
p

)
because 8 = 22 · 2. Also 8 − p ≡ 8 mod p, so

(
8
p

)
=
(
8−p
p

)
; this gives

(i). We get (iv) simply because 8 = 22 · 2. For (iii), we note that p ≡ 8 mod (p − 8).



The equality (ii) is slightly more complicated than I thought, so I will change the wording
of the problem for the exam. If p is 1 mod 4, then

(
8−p
p

)
=
(
p−8
p

)
; the numerator and

denominator are both 1 mod 4, so we can swap them and get the right-hand side of (ii). If
p is 3 mod 4, then

(
8−p
p

)
= −

(
p−8
p

)
, but both numerator and denominator are now 3 mod 4

and we get a second minus sign when we swap them to get the right-hand side of (ii).

b. Using the result of part (a) and computing the values

(
2

p

)
for p ≤ 7, establish the

second of the two formulas for the Jacobi symbol.

I leave you to compute the values for p = 1, p = 3, p = 5 and p = 7. They are +1, −1,
−1, +1. Once you know them and have done part (a), you get the second formula of the
problem by a sort of induction: just keep substracting 8 until you get in the range where
you have computed things by hand.

7.(9 pts.) Suppose that p is a prime congruent to 1 mod 4 and that u is a square root of −1
mod p satisfying 1 ≤ u < p/2. You demonstrated on November 22 that the continued
fraction expansion of u/p may be written 〈0, a1, . . . , an, an, . . . a1〉; this means that the
string following the initial 0 is palindromic of even length. As usual, let hi/ki (i = 0, . . . , 2n)
be the convergents belonging to this continued fraction. For instance, if p = 73 and u = 27,
then u/p = 〈0, 2, 1, 2, 2, 1, 2〉 has convergents 0

1 ,
1
2 ,

1
3 ,

3
8 ,

7
19 ,

10
27 ,

27
73 .

a. Using the formula
kn
kn−1

= 〈an, . . . , a2, a1〉 of HW13, prove

u

p
= 〈0, a1, . . . , an, kn/kn−1〉 =

hnkn + hn−1kn−1
k2n + k2n−1

.

My idea here is that u/p = 〈0, a1, . . . , an; an, an−1, . . . , a1〉 by what was proved in the
homework. We replace the last n terms by kn/kn−1 (also using the homework) and then

exploit the formula 〈0, a1, . . . , an, ξ〉 =
ξhn + hn−1
ξkn + kn−1

with ξ = kn/kn−1. If you simplify the

expression by multiplying numerator and denominator by kn, you should get the desired

expression for u/p. Of course, we don’t know that the fraction
hnkn + hn−1kn−1

k2n + k2n−1
is in

lowest terms, so we don’t yet know that p = k2n + k2n−1. If we can prove that k2n + k2n−1 is
less than 2p, we will be able to conclude that k2n+k2n−1 must be p, rather than a non-trivial
positive multiple of p.

b. (Omitted. The problem was to show that p = k2n + k2n−1. Extra credit if you can do
this! Note that in the example with p = 73, we have 73 = 32 + 82.)

OK, someone solved the problem; here’s the student’s solution. The aim is to show that
hnkn + hn−1kn−1

k2n + k2n−1
is in lowest terms, as was stated above. Let g = gcd(num.,denom.); we



wish to show g = 1. Consider kn−1(hnkn + hn−1kn−1)− hn−1(k2n + k2n−1). This works out
to be kn−1hnkn − hn−1knkn = (kn−1hn − knhn−1)kn = ±kn. For example, when p = 73,
u = 27, we have (hn, kn) = (3, 8), (hn−1, kn−1) = (1, 3) and kn−1(hnkn + hn−1kn−1) −
hn−1(k2n+k2n−1) = 3 ·27−1 ·73 = 8 = kn. Since g divides the numerator and denominator
of the fraction, g divides kn and hence also k2n. Looking at the denominator, we see that
g divides k2n−1 as well. On the other hand, we remember that kn and kn−1 are relatively
prime because of the formula hn−1kn−hnkn−1 = ±1. Therefore, k2n and k2n−1 are relatively
prime and we conclude that g = 1.


