Bimachines: an introduction

Pedro V. Silva

University of Porto

June 12, 2006

Pedro V. Silva Bimachines: an introduction

This is part of a joint work with John Rhodes summarized in the preprint *An algebraic analysis of Turing machines and Cook's Theorem leading to a profinite fractal differential equation and a random walk on a deterministic Turing machine.*

The authors thank Jean-Camille Birget for his advice and helpful comments.

lp-mappings

$$A_1, A_2$$
 - finite nonempty alphabets
 A_1^+ - free semigroup on A_1

$$lpha: A_1^+ o A_2^+$$
 is an *lp-mapping* if $|lpha(w)| = |w|$

for every $w \in A_1^+$.

ヘロン ヘヨン ヘヨン ヘヨン

Factorizing the output

For $i = 1, \ldots, |w|$, write

$$w = \lambda_i(w) \cdot \sigma_i(w) \cdot \mu_i(w)$$

with $|\lambda_i(w)| = i - 1$, $\sigma_i(w) \in A_1$.

Example:

			w			
а	b	С	d	а	b	С

a b c d	а	b c	
$\lambda_5(w)$	$\sigma_5(w)$	$\mu_5(w)$	

・ロト ・回ト ・ヨト ・ヨト

3

A domain extension

The lp-mapping $\alpha: A_1^+ \to A_2^+$ induces a mapping

$$egin{array}{rcl} A_1^* imes A_1 imes A_1^* & o & A_2 \ (u, a, v) & \mapsto & \sigma_{|u|+1} lpha(uav) \end{array}$$

 $\begin{array}{l} \alpha: \mathcal{A}^+ \to \mathcal{A'}^+ \text{ is uniquely determined by} \\ \alpha(_,_,_): \mathcal{A}^* \times \mathcal{A} \times \mathcal{A}^* \to \mathcal{A'} \text{ and vice-versa.} \end{array}$

イロト イヨト イヨト イヨト

Right automata

A right A-automaton is a triple $A_R = (I_R, Q_R, S_R)$ where

- Q_R is a set
- \blacktriangleright $I_R \in Q_R$
- S_R is an A-semigroup acting on Q_R on the right, so

$$(q_R s_R)s'_R = q_R(s_R s'_R).$$

The action is proper $(I_R \notin I_R S_R)$ but not necessarily faithful (different elements of S_R may have the same action).

The action of S_R on Q_R induces an obvious action of A^* on Q_R .

・ロン ・回と ・ヨン・

Morphisms of right automata

Let

$$\mathcal{A}_R = (I_R, Q_R, S_R), \quad \mathcal{A}'_R = (I'_R, Q'_R, S'_R)$$

be right A-automata. A morphism $\varphi : \mathcal{A}_R \to \mathcal{A}'_R$ is defined, whenever S'_R is a quotient of S_R , via a mapping $\varphi : Q_R \to Q'_R$ such that

- $\blacktriangleright \varphi(I_R) = I'_R;$
- $\varphi(q_R u) = \varphi(q_R)u$ for all $q_R \in Q_R$ and $u \in A^+$.

This is equivalent to say that there exists a mapping on the states and an *A*-semigroup morphism preserving initial state and the action.

・ロン ・回 と ・ ヨ と ・ ヨ と

Left automata

- A left A-automaton is a triple $A_L = (S_L, Q_L, I_L)$ where
 - Q_L is a set
 - \blacktriangleright $I_L \in Q_L$
 - S_L is an A-semigroup acting on Q_L on the left, so

$$s_L(s'_Lq_L)=(s_Ls'_L)q_L.$$

The action is proper $(I_L \notin S_L I_L)$ but not necessarily faithful.

The action of S_L on Q_L induces an obvious action of A^* on Q_L .

・ロン ・回と ・ヨン ・ヨン

Bimachines

An A_1, A_2 -bimachine is a structure of the form

$$\mathcal{B} = ((I_R, Q_R, S_R), f, (S_L, Q_L, I_L)),$$

where

•
$$(I_R, Q_R, S_R)$$
 is a right A-automaton;

• $f: Q_R \times A \times Q_L \rightarrow A'$ a full map (the *output function*).

We say that \mathcal{B} is finite if both state sets and semigroups are finite.

・ロン ・回 と ・ 回 と ・ 回 と

2

Morphisms of bimachines

Let

$$\mathcal{B} = ((I_R, Q_R, S_R), f, (S_L, Q_L, I_L))$$

$$\mathcal{B}' = ((I'_R, Q'_R, S'_R), f', (S'_L, Q'_L, I'_L))$$

be A_1, A_2 -bimachines. We say that $\varphi : \mathcal{B} \to \mathcal{B}'$ is a morphism of A_1, A_2 -bimachines if $\varphi = (\varphi_R, \varphi_L)$, where

- $\varphi_R : (I_R, Q_R, S_R) \rightarrow (I'_R, Q'_R, S'_R)$ is a morphism of right *A*-automata;
- $\varphi_L : (S_L, Q_L, I_L) \rightarrow (S'_L, Q'_L, I'_L)$ is a morphism of left *A*-automata;

$$\forall u, v \in A^* \ \forall a \in A \quad f'(I'_R u, a, vI'_L) = f(I_R u, a, vI_L).$$

イロト イヨト イヨト イヨト

From bimachines to lp-mappings

We associate an Ip-mapping

$$\alpha_{\mathcal{B}}: A_1^+ \to A_2^+$$

to the A_1, A_2 -bimachine

$$\mathcal{B} = ((I_R, Q_R, S_R), f, (S_L, Q_L, I_L))$$

by

$$lpha_{\mathcal{B}}(u, a, v) = f(I_R u, a, vI_L) \quad (u, v \in A^*, a \in A).$$

Thus

$$\alpha_{\mathcal{B}}(w) = \prod_{i=1}^{|w|} f(I_R \lambda_i(w), \sigma_i(w), \mu_i(w) I_L).$$

(1日) (1日) (日)

From Ip-mappings to bimachines

Let $\alpha : A_1^+ \to A_2^+$ be an lp-mapping.

Proposition. There exists an A_1, A_2 -bimachine \mathcal{B}_{α} such that:

(i)
$$\alpha_{\mathcal{B}_{\alpha}} = \alpha$$
.

- (ii) If \mathcal{B}' is a trim A, A'-bimachine such that $\alpha_{\mathcal{B}'} = \alpha$, then there exists a (surjective) morphism $\varphi : \mathcal{B}' \to \mathcal{B}_{\alpha}$.
- (iii) Up to isomorphism, \mathcal{B}_{α} is the unique trim A, A'-bimachine satisfying (ii).

We can view \mathcal{B}_{α} as the *minimum* bimachine of α .

・ロン ・四マ ・ヨマ ・ヨマ

The block product

Let

$$\mathcal{B}^{(i)} = ((I_R^{(i)}, Q_R^{(i)}, S_R^{(i)}), f^{(i)}, (S_L^{(i)}, Q_L^{(i)}, I_L^{(i)}))$$

be an A_i, A_{i+1} -bimachine for i = 1, 2. We shall define an A_1, A_3 -bimachine

$$\mathcal{B}^{(2)} \Box \mathcal{B}^{(1)} = \mathcal{B}^{(21)} = ((I_R^{(21)}, Q_R^{(21)}, S_R^{(21)}), f^{(21)}, (S_L^{(21)}, Q_L^{(21)}, I_L^{(21)}))$$
called the *block product* of $\mathcal{B}^{(2)}$ and $\mathcal{B}^{(1)}$.

The block product turns out to be a construction on bimachines appropriate do deal with composition.

・ロト ・回ト ・ヨト ・ヨト

Notation

The block product construction involves sets of mappings whose domain is often a direct product of the form $Q_R^{(1)} \times Q_L^{(1)}$. We shall use the notation $q_R^{(1)}gq_L^{(1)} = g(q_R^{(1)}, q_L^{(1)})$ for $g \in U^{Q_R^{(1)} \times Q_L^{(1)}} = {}^{Q_R^{(1)}}U^{Q_L^{(1)}}$, $q_R^{(1)} \in Q_R^{(1)}$ and $q_L^{(1)} \in Q_L^{(1)}$.

To be consistent, we shall write maps with domains of type $Q_R^{(1)}$ on the right and type $Q_L^{(1)}$ on the left.

- 4 回 2 - 4 □ 2 - 4 □

The big semigroups

We define

$$\overline{S_R^{(21)}} = \left(egin{array}{cc} S_L^{(1)} & 0 \ {}^{Q_R^{(1)}}S_R^{(2)}Q_L^{(1)} & S_R^{(1)} \end{array}
ight).$$

 $\overline{S_R^{(21)}}$ is a semigroup for the product

$$\begin{pmatrix} s_L^{(1)} & 0 \\ g & s_R^{(1)} \end{pmatrix} \begin{pmatrix} s_L'^{(1)} & 0 \\ g' & s_R'^{(1)} \end{pmatrix} = \begin{pmatrix} s_L^{(1)} s_L'^{(1)} & 0 \\ \\ gs_L'^{(1)} + s_R^{(1)} g' & s_R^{(1)} s_R'^{(1)} \end{pmatrix},$$

where

$$q_{R}^{(1)}(gs'_{L}^{(1)} + s_{R}^{(1)}g')q_{L}^{(1)} = (q_{R}^{(1)}g(s'_{L}^{(1)}q_{L}^{(1)})) + ((q_{R}^{(1)}s_{R}^{(1)})g'q_{L}^{(1)}).$$

・ロ・ ・ 日・ ・ 日・ ・ 日・

The states

Let

$$Q_R^{(21)} = Q_R^{(2)\,Q_L^{(1)}} imes Q_R^{(1)}.$$

It will be often convenient to represent the elements of $Q_R^{(21)}$, termed *R*-generalized 2 step crossing sequences, as 1×2 matrices.

Let

$$I_R^{(21)} = (\gamma_0^{(21)}, I_R^{(1)}),$$

where $\gamma_0^{(21)} \in Q_R^{(2)}{Q_L^{(1)}}$ is defined by $\gamma_0^{(21)}(q_L^{(1)}) = I_R^{(2)}$.

・ロン ・回と ・ヨン・

The action

The semigroup
$$\overline{S_R^{(21)}}$$
 acts on $Q_R^{(21)}$ on the right by
 $\begin{pmatrix} \gamma & q_R^{(1)} \end{pmatrix} \begin{pmatrix} s_L^{(1)} & 0 \\ g & s_R^{(1)} \end{pmatrix} = \begin{pmatrix} \gamma s_L^{(1)} \cdot q_R^{(1)} g & q_R^{(1)} s_R^{(1)} \end{pmatrix},$

where

$$(\gamma s_L^{(1)} \cdot q_R^{(1)}g)(q_L^{(1)}) = \gamma (s_L^{(1)}q_L^{(1)}) \cdot q_R^{(1)}gq_L^{(1)}.$$

This is again a form of matrix multiplication (but we refrain from using + for the action).

Cutting to generators

The semigroup $\overline{S_R^{(21)}}$ is not an A_1 -semigroup, so let $\eta_R : A^+ \to \overline{S_R^{(21)}}$ be the homomorphism defined by

where

$$q_R^{(1)}g_a^{(1)}q_L^{(1)} = (f^{(1)}(q_R^{(1)}, a, q_L^{(1)}))_{S_R^{(2)}}$$

for all $q_R^{(1)} \in Q_R^{(1)}$ and $q_L^{(1)} \in Q_L^{(1)}.$ We define

$$S_R^{(21)} = \eta_R(A^+).$$

・回 ・ ・ ヨ ・ ・ ヨ ・

Cutting to generators

For $w \in A^+$, we may write

for some $g_w^{(1)} \in {}^{Q_R^{(1)}} S_R^{(2)} {}^{Q_L^{(1)}}.$

・ロン ・回 と ・ ヨ と ・ ヨ と

The duals

Dually, we define

$$Q_{L}^{(21)} = Q_{L}^{(1)} \times {}^{Q_{R}^{(1)}} Q_{L}^{(2)},$$
$$S_{L}^{(21)} = \left\{ \begin{pmatrix} w_{S_{L}^{(1)}} & 0 \\ \\ h_{w}^{(1)} & w_{S_{R}^{(1)}} \end{pmatrix} \mid w \in A_{1}^{*} \right\}$$

with $h_w^{(1)} \in {}^{Q_R^{(1)}} S_L^{(2)} {}^{Q_L^{(1)}}$. The action is defined by

$$\begin{pmatrix} s_L^{(1)} & 0 \\ h & s_R^{(1)} \end{pmatrix} \begin{pmatrix} q_L^{(1)} \\ \delta \end{pmatrix} = \begin{pmatrix} s_L^{(1)}q_L^{(1)} \\ hq_L^{(1)} \cdot s_R^{(1)}\delta \end{pmatrix}.$$

イロン イヨン イヨン イヨン

The output function

The output function $f^{(21)} : Q_R^{(21)} \times A_1 \times Q_L^{(21)} \to A_3$ is defined by $f^{(21)}(\begin{pmatrix} \gamma & q_R^{(1)} \end{pmatrix}, a, \begin{pmatrix} q_L^{(1)} \\ \delta \end{pmatrix}))$ $= f^{(2)}(\gamma(aq_L^{(1)}), f^{(1)}(q_R^{(1)}, a, q_L^{(1)}), (q_R^{(1)}a)\delta).$

This completes the definition of the bimachine $\mathcal{B}^{(2)} \Box \mathcal{B}^{(1)}$.

If $\mathcal{B}^{(2)}$ and $\mathcal{B}^{(1)}$ are both finite, so is $\mathcal{B}^{(2)} \Box \mathcal{B}^{(1)}$.

(ロ) (同) (E) (E) (E)

The mappings $g_u^{(1)}$ and $h_u^{(1)}$

et
$$w \in A^+$$
, $q_R^{(1)} \in Q_R^{(1)}$ and $q_L^{(1)} \in Q_L^{(1)}$. Write $z = \prod_{i=1}^{|w|} f^{(1)}(q_R^{(1)}\lambda_i(w), \sigma_i(w), \mu_i(w)q_L^{(1)}).$

Then

Е

$$\begin{aligned} q_R^{(1)} g_w^{(1)} q_L^{(1)} &= z_{\mathcal{S}_R^{(2)}}, \\ q_R^{(1)} h_w^{(1)} q_L^{(1)} &= z_{\mathcal{S}_L^{(2)}}. \end{aligned}$$

ヘロン ヘヨン ヘヨン ヘヨン

Composition

Theorem. Let $\mathcal{B}^{(1)}$ be an A_1, A_2 -bimachine and let $\mathcal{B}^{(2)}$ be an A_2, A_3 -bimachine. Then $\alpha_{\mathcal{B}^{(2)} \square \mathcal{B}^{(1)}} = \alpha_{\mathcal{B}^{(2)}} \alpha_{\mathcal{B}^{(1)}}$.

The block product of faithful bimachines is not necessarily faithful.

・ロン ・回と ・ヨン・

Additional properties

Proposition. Let $\mathcal{B}^{(1)}$ be an A_1, A_2 -bimachine and let $\mathcal{B}^{(2)}$ and $\mathcal{B}'^{(2)}$ be A_2, A_3 -bimachines. Let $\varphi^{(2)} : \mathcal{B}^{(2)} \to \mathcal{B}'^{(2)}$ be a morphism. Then there exists a morphism $\varphi^{(21)} : \mathcal{B}^{(2)} \Box \mathcal{B}^{(1)} \to \mathcal{B}'^{(2)} \Box \mathcal{B}^{(1)}$ naturally induced by $\varphi^{(2)}$.

Proposition. Let $\mathcal{B}^{(i)}$ be an A_i, A_{i+1} -bimachine for i = 1, 2. Then there exist canonical surjective homomorphisms

$$\begin{split} \xi_R^{(21)} &: (I_R^{(21)}, Q_R^{(21)}, S_R^{(21)}) \to (I_R^{(1)}, Q_R^{(1)}, S_R^{(1)}), \\ \xi_L^{(21)} &: (S_L^{(21)}, Q_L^{(21)}, I_L^{(21)}) \to (S_L^{(1)}, Q_L^{(1)}, I_L^{(1)}). \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

And then there were three...

Let

$$\mathcal{B}^{(i)} = ((I_R^{(i)}, Q_R^{(i)}, S_R^{(i)}), f^{(i)}, (S_L^{(i)}, Q_L^{(i)}, I_L^{(i)}))$$

be an A_i, A_{i+1} -bimachine for i = 1, 2, 3. Write

$$\mathcal{B}^{(3(21))} = \mathcal{B}^{(3)} \Box (\mathcal{B}^{(2)} \Box \mathcal{B}^{(1)}), \quad \mathcal{B}^{((32)1)} = (\mathcal{B}^{(3)} \Box \mathcal{B}^{(2)}) \Box \mathcal{B}^{(1)}.$$

We can get associativity at the semigroup level (for three bimachines, but not necessarily for four bimachines!).

Lemma.
$$S_R^{(3(21))} \cong S_R^{((32)1)}$$
 and $S_L^{(3(21))} \cong S_L^{((32)1)}$.

回 と く ヨ と く ヨ と

A cardinality argument

Follows from
$$|Q_R^{(3(21))}| > |Q_R^{((32)1)}|.$$

Similarly,

11/1

$$|Q_L^{(3(21))}| > |Q_L^{((32)1)}|.$$

Let $\varphi_R: Q_R^{(3(21))} \to Q_R^{((32)1)}$ be defined as follows. Given

< □ > < @ > < 注 > < 注 > ... 注

A morphism

$$(\gamma^{(3(21))}, (\gamma^{(21)}, q_R^{(1)})) \in Q_R^{(3)Q_L^{(21)}} \times (Q_R^{(2)Q_L^{(1)}} \times Q_R^{(1)}) = Q_R^{(3(21))},$$

we set

$$(\gamma^{(3(21))}, (\gamma^{(21)}, q_R^{(1)}))\varphi_R = (\gamma^{((32)1)}, q_R^{(1)}) \in Q_R^{(32)Q_L^{(1)}} \times Q_R^{(1)} = Q_R^{((32)1)},$$

where

$$\gamma^{((32)1)}(q_L^{(1)}) = (\beta_{q_L^{(1)}}, \gamma^{(21)}(q_L^{(1)})) \in Q_R^{(3)Q_L^{(2)}} \times Q_R^{(2)} = Q_R^{(32)}$$

and

$$\beta_{q_L^{(1)}}(q_L^{(2)}) = \gamma^{(3(21))}(q_L^{(1)}, q_L^{(2)}),$$

Half associativity

where $\overline{q_L^{(2)}} \in {}^{Q_R^{(1)}}Q_L^{(2)}$ is the constant mapping with image $q_L^{(2)}$. **Theorem.** $(\mathcal{B}^{(3)} \Box \mathcal{B}^{(2)}) \Box \mathcal{B}^{(1)}$ is a quotient of $\mathcal{B}^{(3)} \Box (\mathcal{B}^{(2)} \Box \mathcal{B}^{(1)})$.

We shall choose bracketing from left to right, that is, priority is assumed to hold from left to right:

$$((\ldots (\mathcal{B}^{(n)} \Box \mathcal{B}^{(n-1)}) \Box \mathcal{B}^{(n-2)}) \Box \ldots) \Box \mathcal{B}^{(1)}.$$

(ロ) (同) (E) (E) (E)

Our model (informal)

We are interested in deterministic Turing machines that halt for all inputs, particularly those that can solve NP-complete problems. In comparison with the most standard models, our model presents three particular features:

- the "tape" is potentially infinite in *both* directions and has a distinguished cell named *the origin*;
- the origin contains the symbol # until the very last move of the computation, and # appears in no other cell;
- the machine always halts in one of a very restricted set of configurations.

イロト イヨト イヨト イヨト

Our model (formal)

(

Our deterministic Turing machine is then a quadruple of the form $\mathcal{T} = (Q, q_0, A, \delta)$ where

- Q is a finite set (set of states) containing the initial state q_0 ;
- A is a finite set (restricted tape alphabet) containing the special symbols B (blank), B' (pseudoblank), Y (yes), N (no), G (garbage) and # (origin);
- \blacktriangleright δ is a union of full maps

$$Q imes (A \setminus \{\#\}) o Q imes (A \setminus \{\#, B, Y, N, G\}) imes \{L, R\},$$

 $Q imes \{\#\} o (Q imes \{\#\} imes \{L, R\}) \cup \{Y, N, G\}.$

・ロト ・回ト ・ヨト ・ヨト

Symbols

We write $A^o = A \setminus \{\#, B\}$.

Since the machine is not allowed to write blanks (we must consider space functions), we shall use the pseudoblank as a substitute to keep the final configurations simple.

Note that, in the final move of a computation, the control head is removed from the tape and so we allow $\{Y, N, G\}$ in the image of δ . The symbols Y, N, G are used to classify the final configurations: for a TM solving a certain problem,

- Y will stand for correct input, acceptance,
- ▶ *N* for *correct input, rejection*,
- ▶ G for incorrect input.

・ロン ・回と ・ヨン ・ヨン

Word formalism

We intend to work exclusively with words, hence we exchange the classical model of "tape" and "control head" by a purely algebraic formalism. Let

$$A' = A \cup \{a^q \mid a \in A, q \in Q\}$$

be the *extended tape alphabet*.

The exponent q on a symbol acnowledges the present scanning of the corresponding cell by the control head, under state q.

向下 イヨト イヨト

Example

BBccb^qa#cB

Instantaneous descriptions

Let for : $A'^+ \to A^+$ and exp : $A'^+ \to (\mathbb{N}, +)$ be the "forgetting" and "counting" homomorphisms defined by

$$\operatorname{for}(a) = a$$
, $\operatorname{for}(a^q) = a$, $\exp(a) = 0$, $\exp(a^q) = 1$.

We define

$$egin{aligned} & D = B^* \{ w \in A'^+ \mid ext{for}(w) \in (\{1\} \cup B)(A^o)^*(\{1,\#\}) \ & \cdot (A^o)^*(\{1\} \cup B), \ \exp(w) \ \leq 1 \} B^*. \end{aligned}$$

 \overline{ID} is the set of all nonempty factors of words in ID.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

The one-move mapping

The Turing machine \mathcal{T} induces a mapping $\beta : \overline{ID} \to \overline{ID}$ as follows: Let $w \in \overline{ID}$. If $|\exp(w)| = 0$, let $\beta(w) = w$. Suppose now that $w = ua^q v$ with $a \in A$ and $q \in Q$.

• if
$$\delta(q, a) = b \in \{Y, N, G\}$$
, let $\beta(w) = ubv$;

- if $\delta(q, a) = (p, b, R)$ and c is the first letter of v = cv', let $\beta(w) = ubc^pv'$;
- if $\delta(q, a) = (p, b, R)$ and v = 1, let $\beta(w) = ubB^p$;
- if $\delta(q, a) = (p, b, L)$ and c is the last letter of u = u'c, let $\beta(w) = u'c^p bv$;
- if $\delta(q, a) = (p, b, R)$ and u = 1, let $\beta(w) = B^p bv$.

イロト イポト イヨト イヨト 三国

Normalized TM

Given $w \in ID$, the sequence $(\beta^n(w))_n$ is eventually constant if and only if \mathcal{T} stops after finitely many moves if and only if $\beta^m(w) \in A^+$ for some $m \in \mathbb{N}$. In this case, we write

$$\lim_{n\to\infty}\beta^n(w)=\beta^m(w).$$

We say that our deterministic Turing machine (TM) is normalized if

• $(\beta^n(w))_n$ is eventually constant for every $w \in ID$;

► $\lim_{n\to\infty} \beta^n(w) \in B^*B'^* \{Y, N, G\}B'^*B^*$ for every $w \in ID$. In view of our stopping conventions, this implies in particular that the symbol Y, N or G must be precisely at the origin.

(ロ) (同) (E) (E) (E)

Space and time

The space and time functions for the normalized TM ${\mathcal T}$ can be naturally defined by

$$\begin{array}{rcl} s_{\mathcal{T}} : ID & \to & \mathbb{N} \\ w & \mapsto & |\lim_{n \to \infty} \beta^n(w)|, \end{array}$$

$$t_{\mathcal{T}}: ID \to \mathbb{N}$$

$$w \mapsto \min\{m \in \mathbb{N}: \beta^m(w) = \lim_{n \to \infty} \beta^n(w)\}.$$

Any deterministic (multi-tape) Turing machine solving a problem with space and time complexities of order s(n) and t(n) (not less than linear) can be turned into a normalized TM with space and time functions of order s(n) and $(t(n))^2$, respectively.

・ロト ・回ト ・ヨト ・ヨト

The one-move lp-mapping

 $\beta_0: ID \rightarrow ID$ is defined by

$$\beta_0(w) = \begin{cases} \beta(w) & \text{if } |\beta(w)| = |w| \\ w' & \text{if } |\beta(w)| = |w| + 1 \text{ and } \beta(w) = w'B^p; \\ w' & \text{if } |\beta(w)| = |w| + 1 \text{ and } \beta(w) = B^pw'. \end{cases}$$

Alternatively, we can say that $\beta_0(w)$ is obtained from $\beta(BwB)$ by removing the first and the last letter.

We can deduce $\beta(w)$ from $\beta_0(BwB)$ and, more generally, $\beta^n(w)$ from $\beta_0(B^nwB^n)$.

Space and time from β_0

Let $\iota_B : ID \to (A' \setminus \{B\})^+$ be the mapping that removes all blanks from a given $w \in ID$.

Proposition. Let \mathcal{T} be a normalized TM with one-move mapping β .Let $w \in \overline{ID}$ be such that for $(w) \in (A \setminus \{B\})^+$. Then (i) $\lim_{n\to\infty} \beta^n(w) = \lim_{n\to\infty} \iota_B(\beta_0^n(B^nwB^n));$ (ii) $s_{\mathcal{T}}(w) = |\lim_{n\to\infty} \iota_B(\beta_0^n(B^nwB^n))|;$ (iii) $t_{\mathcal{T}}(w) = \min\{m \in \mathbb{N} : \iota_B(\beta_0^m(B^mwB^m)) = \lim_{n\to\infty} \iota_B(\beta_0^n(B^nwB^n))\}.$

イロン イ部ン イヨン イヨン 三日

Bad words

We extend $\beta_0 : \overline{ID} \to \overline{ID}$ to an Ip-mapping $\beta_0 : A'^+ \to \overline{ID}$ by composing β_0 with $\Delta : A'^+ \to ID$ defined by

$$\Delta(w) = \left\{egin{array}{cc} w & ext{if } w \in \overline{ID} \ GB'^{|w|-1} & ext{otherwise}. \end{array}
ight.$$

So far, we have associated to the normalized TM \mathcal{T} an lp-mapping β_0 encoding the full computational power of \mathcal{T} with space and time functions equivalent to those of \mathcal{T} .

We define next a canonical finite bimachine matching β_0 in \overline{ID} .

イロト イヨト イヨト イヨト

The one-move bimachine

The A', A'-bimachine

$$\mathcal{B}_{\mathcal{T}} = ((I_R, Q_R, S_R), f, (S_L, Q_L, I_L))$$

is defined as follows:

- ▶ the action $Q_R \times S_R \rightarrow Q_R$ is defined by $q_R a = a$;
- ▶ the action $S_L \times Q_L \rightarrow Q_L$ is defined by $aq_L = a$

イロン イヨン イヨン イヨン

2

The one-move bimachine

For the output function, let us write $I'_R = B$ and $q'_R = q_R$ for every $q_R \in Q_R \setminus \{I_R\}$. Similarly, we define q'_L . Given $q_R \in Q_R$, $a \in A'$ and $q_L \in Q_L$, let

$$f(q_R, a, q_L) = \beta_0(q'_R, a, q'_L).$$

If $q_R aq_L \in \overline{ID}$, then $q_R aq_L$ will encode the situation of three consecutive tape cells at a certain moment. Then $f(q_R, a, q_L)$ describes the situation of the middle cell after one move of \mathcal{T} .

Proposition. Let \mathcal{T} be a normalized TM with one-move lp-mapping β_0 . Then $\alpha_{\mathcal{B}_{\mathcal{T}}}(w) = \beta_0(w)$ for every $w \in \overline{ID}$.

- 4 同 6 4 日 6 4 日 6