Bimachines: an introduction

Pedro V. Silva

University of Porto

June 12, 2006

This is part of a joint work with John Rhodes summarized in the preprint An algebraic analysis of Turing machines and Cook's Theorem leading to a profinite fractal differential equation and a random walk on a deterministic Turing machine.

The authors thank Jean-Camille Birget for his advice and helpful comments.

Ip-mappings

A_{1}, A_{2} - finite nonempty alphabets
A_{1}^{+}- free semigroup on A_{1}
$\alpha: A_{1}^{+} \rightarrow A_{2}^{+}$is an Ip-mapping if

$$
|\alpha(w)|=|w|
$$

for every $w \in A_{1}^{+}$.

Factorizing the output

For $i=1, \ldots,|w|$, write

$$
w=\lambda_{i}(w) \cdot \sigma_{i}(w) \cdot \mu_{i}(w)
$$

with $\left|\lambda_{i}(w)\right|=i-1, \sigma_{i}(w) \in A_{1}$.

Example:

w						
a	b	c	d	a	b	c

a b c d	a	b c
$\lambda_{5}(w)$	$\sigma_{5}(w)$	$\mu_{5}(w)$

A domain extension

The Ip-mapping $\alpha: A_{1}^{+} \rightarrow A_{2}^{+}$induces a mapping

$$
\begin{aligned}
A_{1}^{*} \times A_{1} \times A_{1}^{*} & \rightarrow A_{2} \\
(u, a, v) & \mapsto \sigma_{|u|+1} \alpha(u a v)
\end{aligned}
$$

$\alpha: A^{+} \rightarrow A^{\prime+}$ is uniquely determined by
$\alpha(,,-):, A^{*} \times A \times A^{*} \rightarrow A^{\prime}$ and vice-versa.

Right automata

A right A-automaton is a triple $\mathcal{A}_{R}=\left(I_{R}, Q_{R}, S_{R}\right)$ where

- Q_{R} is a set
- $I_{R} \in Q_{R}$
- S_{R} is an A-semigroup acting on Q_{R} on the right,so

$$
\left(q_{R} s_{R}\right) s_{R}^{\prime}=q_{R}\left(s_{R} s_{R}^{\prime}\right)
$$

The action is proper $\left(I_{R} \notin I_{R} S_{R}\right)$ but not necessarily faithful (different elements of S_{R} may have the same action).

The action of S_{R} on Q_{R} induces an obvious action of A^{*} on Q_{R}.

Morphisms of right automata

Let

$$
\mathcal{A}_{R}=\left(I_{R}, Q_{R}, S_{R}\right), \quad \mathcal{A}_{R}^{\prime}=\left(I_{R}^{\prime}, Q_{R}^{\prime}, S_{R}^{\prime}\right)
$$

be right A-automata. A morphism $\varphi: \mathcal{A}_{R} \rightarrow \mathcal{A}_{R}^{\prime}$ is defined, whenever S_{R}^{\prime} is a quotient of S_{R}, via a mapping $\varphi: Q_{R} \rightarrow Q_{R}^{\prime}$ such that

- $\varphi\left(I_{R}\right)=I_{R}^{\prime}$;
- $\varphi\left(q_{R} u\right)=\varphi\left(q_{R}\right) u$ for all $q_{R} \in Q_{R}$ and $u \in A^{+}$.

This is equivalent to say that there exists a mapping on the states and an A-semigroup morphism preserving initial state and the action.

Left automata

A left A-automaton is a triple $\mathcal{A}_{L}=\left(S_{L}, Q_{L}, I_{L}\right)$ where

- Q_{L} is a set
- $I_{L} \in Q_{L}$
- S_{L} is an A-semigroup acting on Q_{L} on the left,so

$$
s_{L}\left(s_{L}^{\prime} q_{L}\right)=\left(s_{L} s_{L}^{\prime}\right) q_{L} .
$$

The action is proper $\left(I_{L} \notin S_{L} I_{L}\right)$ but not necessarily faithful.
The action of S_{L} on Q_{L} induces an obvious action of A^{*} on Q_{L}.

Bimachines

An A_{1}, A_{2}-bimachine is a structure of the form

$$
\mathcal{B}=\left(\left(I_{R}, Q_{R}, S_{R}\right), f,\left(S_{L}, Q_{L}, I_{L}\right)\right)
$$

where

- $\left(I_{R}, Q_{R}, S_{R}\right)$ is a right A-automaton;
- $\left(S_{L}, Q_{L}, I_{L}\right)$ is a left A-automaton;
- $f: Q_{R} \times A \times Q_{L} \rightarrow A^{\prime}$ a full map (the output function).

We say that \mathcal{B} is finite if both state sets and semigroups are finite.

Morphisms of bimachines

Let

$$
\begin{aligned}
\mathcal{B} & =\left(\left(I_{R}, Q_{R}, S_{R}\right), f,\left(S_{L}, Q_{L}, I_{L}\right)\right) \\
\mathcal{B}^{\prime} & =\left(\left(I_{R}^{\prime}, Q_{R}^{\prime}, S_{R}^{\prime}\right), f^{\prime},\left(S_{L}^{\prime}, Q_{L}^{\prime}, I_{L}^{\prime}\right)\right)
\end{aligned}
$$

be A_{1}, A_{2}-bimachines. We say that $\varphi: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$ is a morphism of A_{1}, A_{2}-bimachines if $\varphi=\left(\varphi_{R}, \varphi_{L}\right)$, where

- $\varphi_{R}:\left(I_{R}, Q_{R}, S_{R}\right) \rightarrow\left(I_{R}^{\prime}, Q_{R}^{\prime}, S_{R}^{\prime}\right)$ is a morphism of right A-automata;
- $\varphi_{L}:\left(S_{L}, Q_{L}, I_{L}\right) \rightarrow\left(S_{L}^{\prime}, Q_{L}^{\prime}, I_{L}^{\prime}\right)$ is a morphism of left A-automata;
- $\forall u, v \in A^{*} \forall a \in A \quad f^{\prime}\left(I_{R}^{\prime} u, a, v I_{L}^{\prime}\right)=f\left(I_{R} u, a, v I_{L}\right)$.

From bimachines to lp-mappings

We associate an Ip-mapping

$$
\alpha_{\mathcal{B}}: A_{1}^{+} \rightarrow A_{2}^{+}
$$

to the A_{1}, A_{2}-bimachine

$$
\mathcal{B}=\left(\left(I_{R}, Q_{R}, S_{R}\right), f,\left(S_{L}, Q_{L}, I_{L}\right)\right)
$$

by

$$
\alpha_{\mathcal{B}}(u, a, v)=f\left(I_{R} u, a, v I_{L}\right) \quad\left(u, v \in A^{*}, a \in A\right) .
$$

Thus

$$
\alpha_{\mathcal{B}}(w)=\prod_{i=1}^{|w|} f\left(I_{R} \lambda_{i}(w), \sigma_{i}(w), \mu_{i}(w) I_{L}\right) .
$$

From Ip-mappings to bimachines

Let $\alpha: A_{1}^{+} \rightarrow A_{2}^{+}$be an Ip-mapping.
Proposition. There exists an A_{1}, A_{2}-bimachine \mathcal{B}_{α} such that:
(i) $\alpha_{\mathcal{B}_{\alpha}}=\alpha$.
(ii) If \mathcal{B}^{\prime} is a trim A, A^{\prime}-bimachine such that $\alpha_{\mathcal{B}^{\prime}}=\alpha$, then there exists a (surjective) morphism $\varphi: \mathcal{B}^{\prime} \rightarrow \mathcal{B}_{\alpha}$.
(iii) Up to isomorphism, \mathcal{B}_{α} is the unique trim A, A^{\prime}-bimachine satisfying (ii).

We can view \mathcal{B}_{α} as the minimum bimachine of α.

The block product

Let

$$
\mathcal{B}^{(i)}=\left(\left(I_{R}^{(i)}, Q_{R}^{(i)}, S_{R}^{(i)}\right), f^{(i)},\left(S_{L}^{(i)}, Q_{L}^{(i)}, I_{L}^{(i)}\right)\right)
$$

be an A_{i}, A_{i+1}-bimachine for $i=1,2$. We shall define an A_{1}, A_{3}-bimachine
$\mathcal{B}^{(2)} \square \mathcal{B}^{(1)}=\mathcal{B}^{(21)}=\left(\left(I_{R}^{(21)}, Q_{R}^{(21)}, S_{R}^{(21)}\right), f^{(21)},\left(S_{L}^{(21)}, Q_{L}^{(21)}, I_{L}^{(21)}\right)\right)$
called the block product of $\mathcal{B}^{(2)}$ and $\mathcal{B}^{(1)}$.
The block product turns out to be a construction on bimachines appropriate do deal with composition.

Notation

The block product construction involves sets of mappings whose domain is often a direct product of the form $Q_{R}^{(1)} \times Q_{L}^{(1)}$. We shall use the notation $q_{R}^{(1)} g q_{L}^{(1)}=g\left(q_{R}^{(1)}, q_{L}^{(1)}\right)$ for
$g \in U^{Q_{R}^{(1)} \times Q_{L}^{(1)}}=Q_{R}^{(1)} U^{Q_{L}^{(1)}}, q_{R}^{(1)} \in Q_{R}^{(1)}$ and $q_{L}^{(1)} \in Q_{L}^{(1)}$.
To be consistent, we shall write maps with domains of type $Q_{R}^{(1)}$ on the right and type $Q_{L}^{(1)}$ on the left.

The big semigroups

We define

$$
\overline{S_{R}^{(21)}}=\left(\begin{array}{cc}
S_{L}^{(1)} & 0 \\
Q_{R}^{(1)} S_{R}^{(2)} Q_{L}^{(1)} & S_{R}^{(1)}
\end{array}\right)
$$

$\overline{S_{R}^{(21)}}$ is a semigroup for the product
$\left(\begin{array}{cc}s_{L}^{(1)} & 0 \\ g & s_{R}^{(1)}\end{array}\right)\left(\begin{array}{cc}s_{L}^{(1)} & 0 \\ g^{\prime} & s_{R}^{\prime(1)}\end{array}\right)=\left(\begin{array}{cc}s_{L}^{(1)} s_{L}^{\prime(1)} & 0 \\ g{s^{\prime}}_{L}^{(1)}+s_{R}^{(1)} g^{\prime} & s_{R}^{(1)} s_{R}^{\prime(1)}\end{array}\right)$,
where

$$
q_{R}^{(1)}\left(g s_{L}^{\prime(1)}+s_{R}^{(1)} g^{\prime}\right) q_{L}^{(1)}=\left(q_{R}^{(1)} g\left(s_{L}^{\prime(1)} q_{L}^{(1)}\right)\right)+\left(\left(q_{R}^{(1)} s_{R}^{(1)}\right) g^{\prime} q_{L}^{(1)}\right) .
$$

The states

Let

$$
Q_{R}^{(21)}=Q_{R}^{(2) Q_{L}^{(1)}} \times Q_{R}^{(1)}
$$

It will be often convenient to represent the elements of $Q_{R}^{(21)}$, termed R-generalized 2 step crossing sequences, as 1×2 matrices.

Let

$$
I_{R}^{(21)}=\left(\gamma_{0}^{(21)}, I_{R}^{(1)}\right),
$$

where $\gamma_{0}^{(21)} \in Q_{R}^{(2) Q_{L}^{(1)}}$ is defined by $\gamma_{0}^{(21)}\left(q_{L}^{(1)}\right)=I_{R}^{(2)}$.

The action

The semigroup $\overline{S_{R}^{(21)}}$ acts on $Q_{R}^{(21)}$ on the right by

$$
\left(\begin{array}{ll}
\gamma & q_{R}^{(1)}
\end{array}\right)\left(\begin{array}{cc}
s_{L}^{(1)} & 0 \\
g & s_{R}^{(1)}
\end{array}\right)=\left(\begin{array}{cc}
\gamma s_{L}^{(1)} \cdot q_{R}^{(1)} g & q_{R}^{(1)} s_{R}^{(1)}
\end{array}\right),
$$

where

$$
\left(\gamma s_{L}^{(1)} \cdot q_{R}^{(1)} g\right)\left(q_{L}^{(1)}\right)=\gamma\left(s_{L}^{(1)} q_{L}^{(1)}\right) \cdot q_{R}^{(1)} g q_{L}^{(1)} .
$$

This is again a form of matrix multiplication (but we refrain from using + for the action).

Cutting to generators

The semigroup $\overline{S_{R}^{(21)}}$ is not an A_{1}-semigroup, so let $\eta_{R}: A^{+} \rightarrow \overline{S_{R}^{(21)}}$ be the homomorphism defined by

$$
\eta_{R}(a)=\left(\begin{array}{cc}
a_{S_{L}^{(1)}} & 0 \\
g_{a}^{(1)} & a_{S_{R}^{(1)}}
\end{array}\right)
$$

where

$$
q_{R}^{(1)} g_{a}^{(1)} q_{L}^{(1)}=\left(f^{(1)}\left(q_{R}^{(1)}, a, q_{L}^{(1)}\right)\right)_{S_{R}^{(2)}}
$$

for all $q_{R}^{(1)} \in Q_{R}^{(1)}$ and $q_{L}^{(1)} \in Q_{L}^{(1)}$. We define

$$
S_{R}^{(21)}=\eta_{R}\left(A^{+}\right)
$$

Cutting to generators

For $w \in A^{+}$, we may write

$$
\eta_{R}(w)=\left(\begin{array}{cc}
w_{s_{L}^{(1)}} & 0 \\
g_{w}^{(1)} & w_{s_{R}^{(1)}}
\end{array}\right)
$$

for some $g_{w}^{(1)} \in^{Q_{R}^{(1)}} S_{R}^{(2)} Q_{L}^{(1)}$.

The duals

Dually, we define

$$
\begin{gathered}
Q_{L}^{(21)}=Q_{L}^{(1)} \times{ }^{Q_{R}^{(1)}} Q_{L}^{(2)}, \\
S_{L}^{(21)}=\left\{\left.\left(\begin{array}{cc}
w_{S_{L}^{(1)}} & 0 \\
h_{w}^{(1)} & w_{S_{R}^{(1)}}
\end{array}\right) \right\rvert\, w \in A_{1}^{*}\right\}
\end{gathered}
$$

with $h_{w}^{(1)} \in{ }^{Q_{R}^{(1)}} S_{L}^{(2)} Q_{L}^{(1)}$. The action is defined by

$$
\left(\begin{array}{cc}
s_{L}^{(1)} & 0 \\
h & s_{R}^{(1)}
\end{array}\right)\binom{q_{L}^{(1)}}{\delta}=\binom{s_{L}^{(1)} q_{L}^{(1)}}{h q_{L}^{(1)} \cdot s_{R}^{(1)} \delta}
$$

The output function

The output function $f^{(21)}: Q_{R}^{(21)} \times A_{1} \times Q_{L}^{(21)} \rightarrow A_{3}$ is defined by

$$
\begin{aligned}
& f^{(21)}\left(\left(\begin{array}{ll}
\gamma & q_{R}^{(1)}
\end{array}\right), a,\binom{q_{L}^{(1)}}{\delta}\right) \\
& \quad=f^{(2)}\left(\gamma\left(a q_{L}^{(1)}\right), f^{(1)}\left(q_{R}^{(1)}, a, q_{L}^{(1)}\right),\left(q_{R}^{(1)} a\right) \delta\right)
\end{aligned}
$$

This completes the definition of the bimachine $\mathcal{B}^{(2)} \square \mathcal{B}^{(1)}$. If $\mathcal{B}^{(2)}$ and $\mathcal{B}^{(1)}$ are both finite, so is $\mathcal{B}^{(2)} \square \mathcal{B}^{(1)}$.

The mappings $g_{u}^{(1)}$ and $h_{u}^{(1)}$

Let $w \in A^{+}, q_{R}^{(1)} \in Q_{R}^{(1)}$ and $q_{L}^{(1)} \in Q_{L}^{(1)}$. Write

$$
z=\prod_{i=1}^{|w|} f^{(1)}\left(q_{R}^{(1)} \lambda_{i}(w), \sigma_{i}(w), \mu_{i}(w) q_{L}^{(1)}\right)
$$

Then

$$
\begin{aligned}
& q_{R}^{(1)} g_{w}^{(1)} q_{L}^{(1)}=z_{S_{R}^{(2)}} \\
& q_{R}^{(1)} h_{w}^{(1)} q_{L}^{(1)}=z_{S_{L}^{(2)}}
\end{aligned}
$$

Composition

Theorem. Let $\mathcal{B}^{(1)}$ be an A_{1}, A_{2}-bimachine and let $\mathcal{B}^{(2)}$ be an A_{2}, A_{3}-bimachine. Then $\alpha_{\mathcal{B}^{(2)} \square \mathcal{B}^{(1)}}=\alpha_{\mathcal{B}^{(2)}} \alpha_{\mathcal{B}^{(1)}}$.

The block product of faithful bimachines is not necessarily faithful.

Additional properties

Proposition. Let $\mathcal{B}^{(1)}$ be an A_{1}, A_{2}-bimachine and let $\mathcal{B}^{(2)}$ and $\mathcal{B}^{(2)}$ be A_{2}, A_{3}-bimachines. Let $\varphi^{(2)}: \mathcal{B}^{(2)} \rightarrow \mathcal{B}^{(2)}$ be a morphism. Then there exists a morphism $\varphi^{(21)}: \mathcal{B}^{(2)} \square \mathcal{B}^{(1)} \rightarrow \mathcal{B}^{(2)} \square \mathcal{B}^{(1)}$ naturally induced by $\varphi^{(2)}$.

Proposition. Let $\mathcal{B}^{(i)}$ be an A_{i}, A_{i+1}-bimachine for $i=1,2$. Then there exist canonical surjective homomorphisms

$$
\begin{aligned}
& \xi_{R}^{(21)}:\left(I_{R}^{(21)}, Q_{R}^{(21)}, S_{R}^{(21)}\right) \rightarrow\left(I_{R}^{(1)}, Q_{R}^{(1)}, S_{R}^{(1)}\right), \\
& \xi_{L}^{(21)}:\left(S_{L}^{(21)}, Q_{L}^{(21)}, I_{L}^{(21)}\right) \rightarrow\left(S_{L}^{(1)}, Q_{L}^{(1)}, I_{L}^{(1)}\right)
\end{aligned}
$$

And then there were three...

Let

$$
\mathcal{B}^{(i)}=\left(\left(I_{R}^{(i)}, Q_{R}^{(i)}, S_{R}^{(i)}\right), f^{(i)},\left(S_{L}^{(i)}, Q_{L}^{(i)}, I_{L}^{(i)}\right)\right)
$$

be an A_{i}, A_{i+1}-bimachine for $i=1,2,3$. Write

$$
\mathcal{B}^{(3(21))}=\mathcal{B}^{(3)} \square\left(\mathcal{B}^{(2)} \square \mathcal{B}^{(1)}\right), \quad \mathcal{B}^{((32) 1)}=\left(\mathcal{B}^{(3)} \square \mathcal{B}^{(2)}\right) \square \mathcal{B}^{(1)} .
$$

We can get associativity at the semigroup level (for three bimachines, but not necessarily for four bimachines!).

Lemma. $S_{R}^{(3(21))} \cong S_{R}^{((32) 1)}$ and $S_{L}^{(3(21))} \cong S_{L}^{((32) 1)}$.

A cardinality argument

We have

$$
\left|Q_{R}^{(3(21))}\right|>\left|Q_{R}^{((32) 1)}\right|
$$

Follows from

$$
a^{b c^{d}} e^{b} d>\left(a c^{e}\right)^{b} d
$$

Similarly,

$$
\left|Q_{L}^{(3(21))}\right|>\left|Q_{L}^{((32) 1)}\right|
$$

Let $\varphi_{R}: Q_{R}^{(3(21))} \rightarrow Q_{R}^{((32) 1)}$ be defined as follows. Given

A morphism

$$
\left(\gamma^{(3(21))},\left(\gamma^{(21)}, q_{R}^{(1)}\right)\right) \in Q_{R}^{(3)} Q_{L}^{(21)} \times\left(Q_{R}^{(2)} Q_{L}^{(1)} \times Q_{R}^{(1)}\right)=Q_{R}^{(3(21))},
$$

we set
$\left(\gamma^{(3(21))},\left(\gamma^{(21)}, q_{R}^{(1)}\right)\right) \varphi_{R}=\left(\gamma^{((32) 1)}, q_{R}^{(1)}\right) \in Q_{R}^{(32) Q_{L}^{(1)}} \times Q_{R}^{(1)}=Q_{R}^{((32) 1)}$,
where

$$
\gamma^{((32) 1)}\left(q_{L}^{(1)}\right)=\left(\beta_{q_{L}^{(1)}}, \gamma^{(21)}\left(q_{L}^{(1)}\right)\right) \in Q_{R}^{(3)} Q_{L}^{(2)} \times Q_{R}^{(2)}=Q_{R}^{(32)}
$$

and

$$
\beta_{q_{L}^{(1)}}\left(q_{L}^{(2)}\right)=\gamma^{(3(21))}\left(q_{L}^{(1)}, \overline{q_{L}^{(2)}}\right)
$$

Half associativity

where $\overline{q_{L}^{(2)}} \in{ }^{Q_{R}^{(1)}} Q_{L}^{(2)}$ is the constant mapping with image $q_{L}^{(2)}$.
Theorem. $\left(\mathcal{B}^{(3)} \square \mathcal{B}^{(2)}\right) \square \mathcal{B}^{(1)}$ is a quotient of $\mathcal{B}^{(3)} \square\left(\mathcal{B}^{(2)} \square \mathcal{B}^{(1)}\right)$.
We shall choose bracketing from left to right, that is, priority is assumed to hold from left to right:

$$
\left(\left(\ldots\left(\mathcal{B}^{(n)} \square \mathcal{B}^{(n-1)}\right) \square \mathcal{B}^{(n-2)}\right) \square \ldots\right) \square \mathcal{B}^{(1)} .
$$

Our model (informal)

We are interested in deterministic Turing machines that halt for all inputs, particularly those that can solve NP-complete problems. In comparison with the most standard models, our model presents three particular features:

- the "tape" is potentially infinite in both directions and has a distinguished cell named the origin;
- the origin contains the symbol \# until the very last move of the computation, and \# appears in no other cell;
- the machine always halts in one of a very restricted set of configurations.

Our model (formal)

Our deterministic Turing machine is then a quadruple of the form $\mathcal{T}=\left(Q, q_{0}, A, \delta\right)$ where

- Q is a finite set (set of states) containing the initial state q_{0};
- A is a finite set (restricted tape alphabet) containing the special symbols B (blank), B^{\prime} (pseudoblank), Y (yes), N (no), G (garbage) and \# (origin);
- δ is a union of full maps

$$
\begin{gathered}
Q \times(A \backslash\{\#\}) \rightarrow Q \times(A \backslash\{\#, B, Y, N, G\}) \times\{L, R\}, \\
Q \times\{\#\} \rightarrow(Q \times\{\#\} \times\{L, R\}) \cup\{Y, N, G\} .
\end{gathered}
$$

Symbols

We write $A^{\circ}=A \backslash\{\#, B\}$.
Since the machine is not allowed to write blanks (we must consider space functions), we shall use the pseudoblank as a substitute to keep the final configurations simple.

Note that, in the final move of a computation, the control head is removed from the tape and so we allow $\{Y, N, G\}$ in the image of δ. The symbols Y, N, G are used to classify the final configurations: for a TM solving a certain problem,

- Y will stand for correct input, acceptance,
- N for correct input, rejection,
- G for incorrect input.

Word formalism

We intend to work exclusively with words, hence we exchange the classical model of "tape" and "control head" by a purely algebraic formalism. Let

$$
A^{\prime}=A \cup\left\{a^{q} \mid a \in A, q \in Q\right\}
$$

be the extended tape alphabet.
The exponent q on a symbol acnowledges the present scanning of the corresponding cell by the control head, under state q.

Example

$B B c c b^{q} a \# c B$

Instantaneous descriptions

Let for : $A^{\prime+} \rightarrow A^{+}$and $\exp : A^{\prime+} \rightarrow(\mathbb{N},+)$ be the "forgetting" and "counting" homomorphisms defined by

$$
\operatorname{for}(a)=a, \quad \text { for }\left(a^{q}\right)=a, \quad \exp (a)=0, \quad \exp \left(a^{q}\right)=1
$$

We define

$$
\begin{aligned}
I D= & B^{*}\left\{w \in A^{\prime+} \mid \text { for }(w) \in(\{1\} \cup B)\left(A^{o}\right)^{*}(\{1, \#\})\right. \\
& \left.\cdot\left(A^{\circ}\right)^{*}(\{1\} \cup B), \exp (w) \leq 1\right\} B^{*} .
\end{aligned}
$$

$\overline{I D}$ is the set of all nonempty factors of words in $I D$.

The one-move mapping

The Turing machine \mathcal{T} induces a mapping $\beta: \overline{I D} \rightarrow \overline{I D}$ as follows: Let $w \in \overline{I D}$. If $|\exp (w)|=0$, let $\beta(w)=w$. Suppose now that $w=u a^{q} v$ with $a \in A$ and $q \in Q$.

- if $\delta(q, a)=b \in\{Y, N, G\}$, let $\beta(w)=u b v$;
- if $\delta(q, a)=(p, b, R)$ and c is the first letter of $v=c v^{\prime}$, let $\beta(w)=u b c^{p} v^{\prime} ;$
- if $\delta(q, a)=(p, b, R)$ and $v=1$, let $\beta(w)=u b B^{p}$;
- if $\delta(q, a)=(p, b, L)$ and c is the last letter of $u=u^{\prime} c$, let $\beta(w)=u^{\prime} c^{p} b v ;$
- if $\delta(q, a)=(p, b, R)$ and $u=1$, let $\beta(w)=B^{p} b v$.

Normalized TM

Given $w \in I D$, the sequence $\left(\beta^{n}(w)\right)_{n}$ is eventually constant if and only if \mathcal{T} stops after finitely many moves if and only if $\beta^{m}(w) \in A^{+}$for some $m \in \mathbb{N}$. In this case, we write

$$
\lim _{n \rightarrow \infty} \beta^{n}(w)=\beta^{m}(w)
$$

We say that our deterministic Turing machine (TM) is normalized if

- $\left(\beta^{n}(w)\right)_{n}$ is eventually constant for every $w \in I D ;$
- $\lim _{n \rightarrow \infty} \beta^{n}(w) \in B^{*} B^{\prime *}\{Y, N, G\} B^{\prime *} B^{*}$ for every $w \in I D$.

In view of our stopping conventions, this implies in particular that the symbol Y, N or G must be precisely at the origin.

Space and time

The space and time functions for the normalized TM \mathcal{T} can be naturally defined by

$$
\begin{aligned}
s_{\mathcal{T}}: I D & \rightarrow \mathbb{N} \\
w & \mapsto\left|\lim _{n \rightarrow \infty} \beta^{n}(w)\right|,
\end{aligned}
$$

$$
\begin{aligned}
t_{\mathcal{T}}: I D & \rightarrow \mathbb{N} \\
w & \mapsto \min \left\{m \in \mathbb{N}: \beta^{m}(w)=\lim _{n \rightarrow \infty} \beta^{n}(w)\right\} .
\end{aligned}
$$

Any deterministic (multi-tape) Turing machine solving a problem with space and time complexities of order $s(n)$ and $t(n)$ (not less than linear) can be turned into a normalized TM with space and time functions of order $s(n)$ and $(t(n))^{2}$, respectively.

The one-move Ip-mapping

$\beta_{0}: I D \rightarrow I D$ is defined by

$$
\beta_{0}(w)= \begin{cases}\beta(w) & \text { if }|\beta(w)|=|w| \\ w^{\prime} & \text { if }|\beta(w)|=|w|+1 \text { and } \beta(w)=w^{\prime} B^{p} \\ w^{\prime} & \text { if }|\beta(w)|=|w|+1 \text { and } \beta(w)=B^{p} w^{\prime} .\end{cases}
$$

Alternatively, we can say that $\beta_{0}(w)$ is obtained from $\beta(B w B)$ by removing the first and the last letter.

We can deduce $\beta(w)$ from $\beta_{0}(B w B)$ and, more generally, $\beta^{n}(w)$ from $\beta_{0}\left(B^{n} w B^{n}\right)$.

Space and time from β_{0}

Let $\iota_{B}: I D \rightarrow\left(A^{\prime} \backslash\{B\}\right)^{+}$be the mapping that removes all blanks from a given $w \in I D$.

Proposition. Let \mathcal{T} be a normalized TM with one-move mapping β. Let $w \in \overline{I D}$ be such that for $(w) \in(A \backslash\{B\})^{+}$. Then
(i) $\lim _{n \rightarrow \infty} \beta^{n}(w)=\lim _{n \rightarrow \infty} \iota_{B}\left(\beta_{0}^{n}\left(B^{n} w B^{n}\right)\right)$;
(ii) $s_{\mathcal{T}}(w)=\left|\lim _{n \rightarrow \infty} \iota_{B}\left(\beta_{0}^{n}\left(B^{n} w B^{n}\right)\right)\right|$;
(iii) $t_{\mathcal{T}}(w)=\min \left\{m \in \mathbb{N}: \iota_{B}\left(\beta_{0}^{m}\left(B^{m} w B^{m}\right)\right)=\right.$ $\left.\lim _{n \rightarrow \infty} \iota_{B}\left(\beta_{0}^{n}\left(B^{n} w B^{n}\right)\right)\right\}$.

Bad words

We extend $\beta_{0}: \overline{I D} \rightarrow \overline{I D}$ to an Ip-mapping $\beta_{0}: A^{+} \rightarrow \overline{I D}$ by composing β_{0} with $\Delta: A^{\prime+} \rightarrow I D$ defined by

$$
\Delta(w)= \begin{cases}w & \text { if } w \in \overline{I D} \\ G B^{|w|-1} & \text { otherwise }\end{cases}
$$

So far, we have associated to the normalized TM \mathcal{T} an Ip-mapping β_{0} encoding the full computational power of \mathcal{T} with space and time functions equivalent to those of \mathcal{T}.

We define next a canonical finite bimachine matching β_{0} in $\overline{I D}$.

The one-move bimachine

The A^{\prime}, A^{\prime}-bimachine

$$
\mathcal{B}_{\mathcal{T}}=\left(\left(I_{R}, Q_{R}, S_{R}\right), f,\left(S_{L}, Q_{L}, I_{L}\right)\right)
$$

is defined as follows:

- $Q_{R}=A^{\prime} \cup\left\{I_{R}\right\}, Q_{L}=A^{\prime} \cup\left\{I_{L}\right\} ;$
- $S_{R}=A^{\prime}$ is a right zero semigroup $(a b=b)$;
- $S_{L}=A^{\prime}$ is a left zero semigroup $(a b=a)$;
- the action $Q_{R} \times S_{R} \rightarrow Q_{R}$ is defined by $q_{R} a=a$;
- the action $S_{L} \times Q_{L} \rightarrow Q_{L}$ is defined by $a q_{L}=a$

The one-move bimachine

For the output function, let us write $I_{R}^{\prime}=B$ and $q_{R}^{\prime}=q_{R}$ for every $q_{R} \in Q_{R} \backslash\left\{I_{R}\right\}$. Similarly, we define q_{L}^{\prime}. Given $q_{R} \in Q_{R}, a \in A^{\prime}$ and $q_{L} \in Q_{L}$, let

$$
f\left(q_{R}, a, q_{L}\right)=\beta_{0}\left(q_{R}^{\prime}, a, q_{L}^{\prime}\right)
$$

If $q_{R} a q_{L} \in \overline{I D}$, then $q_{R} a q_{L}$ will encode the situation of three consecutive tape cells at a certain moment. Then $f\left(q_{R}, a, q_{L}\right)$ describes the situation of the middle cell after one move of \mathcal{T}.

Proposition. Let \mathcal{T} be a normalized TM with one-move Ip-mapping β_{0}. Then $\alpha_{\mathcal{B}_{\mathcal{T}}}(w)=\beta_{0}(w)$ for every $w \in \overline{I D}$.

