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1 Introduction

1.1 Existence and understanding

Existence implies feedback and is prior to understanding. That is, things exist, like cells,
childern, massive computer programs using inductive loops, ecological systems with complex
feedback, etc., but we may not or do not understand them.

Understanding comes later in the form of introducing coordinates, i. e., science, describ-
ing the system in question with time and space movements in sequential form. Thus, if the
coordinates (. . . , xn, . . . , x1) (finite or infinite) describe a system at time and space c(t, p),
then if the input π is a change in time or space, then coordinates

(. . . , xn, . . . , x1)π = (. . . , yn, . . . , y1).

Understanding implies sequential form which means that yn depends only on π, x1, . . . , xn

and not on xn+1, xn+2, . . .. (See elliptic contractions above Theorem 6.4 in the text, or [12]
with erratum to diagram p. 274, or [13].

Elliptic contractions which are invertible (bi-injections) form the basis of Ukranian
Group Theory [6, 7].

1.2 Philosophical viewpoint towards P vs. NP

Our viewpoint toward P vs. NP is that it is obviously true that P does not equal NP,
but we need to get more sophisticated relevant mathematics involved to prove there are no
polynomial-time programs for NP-complete problems. This is the viewpoint of this paper.
The approach may take 2 to 25 years. For an excellent reference for the standard material
on P vs. NP, see [10].
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1.3 Technical philosophical viewpoint towards proving that P 6= NP

Let T be a deterministic Turing machine always halting and solving problem P ; e. g., P
is finding a Hamiltonian Cycle in a graph. Let Tn be T running for n steps. Then Tn is
“some kind of finite-state machine,” and the limit of Tn → T is “some kind of limit.” We
next describe what “sort of finite-state machine” and what “sort of limit.”

1.4 Technical viewpoint

Tn is a finite-state length-preserving bimachine (see Section 2), and Tn is the iteration or
composition of T1 considered as a bimachine. (See Sections 3 and 8). The limit is the
projective on profinite limit of (T1)n = Tn (see Section 6) converging to the problem P .

Profinite limits are clearly mathematically powerful enough to prove P is not equal to
NP but are difficult to use in general (e. g., Fermat’s Last Theorem: see [16, 3]).

1.5 Finite-state automata and bimachines and length-preserving maps

Let A, B be nonempty finite alphabets. We consider A+, the set of all finite strings on A
(i. e., the free semigroup with generators A), and consider maps α : A+ → B+ (often with
A = B) which preserve length (lp-mappings). We are interested when α can be done with
a finite number of states.

We start with a finite-state automaton given by a right A-automaton (see Section 2)
AR = (IR, QR, SR) together with an output function f : QR × A → B. Then (AR, f)
determines the lp-mapping α(AR, f) ≡ α : A+ → B+ defined by α(u,A, v) = f(IR, u, a) for
u, v ∈ A∗, a ∈ A (so independent of v, i. e., (right) causal). For notation, see Section 2,
page 7. So

a1 a2 a3 . . . an

goes to
b1 b2 b3 . . . bn
‖ ‖ ‖ ‖

f(IR, a1) f(IRa1, a2) f(IRa1a2, a3) . . . f(IRa1, . . . , an−1, an)

Notice this is linear-time, but what is the coefficient? A B-bimachine B (see Section 2) is
given by a right A-automaton AR = (IR, QR, SR), a left A-automaton AL = (IL, QL, SL),
and a function f : QR ×A×QL → B, and it determines αB : A+ → B+ by

αB(u, a, v) = f(IRu, a, vIL) for u, v ∈ A∗, a ∈ A.

For notation, see Section 2, page 7. Thus,

a1 a2 . . . an

goes to
b1 b2 . . . bn
‖ ‖ ‖

f(IR, a1, a2 · · · anIL) f(IRa1, a2, a3 · · · anIL) . . . f(IRa1 · · · an−1, an, IL)

Given α : A+ → B+, there is a unique minimal bimachine B(α) so αB(α) = α. See
Proposition 2.3.
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Thus, a finite-state bimachine computes bi from the input string

a1, . . . , ai−1, ai, ai+1, . . . , an

by running the right automata An starting at the left of a1, . . . , ai−1 and running right,
which is linear-time in i − 1 (but what is the coefficient? See Section 6), and running
the left automata AL starting at the right of ai+1, . . . , an (again, linear-time of length
n− i) and running left and then determining bi as f(IRa1 · · · ai−1, ai, ai+1 · · · anIL) (i. e., as
(result of AR, ai, result of AL)).

This can be illustrated as follows:

AR−−−−−−−−−→
(linear time) ai

AL←−−−−−−−−−
(linear time)︸ ︷︷ ︸

bi

.

The first course of business is to prove that the composition of two lp-maps given by
finite-state bimachines is also given by a finite-state bimachine, and the semigroups of the
(non-minimal) automata can be taken as double semidirect products of matrix multiplica-
tion on upper triangular matrices with coefficients in some semiring. See Section 3. The
pictures are as follows:
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R , a1a2a3I

(1)
L )
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L )
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(1)
L )I(2)
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and this corresponds to the matrix product (see Section 3, Lemma 3.1)(
(a1)L 0
fa1 (a1)R

)
·
(

(a2)L 0
fa2 (a2)R

)
=

(
(a1)L(a2)L 0

fa1(a2)L +
·

(a1)Rfa2 (a1)R(a2)R

)
,

where

fai : Q(1)
R ×Q

(1)
L → B,

fai = f (1)(−, ai,∼) written as [−, ai,∼].

So
−(fa1(a2)L + (a1)Rfa2) ∼= [−, a1, a2 ∼] · [−a1, a2,∼]

by considering this picture:

(−, aiai+1 ∼)
ai

// (−ai, ai+1 ∼)
ai+1

// (−aiai+1,∼)

f (1)(−, ai, ai+1 ∼) ·

<<<<<<<<<<<<<<<

�������������















f (1)(−ai, ai+1,∼)

BBBBBBBBBBBBBBBB

"""""""""""""
















1.6 Associating a finite-state bimachine to a deterministing Turing ma-
chine solving a problem P which halts for all inputs

This is exposited in detail in Section 8. The following is a brief overview.
Say we are given the instantaneous description (ID) of the Turing machine (TM), say

q
· · · a1 · · · ai−1 ai ai+1 · · · an · · · ,

where everything to the left of a1 and to the right of an is a blank ( B ), q is the reading head
(reading ai), and a1, . . . , an are arbitrary tape symbols (including blanks). We consider

q
B a1 · · · ai−1 ai ai+1 · · · an B

.

Do one move of T , yielding
q

B a1 · · · ai−1 ai ai+1 · · · an B
T1 ↓

a′0 a′1 · · · a′i−1 a′i a′i+1 · · · a′n a′n+1

,

where a′j are tape symbols with one or fewer reading heads attached. Then

β0 : ID→ ID

given by
β0(a1, . . . , an) = a′1, . . . , a

′
n

is the associated bimachine (i. e., we chop off a′0 and a′n+1).
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Example 1.1

β0

( ←
q

a b c

)
=

q′

a b′ c
,

where

←
q
b

means the TM will move left, print b′ over b, and go into new state q′:

β0

( ←
q
b c d e

)
=

b′ c d e ,

and

β0

( ←
q

B b c d e

)
=

q′

B b′ c d e
,

and dually for

→
q
b

.

If S is the set of all the symbols, then β0 : S+ → S+ satisfies:

1. β0 is a finite-state bimachine with SR = Sr, with Sr being the semigroup with elements
S and s1s2 = s2; SL = Sl, with Sl being the semigroup with elements S and s1s2 = s1;
QR = SrI add an identity; QL = SlI ; and f : S × S × S → S is essentially the data
determining T .

2. With suitable stopping conventions (see Section 8 for details),

lim
n→∞

βn
0 = P,

the problem. Here, limβn
0 (w) = β

t(w)
0 (w) = β0(β

t(w)
0 (w)) = β

t(w)
0 (w). Time(w) is the

smallest t(w) which works, and similarly for space. (See Section 8.)

Going from T → bi ∼= β0 (and we could go back: β0
∼= bi → T ) is essentially an (obvious!)

equivalent formulation of Turing machines, so why do it? The taking of powers of β0 under
composition (i. e., running the Turing machine) leads to algebra, namely double semidirect
products (of semigroups) as evidenced by multiplication in upper triangular matrices with
coefficients in some semiring as was discussed in Section 1.5 before and continued in Sections
3 and 4. Two and three iterations of a bimachine are considered in in Sections 3 and 4 and
large n iterations is considered in Section 6, and then on to the profinite infinite in Sections
9 and 10.
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2 Bimachines

Let A,A′ be finite nonempty alphabets. A function α : A+ → A′+ is said to be synchronous
or length-preserving if |α(w)| = |w| for every w ∈ A+. They shall be usually referred as
lp-mappings.

Let w ∈ A+ and i ∈ {1, . . . , |w|}. We must define a factorization of w to isolate the letter
in the ith position. More precisely, we define λi(w) ∈ Ai−1, σi(w) ∈ A and µi(w) ∈ A|w|−i

by the equality
w = λi(w)σi(w)µi(w).

Let α : A+ → A′+be an lp-mapping. We extend the domain of α to A∗ × A × A∗ as
follows. Given u, v ∈ A∗ and a ∈ A, we write

α(u, a, v) = σ|u|+1α(uav),

i.e. the value of the output string in the |u|+ 1 position. Note that this domain extension
brings no inconsistency. Since

α(w) =
|w|∏
i=1

σiα(w) =
|w|∏
i=1

α(λi(w), σi(w), µi(w)) (1)

for every w ∈ A+, it follows that an lp-mapping A+ → A′+ is uniquely determined by the
mapping α( , , ) : A∗ × A× A∗ → A′ and vice-versa. More generally, given u,w ∈ A∗ and
v ∈ A+, we write

α(u, v, w) =
|v|∏
i=1

α(uλi(v), σi(v), µi(v)w).

A semigroup S is said to be A-generated (or an A-semigroup) if there exists a surjective
homomorphism π : A+ → S. Given w ∈ A+, we may write wS = π(w). As usual, we
assume that π is implicitly determined by the mention of S and we drop the subscript S

whenever possible.
Given A-semigroups S and S′, we say that a semigroup morphism ϕ : S → S′ is an

A-semigroup morphism if ϕ(aS) = aS′ for every a ∈ A. Clearly, there is at most one A-
semigroup morphism from an A-semigroup into another, and it must be necessarily surjec-
tive. Thus we can define a partial order on the set of all A-semigroups (up to isomorphism)
by

S′ ≤ S ⇔ ∃ϕ : S → S′.

This is equivalent to
∀u, v ∈ A+ (uS = vS ⇒ uS′ = vS′).

A right A-automaton is a triple AR = (IR, QR, SR) where QR is a set, IR ∈ QR and SR

is an A-semigroup acting on QR on the right, so

(qRsR)s′R = qR(sRs
′
R)

for all qR ∈ QR and sR, s
′
R ∈ SR. We recall that this action is faithful if

(∀qR ∈ QR qRsR = qRs
′
R)⇒ sR = s′R
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holds for all sR, s
′
R ∈ SR, i.e. different elements act differently on the set of states. The

action in the right A-automaton AR is NOT assumed to be faithful. However, we shall
assume that the action is proper, that is, IR /∈ IRSR. We say that AR is finite if QR and
SR are both finite. Clearly, the action of SR on QR induces an action of A+ on QR defined
by qRu = qRuSR

.
Let AR = (IR, QR, SR) and A′R = (I ′R, Q

′
R, S

′
R) be right A-automata. A morphism

ϕ : AR → A′R is defined, whenever S′R ≤ SR, via a mapping ϕ : QR → Q′R such that

• ϕ(IR) = I ′R;

• ϕ(qRu) = ϕ(qR)u for all qR ∈ QR and u ∈ A+.

This corresponds exactly to the statement that there exists a mapping on the states and
an A-semigroup morphism preserving initial state and the action. If ϕ is onto, we say
that A′R is a quotient of AR. We say that the morphism ϕ is an embedding (respectively
isomorphism) of right A-automata if S′ ∼= S and ϕ is an injective (respectively bijective)
mapping.

Given a semigroup S, we denote by SI the semigroup obtained by adjoining an identity
to S (even if S is a monoid). If S acts on some set Q, we assume that the new identity acts
on Q as the identity.

The right automaton AR = (IR, QR, SR) is said to be trim if QR = IRS
I
R. The trim

part of AR is defined by
tr(AR) = (IR, IRSI

R, SR).

Clearly, the inclusion map constitutes an embedding of tr(AR) into AR.
Dually, a left A-automaton is a triple (SL, QL, IL) where QL is a set, IL ∈ QL and SL

is an A-semigroup acting on QL on the left. The action is also assumed to be proper and
induces canonically an action of A+ on QL. Morphisms are defined dually.

Let A,A′ be finite alphabets. An A,A′-bimachine is a structure of the form

B = ((IR, QR, SR), f, (SL, QL, IL)),

where

• (IR, QR, SR) is a right A-automaton;

• (SL, QL, IL) is a left A-automaton;

• f : QR ×A×QL → A′ a full map.

We refer to the function f as the output function. We say that B is finite if (IR, QR, SR)
and (SL, QL, IL) are both finite. We say that B is faithful if both actions in (IR, QR, SR)
and (SL, QL, IL) are faithful.

Let B = ((IR, QR, SR), f, (SL, QL, IL)) and B′ = ((I ′R, Q
′
R, S

′
R), f ′, (S′L, Q

′
L, I
′
L)) beA,A′-

bimachines. We say that ϕ : B → B′ is a morphism of A,A′-bimachines if ϕ = (ϕR, ϕL),
where

• ϕR : (IR, QR, SR)→ (I ′R, Q
′
R, S

′
R) is a morphism of right A-automata;

• ϕL : (SL, QL, IL)→ (S′L, Q
′
L, I
′
L) is a morphism of left A-automata;
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• ∀u, v ∈ A∗ ∀a ∈ A f ′(I ′Ru, a, vI
′
L) = f(IRu, a, vIL).

If ϕR and ϕL are both onto, we say that ϕ is onto and B′ is a quotient of B. If ϕR and ϕL are
both embeddings, we say that ϕ is an embedding. We shall say that ϕ is an isomorphism
if and only if ϕR and ϕL are both isomorphisms.

It is immediate that the class of all A,A′-bimachines and their morphisms constitutes a
category.

We associate an lp-mapping αB : A+ → A′+ to the A,A′-bimachine
B = ((IR, QR, SR), f, (SL, QL, IL)) by

αB(u, a, v) = f(IRu, a, vIL) (u, v ∈ A∗, a ∈ A).

Proposition 2.1 Let ϕ : B → B′ be a morphism of A,A′-bimachines. Then αB = αB′.

Proof. Write B = ((IR, QR, SR), f, (SL, QL, IL)) and B′ = ((I ′R, Q
′
R, S

′
R), f ′, (S′L, Q

′
L, I
′
L)).

For all u, v ∈ A∗ and a ∈ A, we have

αB′(u, a, v) = f ′(I ′Ru, a, vI
′
L) = f(IRu, a, vIL)

= αB(u, a, v)

and so αB = αB′ . �

A partial converse is given by:
Proposition 2.2 Let B = ((IR, QR, SR), f, (SL, QL, IL)) and B′ = ((I ′R, Q

′
R, S

′
R), f ′,

(S′L, Q
′
L, I
′
L)) be A,A′-bimachines such that αB = αB′. If ϕR : (IR, QR, SR)→ (I ′R, Q

′
R, S

′
R)

and ϕL : (SL, QL, IL) → (S′L, Q
′
L, I
′
L) are morphisms of respectively right and left A-

automata, then ϕ = (ϕR, ϕL) is a morphism from B to B′.

Proof. For all u, v ∈ A∗ and a ∈ A, we have

f ′(I ′Ru, a, vI
′
L) = αB′(u, a, v) = αB(u, a, v)

= f(IRu, a, vIL)

and so ϕ = (ϕR, ϕL) is a morphism. �

AnA,A′-bimachine B = ((IR, QR, SR), f, (SL, QL, IL)) is said to be trim if both (IR, QR, SR)
and (SL, QL, IL) are trim. The trim part of B is defined by

tr(B) = ((IR, IRSI
R, SR), f ′, (SL, S

I
LIL, IL),

where f ′ is the restriction of f to IRSI
R × A× SI

LIL. Clearly, the ordered pair of inclusion
maps IRSI

R → QR, SI
LIL → QL constitutes an embedding of tr(B) into B.

We show now we can associate in a canonical way a bimachine to an lp-mapping. Let
α : A+ → A′+ be an lp-mapping. Given u, v ∈ A+, we write

uρRv if ∀x, y, z ∈ A∗ ∀a ∈ A α(xuy, a, z) = α(xvy, a, z);

uρLv if ∀x, y, z ∈ A∗ ∀a ∈ A α(x, a, yuz) = α(x, a, yvz);

uτRv if ∀y, z ∈ A∗ ∀a ∈ A α(uy, a, z) = α(vy, a, z);
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uτLv if ∀x, y ∈ A∗ ∀a ∈ A α(x, a, yu) = α(x, a, yv).

Clearly, ρR and ρL are congruences on A+, and so SR = A+/ρR and SL = A+/ρL are
A-semigroups. On the other hand, τR is a right congruence and τL a left congruence on A+

satisfying
ρR ⊆ τR, ρL ⊆ τL. (2)

We can extend τR to a right congruence on A∗ by defining 1τR = {1}. Let QR = A∗/τR
and IR = 1τR. We can define a right action of SR on QR by

(uτR)(vρR) = (uv)τR (u ∈ A∗, v ∈ A+) :

indeed, if uτRu′ and vρRv
′, then (uv)τR(u′v)ρR(u′v′) and so (uv)τR(u′v′) by (2).

Similarly, we extend τL to A∗ and let QL = A∗/τL and IL = 1τL. We define a left action
of SL on QL by

(uρL)(vτL) = (uv)τL (u ∈ A+, v ∈ A∗).

Let f : QR ×A×QL → A′ be defined by

f(uτR, a, vτL) = α(u, a, v).

It follows easily from the definition of τR and τL that f is well defined. Therefore

Bα = ((IR, QR, SR), f, (SL, QL, IL))

is a well-defined trim A,A′-bimachine.
The following result shows that we can view Bα as the minimum bimachine of α.

Proposition 2.3 Let α : A+ → A′+ be an lp-mapping. Then:

(i) αBα = α.

(ii) If B′ is a trim A,A′-bimachine such that αB′ = α, then there exists a (surjective)
morphism ϕ : B′ → Bα.

(iii) Up to isomorphism, Bα is the unique trim A,A′-bimachine satisfying (ii).

Proof. (i) Given u, v ∈ A∗ and a ∈ A, we have

αBα(u, a, v) = f(IRu, a, vIL) = f(uτR, a, vτL)
= α(u, a, v)

and so αBα = α.
(ii) Assume that B′ = ((I ′R, Q

′
R, S

′
R), f ′, (S′L, Q

′
L, I
′
L)) is a trim A,A′-bimachine such that

αB′ = α. We define mappings ϕR : Q′R → QR and ψR : S′R → SR by

ϕR(I ′Ru) = uτR, ψR(vS′R
) = vρR (u ∈ A∗, v ∈ A+).

Suppose that vS′R
= wS′R

. Let x, y, z ∈ A∗ and a ∈ A. We have (xvy)S′R
= (xwy)S′R

and so

α(xvy, a, z) = αB′(xvy, a, z) = f ′(I ′Rxvy, a, zI
′
L) = f ′(I ′Rxwy, a, zI

′
L)

= αB′(xwy, a, z) = α(xwy, a, z)
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and so vρR = wρR and so ψR is well defined. Similarly, we can show that ϕR is well defined.
It is immediate that ψR is an A-semigroup morphism and ϕR an onto morphism of right
A-automata.

Similarly, we define an A-semigroup morphism ψL : S′L → SL and an onto morphism
ϕL : Q′L → QL of left A-automata by

ϕL(uI ′L) = uτL, ψL(vS′L
) = vρL (u ∈ A∗, v ∈ A+).

Since αB′ = α, it follows from Proposition 2.2 that ϕ = (ϕR, ϕL) is an onto morphism
of B′ onto Bα.

(iii) Suppose that B′ is another trim A,A′-bimachine satisfying (ii). Then we have onto
morphisms ϕ : B′ → Bα and ϕ′ : Bα → B′. Since there is at most one morphism from one
trim right A-automaton into another, it follows that ϕRϕ

′
R and ϕ′RϕR are both identity

mappings, and so ϕR is an isomorphism. Similarly, ϕL is an isomorphism and so is ϕ. �

We end this section by remarking that changing the initial states in a bimachine may
give a new perspective on the computation of the associated lp-mapping.
Proposition 2.4 Let B = ((IR, QR, SR), f, (SL, QL, IL)) be an A1, A2-bimachine and let
u,w ∈ A∗1, v ∈ A

+
1 . If B′ = ((IRu,QR, SR), f, (SL, QL, wIL)), then

αB(u, v, w) = αB′(1, v, 1) = αB′(v).

Proof. It follows from the definitions that

αB(u, v, w) =
∏|v|

i=1 αB(uλi(v), σi(v), µi(v)w)

=
∏|v|

i=1 f(IRuλi(v), σi(v), µi(v)wIL)

=
∏|v|

i=1 αB′(λi(v), σi(v), µi(v))

= αB′(1, v, 1) = αB′(v).

�

An early reference on bimachines is [?]. Also see [5, vol. A] and [15].

3 The block product–composing two bimachines

We develop in this section a construction on bimachines appropriate do deal with compo-
sition.

Let
B(i) = ((I(i)

R , Q
(i)
R , S

(i)
R ), f (i), (S(i)

L , Q
(i)
L , I

(i)
L ))

be an Ai, Ai+1-bimachine for i = 1, 2. After some preparation, we shall define an A1, A3-
bimachine

B(2)�B(1) = B(21) = ((I(21)
R , Q

(21)
R , S

(21)
R ), f (21), (S(21)

L , Q
(21)
L , I

(21)
L ))

11



called the block product of B(2) and B(1).
The block product construction involves sets of mappings whose domain is often a

direct product of the form Q
(1)
R ×Q

(1)
L . Following [15], we shall use the notation q(1)R gq

(1)
L =

g(q(1)R , q
(1)
L ) for g ∈ UQ

(1)
R ×Q

(1)
L = Q

(1)
R UQ

(1)
L , q(1)R ∈ Q(1)

R and q
(1)
L ∈ Q(1)

L . To be consistent,
we shall write maps with domains of type Q(1)

R on the right and type Q(1)
L on the left.

We define

S
(21)
R =

 S
(1)
L 0

Q
(1)
R S

(2)
R

Q
(1)
L
S

(1)
R

 .

A straightforward adaptation of [5, vol.B, p.142] shows that S(21)
R is a semigroup for the

product (
s
(1)
L 0
g s

(1)
R

)(
s′

(1)
L 0
g′ s′

(1)
R

)
=

 s
(1)
L s′

(1)
L 0

gs′
(1)
L + s

(1)
R g′ s

(1)
R s′

(1)
R

 ,

where
q
(1)
R (gs′(1)L + s

(1)
R g′)q(1)L = (q(1)R g(s′(1)L q

(1)
L )) + ((q(1)R s

(1)
R )g′q(1)L ).

Following [5, vol. B], we use here + to denote the semigroup operation of S(2)
R , re-

gardless of being commutative or not, to emphasize that we are doing the natural matrix
multiplication. However, we shall revert to the more classical · notation in the sequel.

Let

Q
(21)
R = Q

(2)
R

Q
(1)
L ×Q(1)

R .

It will be often convenient to represent the elements of Q(21)
R , termed R-generalized 2 step

crossing sequences, as 1× 2 matrices. The semigroup S(21)
R acts on Q(21)

R on the right by

(
γ q

(1)
R

)(s(1)L 0
g s

(1)
R

)
=
(
γs

(1)
L · q

(1)
R g q

(1)
R s

(1)
R

)
,

where
(γs(1)L · q

(1)
R g)(q(1)L ) = γ(s(1)L q

(1)
L ) · q(1)R gq

(1)
L .

Once again, we note that this is a form of matrix multiplication (but we refrain from using
+ for the action).

To show that this is indeed an action, we compute

(
γ q

(1)
R

)((s(1)L 0
g s

(1)
R

)(
s′

(1)
L 0
g′ s′

(1)
R

))
=
(
γ q

(1)
R

) s
(1)
L s′

(1)
L 0

gs′
(1)
L · s

(1)
R g′ s

(1)
R s′

(1)
R


=
(
γ(s(1)L s′

(1)
L ) · q(1)R (gs′(1)L · s

(1)
R g′) q

(1)
R (s(1)R s′

(1)
R )
)

12



and((
γ q

(1)
R

)(s(1)L 0
g s

(1)
R

))(
s′

(1)
L 0
g′ s′

(1)
R

)
=
(
γs

(1)
L · q

(1)
R g q

(1)
R s

(1)
R

)(s′(1)L 0
g′ s′

(1)
R

)

=
(

(γs(1)L · q
(1)
R g)s′(1)L · (q

(1)
R s

(1)
R )g′ (q(1)R s

(1)
R )s′(1)R

)
.

Since S(1)
R acts on Q(1)

R , the second columns coincide. For the first columns, we compute

[γ(s(1)L s′
(1)
L ) · q(1)R (gs′(1)L · s

(1)
R g′)](q(1)L ) = γ((s(1)L s′

(1)
L )q(1)L ) · q(1)R (gs′(1)L · s

(1)
R g′)q(1)L

= γ(s(1)L (s′(1)L q
(1)
L )) · [q(1)R g(s′(1)L q

(1)
L ) · (q(1)R s

(1)
R )g′q(1)L ]

= [γ(s(1)L (s′(1)L q
(1)
L )) · q(1)R g(s′(1)L q

(1)
L )] · (q(1)R s

(1)
R )g′q(1)L

= (γs(1)L · q
(1)
R g)(s′(1)L q

(1)
L ) · (q(1)R s

(1)
R )g′q(1)L

= [(γs(1)L · q
(1)
R g)s′(1)L · (q

(1)
R s

(1)
R )g′](q(1)L ),

hence we have indeed an action.
Let

I
(21)
R = (γ(21)

0 , I
(1)
R ),

where γ(21)
0 ∈ Q

(2)
R

Q
(1)
L is defined by γ

(21)
0 (q(1)L ) = I

(2)
R . The action is proper since I(1)

R /∈
I

(1)
R S

(1)
R implies that I(21)

R /∈ I(21)
R S

(21)
R .

The semigroup S
(21)
R is not an A1-semigroup, so let ηR : A+ → S

(21)
R be the homomor-

phism defined by

ηR(a) =

aS
(1)
L

0

g
(1)
a a

S
(1)
R

 ,

where
q
(1)
R g(1)

a q
(1)
L = (f (1)(q(1)R , a, q

(1)
L ))

S
(2)
R

for all q(1)R ∈ Q(1)
R and q(1)L ∈ Q(1)

L . We define

S
(21)
R = ηR(A+).

It is clear that, given w ∈ A+, we may write

ηR(w) =

wS
(1)
L

0

g
(1)
w w

S
(1)
R


13



for some g(1)
w ∈

Q
(1)
R S

(2)
R

Q
(1)
L . We have now completed the definition of the right A1-automaton

(I(21)
R , Q

(21)
R , S

(21)
R ).

Dually, we define

Q
(21)
L = Q

(1)
L ×

Q
(1)
R Q

(2)
L .

It will be often convenient to represent the elements of Q(21)
L , termed L-generalized 2 step

crossing sequences, as 2× 1 matrices. Let

I
(21)
L = (I(1)

L , δ
(21)
0 ),

where q(1)R δ
(21)
0 = I

(2)
L .

We define

S
(21)
L =

 S
(1)
L 0

Q
(1)
R S

(2)
L

Q
(1)
L
S

(1)
R

 .

Similarly, S(21)
L is a semigroup for the product

(
s
(1)
L 0
h s

(1)
R

)(
s′

(1)
L 0
h′ s′

(1)
R

)
=

 s
(1)
L s′

(1)
L 0

hs′
(1)
L · s

(1)
R h′ s

(1)
R s′

(1)
R

 ,

where
q
(1)
R (hs′(1)L · s

(1)
R h′)q(1)L = (q(1)R h(s′(1)L q

(1)
L ))((q(1)R s

(1)
R )h′q(1)L ).

The semigroup S(21)
L acts on Q(21)

L on the left by

(
s
(1)
L 0
h s

(1)
R

)(
q
(1)
L

δ

)
=

 s
(1)
L q

(1)
L

hq
(1)
L · s

(1)
R δ

 ,

where
q
(1)
R (hq(1)L · s

(1)
R δ) = q

(1)
R hq

(1)
L · (q

(1)
R s

(1)
R )δ.

We omit verifying that this is indeed an action.

Let ηL : A+ → S
(21)
L be the homomorphism defined by

ηL(a) =

aS
(1)
L

0

h
(1)
a a

S
(1)
R

 ,

where
q
(1)
R h(1)

a q
(1)
L = (f (1)(q(1)R , a, q

(1)
L ))

S
(2)
L

for all q(1)R ∈ Q(1)
R and q(1)L ∈ Q(1)

L . We define

S
(21)
L = ηL(A+).

14



It is clear that, given w ∈ A+, we may write

ηL(w) =

wS
(1)
L

0

h
(1)
w w

S
(1)
R


for some h(1)

w ∈
Q

(1)
R S

(2)
L

Q
(1)
L . We have now completed the definition of the left A1-automaton

(S(21)
L , Q

(21)
L , I

(21)
L ).

Finally, the output function f (21) : Q(21)
R ×A1 ×Q(21)

L → A3 is defined by

f (21)(
(
γ q

(1)
R

)
, a,

(
q
(1)
L

δ

)
) = f (2)(γ(aq(1)L ), f (1)(q(1)R , a, q

(1)
L ), (q(1)R a)δ).

This completes the definition of the bimachine B(2)�B(1). Note that if B(2) and B(1) are
both finite, so is B(2)�B(1).

We want to give an interpretation of
(
γ q

(1)
R

)
and why it is termed an R-generalized

2-step crossing sequence. The interpretation of
(
γ q

(1)
R

)
is first given by a picture

(I(1)
R , )−̃→(I(1)

R q
(1)
R , q

(1)
L )

(I(2)
R , ) −→ (γ(q(1)L ), )

Here, ( , ) represents a member of Q(i)
R ×Q

(i)
L for i = 1, 2.

Now in words, in considering B(2)�B(1), if ˜ is an input (i. e., a member of A+
1 ) which

takes the R initial state of B(2)�B(1) to (γ, q(1)R ) under the action, then if B(2)�B(1) is started
in the R initial state with the first left automaton started in q(1)L , then the second right state
will be γ(q(1)L ) (which does not depend on q(2)L , the second state of the left machine).

For an informal proof, we must check that this interpretation persists under an appli-
cation of a letter a ∈ A1. Well,(

γ q
(1)
R

)
· a =

(
γ q

(1)
R

)aS
(1)
L

0

g
(1)
a a

S
(1)
R


=
(
γaL( ) · q(1)R g

(1)
a ( ) q(1)R aR

) (with aL ≡ aS
(1)
L

,

aR ≡ aS
(1)
R

)

with ( ) standing for the variable (q(1)L ).
But now, looking at the following pictures, we see this gives the new correct interpreta-

tion.

(I(1)
R , ) ˜ // (I(1)

R q
(1)
R , aLq

(1)
L )

a // (I(1)
R q

(1)
R aR, q

(1)
L )

(I(2)
R , ) // (γ(aLq

(1)
L ), ) (x, )

VVVVVVVVVVVVVVVVVVVVVVV

EEEEEEEEEEE

�������
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(with x = γ(aLq
(1)
L ) · f (1)(I(1)

R q
(1)
R , a, q

(1)
L ).)

Note this interpretation of (γ, q(1)R ) and its dual also motivates the definition of the
output function f (21). Also, see Section 1.5 of the introduction.

Next we expose the nature of the morphisms g(1)
w that play an important part in the

definition of ηR and S(21)
R .

Lemma 3.1 For all w ∈ A+, q(1)R ∈ Q(1)
R and q(1)L ∈ Q(1)

L , we have

q
(1)
R g(1)

w q
(1)
L = [

|w|∏
i=1

f (1)(q(1)R λi(w), σi(w), µi(w)q(1)L )]
S

(2)
R

.

Proof. We use induction on |w|. The case |w| = 1 follows from the definition, hence we
assume that |w| > 1 and the lemma holds for shorter words. We may write w = va with
a ∈ A1. ThuswS

(1)
L

0

g
(1)
w w

S
(1)
R

=w
S

(21)
R

= v
S

(21)
R

a
S

(21)
R

=

vS
(1)
L

0

g
(1)
v v

S
(1)
R


aS

(1)
L

0

g
(1)
a a

S
(1)
R



=

 w
S

(1)
L

0

g
(1)
v a

S
(1)
L

· v
S

(1)
R

g
(1)
a w

S
(1)
R

 .

By the induction hypothesis, we get

q
(1)
R (g(1)

v a
S

(1)
L

· v
S

(1)
R

g
(1)
a )q(1)L = q

(1)
R g

(1)
v (aq(1)L ) · (q(1)R v)g(1)

a q
(1)
L

= [
∏|v|

i=1 f
(1)(q(1)R λi(v), σi(v), µi(v)aq

(1)
L )]

S
(2)
R

[f (1)(q(1)R v, a, q
(1)
L )]

S
(2)
R

= [(
∏|w|−1

i=1 f (1)(q(1)R λi(w), σi(w), µi(w)q(1)L ))f (1)(q(1)R λ|w|(w), σ|w|(w), µ|w|(w)q(1)L )]
S

(2)
R

= [
∏|w|

i=1 f
(1)(q(1)R λi(w), σi(w), µi(w)q(1)L )]

S
(2)
R

= q
(1)
R g

(1)
w q

(1)
L

and the lemma holds. �

Similarly, we get:

Lemma 3.2 For all w ∈ A+, q(1)R ∈ Q(1)
R and q(1)L ∈ Q(1)

L , we have

q
(1)
R h(1)

w q
(1)
L = [

|w|∏
i=1

f (1)(q(1)R λi(w), σi(w), µi(w)q(1)L )]
S

(2)
L

.
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In view of Lemmas 3.1 and 3.1, we shall from now on use the notation g
(1)
w or h(1)

w to

denote also the mapping in
Q

(1)
R A+

2
Q

(1)
L defined by

q
(1)
R g(1)

w q
(1)
L = q

(1)
R h(1)

w q
(1)
L =

|w|∏
i=1

f (1)(q(1)R λi(w), σi(w), µi(w)q(1)L ).

We shall use the simplified notation

w
S

(21)
R

=

(
w 0
g
(1)
w w

)
, w

S
(21)
L

=

(
w 0
h

(1)
w w

)
when no confusion will arise.

For technical reasons, it is sometimes useful to consider the constant mapping g(1)
1 = h

(1)
1

defined by q(1)R g
(1)
1 q

(1)
L = 1. Note that, under this convention, the formulae

(γ, q(1)R )w = (γw · q(1)R g(1)
w , q

(1)
R w) (3)

and
w(q(1)L , δ) = (wq(1)L , h(1)

w q
(1)
L · wδ) (4)

hold for every w ∈ A∗.
Our next result shows that the block product of bimachines is adequate to deal with

the composition of lp-mappings:
Proposition 3.3 Let B(1) be an A1, A2-bimachine and let B(2) be an A2, A3-bimachine.
Then αB(2)�B(1) = αB(2)αB(1).

Proof. Keeping the same notation used so far, we fix u, v ∈ A∗ and a ∈ A. By Lemmas
3.1 and 3.2, we have

αB(21)(u, a, v) = f (21)(I(21)
R u, a, vI

(21)
L )

= f (21)(
(
γ

(21)
0 I

(1)
R

)( u 0
g
(1)
u u

)
, a,

(
v 0
h

(1)
v v

)(
I

(1)
L

δ
(21)
0

)

= f (21)(
(
γ

(21)
0 u · I(1)

R g
(1)
u I

(1)
R u

)
, a,

 vI
(1)
L

h
(1)
v I

(1)
L · vδ(21)

0


= f (2)((γ(21)

0 u · I(1)
R g

(1)
u )(avI(1)

L ), f (1)(I(1)
R u, a, vI

(1)
L ), (I(1)

R ua)(h(1)
v I

(1)
L · vδ(21)

0 ))

= f (2)(I(2)
R (I(1)

R g
(1)
u (avI(1)

L )), f (1)(I(1)
R u, a, vI

(1)
L ), ((I(1)

R ua)h(1)
v I

(1)
L )I(2)

L ).

On the other hand, by (1), we have

αB(1)(uav) =
∏|uav|

i=1 αB(1)(λi(uav), σi(uav), µi(uav))

=
∏|uav|

i=1 f (1)(I(1)
R λi(uav), σi(uav), µi(uav) I

(1)
L )
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and so

αB(2)αB(1)(u, a, v) = f (2)(I(2)
R λ|ua|(αB(1)(uav)), σ|ua|(αB(1)(uav)), µ|ua|(αB(1)(uav)) I(2)

L ),

= f (2)(I(2)
R

∏|u|
i=1 f

(1)(I(1)
R λi(uav), σi(uav), µi(uav) I

(1)
L ),

f (1)(I(1)
R u, a, vI

(1)
L ), (

∏|uav|
i=|ua|+1 f

(1)(I(1)
R λi(uav), σi(uav), µi(uav) I

(1)
L )) I(2)

L )

Therefore we only need to show that

I
(1)
R g(1)

u (avI(1)
L ) =

|u|∏
i=1

f (1)(I(1)
R λi(uav), σi(uav), µi(uav) I

(1)
L (5)

and

(I(1)
R ua)h(1)

v I
(1)
L =

|uav|∏
i=|ua|+1

f (1)(I(1)
R λi(uav), σi(uav), µi(uav) I

(1)
L ). (6)

Clearly,

I
(1)
R g

(1)
u (avI(1)

L ) =
∏|u|

i=1 f
(1)(I(1)

R λi(u), σi(u), µi(u)avI
(1)
L )

=
∏|u|

i=1 f
(1)(I(1)

R λi(uav), σi(uav), µi(uav) I
(1)
L

and so (5) holds.
Similarly,

(I(1)
R ua)h(1)

v I
(1)
L =

∏|v|
i=1 f

(1)(I(1)
R uaλi(v), σi(v), µi(v)I

(1)
L )

=
∏|uav|

i=|ua|+1 f
(1)(I(1)

R λi(uav), σi(uav), µi(uav) I
(1)
L )

and so (6) holds as well. �

We prove next two other results on morphisms that will become useful in later sections.
Proposition 3.4 Let B(1) be an A1, A2-bimachine and let B(2) and B′(2) be A2, A3-bimachines.
Let ϕ(2) : B(2) → B′(2) be a morphism. Then there exists a morphism ϕ(21) : B(2)�B(1) →
B′(2)�B(1) naturally induced by ϕ(2).

Proof. Let B(i) = ((I(i)
R , Q

(i)
R , S

(i)
R ), f (i), (S(i)

L , Q
(i)
L , I

(i)
L )) and B′(i) = ((I ′(i)R , Q′

(i)
R , S′

(i)
R ), f ′(i),

(S′(i)L , Q′
(i)
L , I ′

(i)
L )). Let ϕ(2) = (ϕ(2)

R , ϕ
(2)
L ). Write B(21) = B(2)�B(1) and B′(21) = B′(2)�B(1).

We define a mapping ϕ(21)
R : Q(21)

R → Q′
(21)
R by

ϕ
(21)
R (γ, q(1)R ) = (γ′, q(1)R ),

where
γ′(q(1)L ) = ϕ

(2)
R (γ(q(1)L )).
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It is routine to check that

ϕ
(21)
R (I(21)

R ) = ϕ
(21)
R (γ0, I

(1)
R ) = (γ′0, I

(1)
R ) = I ′

(21)
R .

Next we show that ϕ(21)
R preserves the action. Let (γ, q(1)R ) ∈ Q(21)

R and a ∈ A1. We can
write

ϕ
(21)
R ((γ, q(1)R )a) = ϕ

(21)
R (γa · q(1)R g(1)

a , q
(1)
R a) = (γ′a, q

(1)
R a),

(ϕ(21)
R (γ, q(1)R ))a = (γ′, q(1)R )a = (γ′a · q(1)R g(1)

a , q
(1)
R a).

It remains to prove that γ′a = γ′a · q(1)R g
(1)
a . For every q(1)L ∈ Q(1)

L , we have

γ′a(q
(1)
L ) = ϕ

(2)
R ((γa · q(1)R g

(1)
a )(q(1)L )) = ϕ

(2)
R (γ(aq(1)L ) · q(1)R g

(1)
a q

(1)
L )

= ϕ
(2)
R (γ(aq(1)L )) · q(1)R g

(1)
a q

(1)
L = γ′(aq(1)L ) · q(1)R g

(1)
a q

(1)
L

= (γ′a · q(1)R g
(1)
a )(q(1)L )

and so ϕ(21)
R preserves the action.

Now we prove that
u

S
(21)
R

= v
S

(21)
R

⇒ u
S′

(21)
R

= v
S′

(21)
R

(7)

holds for all u, v ∈ A+. It is immediate that this is equivalent to have

q
(1)
R g(1)

u q
(1)
R = q

(1)
R g(1)

v q
(1)
R in S(2)

R ⇒ q
(1)
R g(1)

u q
(1)
R = q

(1)
R g(1)

v q
(1)
R in S′(2)R

for all q(1)R ∈ Q(1)
R and q(1)L ∈ Q(1)

L . Since S′(2)R is a quotient of S(2)
R , (7) holds and so ϕ(21)

R is
a morphism of right A1-automata.

Similarly, we define a morphism of left A1-automata ϕ(21)
L : Q(21)

L → Q′
(21)
L by

(q(1)L , δ)ϕ(21)
L = (q(1)L , δ′),

where
q
(1)
R δ′ = (q(1)R δ)ϕ(21)

L .

Finally, let u, v ∈ A+
1 and a ∈ A1. Since ϕ(2) is a morphism, we have

f (21)(I(21)
R u, a, vI

(21)
L ) = f (21)((γ0u · I(1)

R g
(1)
u , I

(1)
R u), f (1)(q(1)R , a, q

(1)
L ), (vI(1)

L , h
(1)
v I

(1)
L · vδ0))

= f (2)(I(2)
R · I(1)

R g
(1)
u (avI(1)

L ), f (1)(q(1)R , a, q
(1)
L ), (I(1)

R ua)h(1)
v I

(1)
L · I(2)

L )

= f ′(2)(I ′(2)R · I
(1)
R g

(1)
u (avI(1)

L ), f (1)(q(1)R , a, q
(1)
L ), (I(1)

R ua)h(1)
v I

(1)
L · I ′(2)L )

= f ′(21)(I ′(21)
R u, a, vI ′

(21)
L ),

thus ϕ(21) is a morphism as claimed. �
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Proposition 3.5 Let B(i) be an Ai, Ai+1-bimachine for i = 1, 2. Then there exist canonical
surjective homomorphisms

ξ
(21)
R : (I(21)

R , Q
(21)
R , S

(21)
R )→ (I(1)

R , Q
(1)
R , S

(1)
R ),

ξ
(21)
L : (S(21)

L , Q
(21)
L , I

(21)
L )→ (S(1)

L , Q
(1)
L , I

(1)
L ).

Proof. Write B(i) = ((I(i)
R , Q

(i)
R , S

(i)
R ), f (i), (S(i)

L , Q
(i)
L , I

(i)
L )) for i = 1, 2. Since S

(1)
R is a

quotient of S(21)
R , there is a canonical surjective homomorphism

ξ
(21)
R : (I(21)

R , Q
(21)
R , S

(21)
R )→ (I(1)

R , Q
(1)
R , S

(1)
R )

defined by
ξ
(21)
R (γ, q(1)R ) = q

(1)
R .

Similarly, there is a canonical surjective homomorphism

ξ
(21)
L : (S(21)

L , Q
(21)
L , I

(21)
L )→ (S(1)

L , Q
(1)
L , I

(1)
L )

defined by
(q(1)L , δ)ξ(21)

L = q
(1)
L .

�

We end this section by observing by means of an example that the block product of
faithful bimachines is not necessarily faithful.
Example 3.6 There exists a finite faithful A1, A2-bimachine B(1) and a finite faithful
A2, A3-bimachine B(2) such that B(2)�B(1) is not faithful.

Proof. Assume that Q(2)
R = {I(2)

R , p
(2)
R , q

(2)
R }, S

(2)
R = {0, 1} (multiplicative) and S(2)

R acts on
Q

(2)
R by

Q
(2)
R 0 = q

(2)
R 1 = q

(2)
R , I

(2)
R 1 = p

(2)
R 1 = p

(2)
R .

Assume furthermore that Im f = {0} and S(1)
R is a proper quotient of S(1)

L . It is immediate
that there exist faithful finite bimachines satisfying these conditions.

Let u, v ∈ A+
1 be such that u

S
(1)
R

= v
S

(1)
R

but u
S

(1)
L

6= v
S

(1)
L

. Then

 u
s
(1)
L

0

g
(1)
u u

s
(1)
R

 and

 v
s
(1)
L

0

g
(1)
v v

s
(1)
R


have the same action on Q(21)

R since g(1)
v = g

(1)
v has constant image 0. �
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4 The quest for associativity

We consider next the product of three bimachines and discuss associativity. Let B(i) =
((I(i)

R , Q
(i)
R , S

(i)
R ), f (i), (S(i)

L , Q
(i)
L , I

(i)
L )) be an Ai, Ai+1-bimachine for i = 1, 2, 3. We shall use

the simplified notation

B(3(21)) = B(3)�(B(2)�B(1)), B((32)1) = (B(3)�B(2))�B(1).

The following result shows that we can get associativity at the semigroup level (for three
bimachines, but not necessarily for four bimachines!).

Lemma 4.1 S
(3(21))
R

∼= S
((32)1)
R and S(3(21))

L
∼= S

((32)1)
L .

Proof. Let u, v ∈ A+. We show that

u
S

(3(21))
R

= v
S

(3(21))
R

⇔ u
S

((32)1)
R

= v
S

((32)1)
R

. (8)

Clearly, u
S

(3(21))
R

= v
S

(3(21))
R

holds if and only if

(A1) u
S

(21)
R

= v
S

(21)
R

;

(A2) u
S

(21)
L

= v
S

(21)
L

;

(A3) (γ, q(1)R )g(21)
u (q(1)L , δ) = (γ, q(1)R )g(21)

v (q(1)L , δ) in S(3)
R for all (γ, q(1)R ) ∈ Q(21)

R and (q(1)L , δ) ∈
Q

(21)
L .

Now (A1) is equivalent to

(A4) u
S

(1)
R

= v
S

(1)
R

;

(A5) u
S

(1)
L

= v
S

(1)
L

;

(A6) q(1)R g
(1)
u q

(1)
L = q

(1)
R g

(1)
v q

(1)
L in S(2)

R for all q(1)R ∈ Q(1)
R and q(1)L ∈ Q(1)

L .

Similarly, (A2) is equivalent to (A4), (A5) and

(A7) q(1)R h
(1)
u q

(1)
L = q

(1)
R h

(1)
v q

(1)
L in S(2)

L for all q(1)R ∈ Q(1)
R and q(1)L ∈ Q(1)

L .

On the other hand, u
S

((32)1)
R

= v
S

((32)1)
R

holds if and only if (A4) and (A5) and

(A8) q(1)R g
(1)
u q

(1)
L = q

(1)
R g

(1)
v q

(1)
L in S(32)

R for all q(1)R ∈ Q(1)
R and q(1)L ∈ Q(1)

L

hold. Therefore we may assume that (A4) and (A5) hold, and we must prove that

((A3) ∧ (A6) ∧ (A7))⇔ (A8). (9)

Assume first that (A8) holds. Let q(1)R ∈ Q(1)
R and q(1)L ∈ Q(1)

L . Write

x = q
(1)
R g(1)

u q
(1)
L =

|u|∏
i=1

f (1)(q(1)R λi(u), σi(u), µi(u) q
(1)
L ),
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y = q
(1)
R g(1)

v q
(1)
L =

|v|∏
i=1

f (1)(q(1)R λi(v), σi(v), µi(v) q
(1)
L ).

Note that

q
(1)
R g

(1)
λi(u)(σi(u)µi(u) q

(1)
L ) =

i−1∏
j=1

f (2)(q(1)R λj(u), σj(u), µj(u)q
(1)
L ) = λi(x).

Similarly,
(q(1)R λi(u)σi(u))h

(1)
µi(u)q

(1)
L = µi(x).

By (A8), x = y holds in S(32)
R . Thus x = y holds in both S(2)

R and S(2)
L and so (A6) and

(A7) hold.
Given (γ, q(1)R ) ∈ Q(21)

R and (q(1)L , δ) ∈ Q(21)
L , we have by (3)

(γ, q(1)R )g(21)
u (q(1)L , δ) =

∏|u|
i=1 f

(21)((γ, q(1)R )λi(u), σi(u), µi(u) (q(1)L , δ))

=
∏|u|

i=1 f
(21)((γλi(u) · q(1)R g

(1)
λi(u), q

(1)
R λi(u)), σi(u), (µi(u) q

(1)
L , h

(1)
µi(u)q

(1)
L · µi(u)δ))

=
∏|u|

i=1 f
(2)(γ(uq(1)L ) · q(1)R g

(1)
λi(u)(σi(u)µi(u) q

(1)
L ), f (1)(q(1)R λi(u), σi(u), µi(u) q

(1)
L ),

(q(1)R λi(u)σi(u))h
(1)
µi(u)q

(1)
L · (q

(1)
R u)δ)

=
∏|x|

i=1 f
(2)(γ(uq(1)L ) · λi(x), σi(x), µi(x) · (q(1)R u)δ)

= (γ(uq(1)L ))g(1)
x ((q(1)R u)δ).

Similarly,
(γ, q(1)R )g(21)

v (q(1)L , δ) = (γ(vq(1)L ))g(1)
y ((q(1)R v)δ).

On the other hand, (A8) holds for q(1)R and q(1)L if and only if x
S

(32)
R

= y
S

(32)
R

if and only
if

(B1) x
S

(2)
R

= y
S

(2)
R

;

(B2) x
S

(2)
L

= y
S

(2)
L

;

(B3) q(2)R g
(2)
x q

(2)
L = q

(2)
R g

(2)
y q

(2)
L in S(3)

R for all q(2)R ∈ Q(2)
R and q(2)L ∈ Q(2)

L .

By (A4) and (A5), we may take

q
(2)
R = γ(uq(1)L ) = γ(vq(1)L ), q

(2)
L = (q(1)R u)δ = (q(1)R v)δ

and deduce
(γ, q(1)R )g(21)

u (q(1)L , δ) = (γ, q(1)R )g(21)
v (q(1)L , δ)
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from (B3). Thus (A3) holds.
Conversely, assume that (A3), (A6) and (A7) hold. Let q(1)R ∈ Q

(1)
R and q

(1)
L ∈ Q

(1)
L .

Since (B1) and (B2) are equivalent to (A6) and (A7), respectively, it remains to prove that

(B3) holds. Let q(2)R ∈ Q(2)
R and q

(2)
L ∈ Q(2)

L . There exist γ ∈ Q(2)
R

Q
(1)
L and δ ∈

Q
(1)
R Q

(2)
L such

that γ(uq(1)L ) = q
(2)
R and (q(1)R u)δ = q

(2)
L . In view of (A4) and (A5), (B3) follows from (A3)

since
q
(2)
R g(2)

x q
(2)
L = (γ, q(1)R )g(21)

u (q(1)L , δ) = (γ, q(1)R )g(21)
v (q(1)L , δ) = q

(2)
R g(2)

y q
(2)
L .

Thus (9) holds and so does (8). Therefore S(3(21))
R

∼= S
((32)1)
R . Similarly, we can show

that S(3(21))
L

∼= S
((32)1)
L . �

Unfortunately the right A1-automata of B(3(21))
R and B((32)1)

R are not in general isomor-
phic, as one can easily show using a cardinality argument on the states, and the same goes
for the left A1-automata. However, we can define morphisms. Let ϕR : Q(3(21))

R → Q
((32)1)
R

be defined as follows. Given

(γ(3(21)), (γ(21), q
(1)
R )) ∈ Q(3)

R

Q
(21)
L × (Q(2)

R

Q
(1)
L ×Q(1)

R ) = Q
(3(21))
R ,

we set

(γ(3(21)), (γ(21), q
(1)
R ))ϕR = (γ((32)1), q

(1)
R ) ∈ Q(32)

R

Q
(1)
L ×Q(1)

R = Q
((32)1)
R ,

where

γ((32)1)(q(1)L ) = (β
q
(1)
L

, γ(21)(q(1)L )) ∈ Q(3)
R

Q
(2)
L ×Q(2)

R = Q
(32)
R

and
β

q
(1)
L

(q(2)L ) = γ(3(21))(q(1)L , q
(2)
L ),

where q(2)L ∈
Q

(1)
R Q

(2)
L is the constant mapping with image q(2)L .

Dually, we define ϕL : Q(3(21))
L → Q

((32)1)
L as follows. Given

((q(1)L , δ(21)), δ(3(21))) ∈ (Q(1)
L ×

Q
(1)
R Q

(2)
L )×

Q
(21)
R Q

(3)
L = Q

(3(21))
L ,

we set

ϕL((q(1)L , δ(21)), δ(3(21))) = (q(1)L , δ((32)1)) ∈ Q(1)
L ×

Q
(1)
R Q

(32)
L = Q

((32)1)
L ,

where

q
(1)
R δ((32)1) = (q(1)R δ(21), ε

q
(1)
R

) ∈ Q(2)
L ×

Q
(2)
R Q

(3)
L = Q

(32)
L

and
q
(2)
R ε

q
(1)
R

= (q(2)R , q
(1)
R )δ(3(21))

where q(2)R ∈ Q(2)
R

Q
(1)
L is the constant mapping with image q(2)R .

Lemma 4.2 (i) ϕR : (I(3(21))
R , Q

(3(21))
R , S

(3(21))
R ) → (I((32)1)

R , Q
((32)1)
R , S

((32)1)
R ) is a surjec-

tive morphism of right A1-automata;
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(ii) ϕL : (S(3(21))
L , Q

(3(21))
L , I

(3(21))
L ) → (S((32)1)

L , Q
((32)1)
L , I

((32)1)
L ) is a surjective morphism

of left A1-automata.

Proof. We give a proof for ϕL, the other case being dual. We have

ϕL(I(3(21))
L ) = ϕL(I(21)

L , δ
(3(21))
0 ) = ϕL((I(1)

L , δ
(21)
0 ), δ(3(21))0 ) = (I(1)

L , δ((32)1)),

where
q
(1)
R δ((32)1) = (q(1)R δ

(21)
0 , ε

q
(1)
R

) = (I(2)
L , ε

q
(1)
R

)

and
q
(2)
R ε

q
(1)
R

= (q(2)R , q
(1)
R )δ(3(21))0 = I

(3)
L .

Thus
q
(1)
R δ((32)1) = (I(2)

L , δ
(32)
0 ) = I

(32)
L

and so δ((32)1) = δ
((32)1)
0 . It follows that ϕL(I(3(21))

L ) = I
((32)1)
L .

Next let ((q(1)L , δ(21)), δ(3(21))) ∈ Q(3(21))
L , and a ∈ A1. We have

a((q(1)L , δ(21)), δ(3(21))) = (a(q(1)L , δ(21)), h(21)
a (q(1)L , δ(21)) · aδ(3(21)))

= ((aq(1)L , h
(1)
a q

(1)
L · aδ(21)), h(21)

a (q(1)L , δ(21)) · aδ(3(21))),

hence
ϕL(a((q(1)L , δ(21)), δ(3(21)))) = (aq(1)L , η(3(21)))

for the corresponding mapping η(3(21)). On the other hand,

aϕL((q(1)L , δ(21)), δ(3(21))) = a(q(1)L , δ((32)1)) = (aq(1)L , h(1)
a q

(1)
L · aδ

((32)1)).

Therefore, to show that ϕL preserves the action, we only need to show that

η(3(21)) = h(1)
a q

(1)
L · aδ

((32)1). (10)

Let q(1)R ∈ Q(1)
R . Writing b = f (1)(q(1)R , a, q

(1)
L ), we have

q
(1)
R (h(1)

a q
(1)
L · aδ((32)1)) = q

(1)
R h

(1)
a q

(1)
L · (q

(1)
R a)δ((32)1))

= b((q(1)R a)δ(21), ε
q
(1)
R a

)

= (b · (q(1)R a)δ(21), h
(2)
b ((q(1)R a)δ(21)) · bε

q
(1)
R a

)

and
q
(1)
R η(3(21)) = (q(1)R (h(1)

a q
(1)
L · aδ

(21)), ε′
q
(1)
R

),

where
q
(2)
R ε′

q
(1)
R

= (q(2)R , q
(1)
R )(h(21)

a (q(1)L , δ(21)) · aδ(3(21))).
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Since
q
(1)
R (h(1)

a q
(1)
L · aδ

(21)) = q
(1)
R h(1)

a q
(1)
L · (q

(1)
R a)δ(21) = b · (q(1)R a)δ(21),

(10) will follow from
h

(2)
b ((q(1)R a)δ(21)) · bε

q
(1)
R a

= ε′
q
(1)
R

. (11)

We have

q
(2)
R [h(2)

b ((q(1)R a)δ(21)) · bε
q
(1)
R a

] = q
(2)
R h

(2)
b ((q(1)R a)δ(21)) · (q(2)R b)ε

q
(1)
R a

= f (2)(q(2)R , b, (q(1)R a)δ(21)) · (q(2)R b, q
(1)
R a)δ(3(21)),

q
(2)
R ε′

q
(1)
R

= (q(2)R , q
(1)
R )(h(21)

a (q(1)L , δ(21)) · aδ(3(21)))

= (q(2)R , q
(1)
R )h(21)

a (q(1)L , δ(21)) · ((q(2)R , q
(1)
R )a)δ(3(21))

= f (21)((q(2)R , q
(1)
R ), a, (q(1)L , δ(21))) · (q(2)R a · q(1)R g

(1)
a , q

(1)
R a)δ(3(21))

= f (2)(q(2)
R , b, (q(1)R a)δ(21)) · (q(2)R a · q(1)R g

(1)
a , q

(1)
R a)δ(3(21)),

thus we only need to show that

q
(2)
R b = q

(2)
R a · q(1)R g(1)

a .

Indeed, for every p(1)
L ∈ Q(1)

L ,

(q(2)R a · q(1)R g
(1)
a )(p(1)

L ) = q
(2)
R (ap(1)

L ) · q(1)R g
(1)
a p

(1)
L

= q
(2)
R b = q

(2)
R b(p(1)

L ),

hence (11) holds and so does (10). Therefore ϕL preserves the action and so is a morphism
of right A1-automata in view of Lemma 4.1.

To show that ϕL is onto, take

(q(1)L , η) ∈ Q(1)
L ×

Q
(1)
R Q

(32)
L = Q

((32)1)
L .

We define δ(21) ∈
Q

(1)
R Q

(2)
L and η

q
(1)
R

∈
Q

(2)
R Q

(3)
L for each q(1)R ∈ Q(1)

R by

q
(1)
R η = (q(1)R δ(21), η

q
(1)
R

).

Finally, we define δ(3(21)) ∈
Q

(21)
R Q

(3)
L by

(γ, q(1)R )δ(3(21)) = (γ(q(1)L ))η
q
(1)
R
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and show that
(q(1)L , η) = ϕL((q(1)L , δ(21)), δ(3(21))).

We have ϕL((q(1)L , δ(21)), δ(3(21))) = (q(1)L , δ((32)1)) with

q
(1)
R δ((32)1) = (q(1)R δ(21), ε

q
(1)
R

), q
(2)
R ε

q
(1)
R

= (q(2)R , q
(1)
R )δ(3(21)).

We must show that δ((32)1) = η, which follows from ε
q
(1)
R

= η
q
(1)
R

. Indeed,

q
(2)
R ε

q
(1)
R

= (q(2)R , q
(1)
R )δ(3(21)) = (q(2)R (q(1)L ))η

q
(1)
R

= q
(2)
R η

q
(1)
R

and so ϕL is onto as claimed. �

Theorem 4.3 (B(3)�B(2))�B(1) is a quotient of B(3)�(B(2)�B(1)).

Proof. By Proposition 3.3, we have

αB(3(21)) = αB(3)αB(21) = αB(3)αB(2)αB(1) = αB(32)αB(1) = αB((32)1) .

By Proposition 2.2 and Lemma 4.2, ϕ = (ϕR, ϕL) is an onto morphism from B to B′. �

5 The trim block product

6 Iterating the block product

We intend to compose an arbitrary number of bimachines via block product. Since the block
product is not associative, we must choose the bracketing to be considered. Our choice is
bracketing from left to right, that is, priority is assumed to hold from left to right. In the
case of three bimachines, this means that (B(3)�B(2))�B(1) is our option.

We introduce the following recursive notation: given n ≥ 2, let [n, n− 1] = (n, n− 1). If
[n, k] is defined for k ∈ {2, . . . , n− 1}, let [n, k − 1] = ([n, k], k − 1). Whenever convenient,
we shall assume that [n, n] = (n).

Let B(i) = ((I(i)
R , Q

(i)
R , S

(i)
R ), f (i), (S(i)

L , Q
(i)
L , I

(i)
L )) be anAi, Ai+1-bimachine for i = 1, . . . , n.

Then
B[n,k] = ((. . . (B(n)�B(n−1))�B(n−2))� . . .)�B(k).

It will be convenient to develop an alternative characterization of the states in the
iterated block product. For all n ≥ 2 and k ∈ {1, . . . , n− 1}, we define

P
[n,k]
R =Q

(n)
R

Q
(k)
L ×Q

(k+1)
L ×...×Q

(n−1)
L ×Q(n−1)

R

Q
(k)
L ×Q

(k+1)
L ×...×Q

(n−2)
L

× . . .×Q(k+1)
R

Q
(k)
L ×Q(k)

R .

Dually, we define

P
[n,k]
L =Q

(k)
L ×

Q
(k)
R Q

(k+1)
L × . . .×

Q
(n−1)
R

×...×Q
(k)
R Q

(n)
L .
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The elements of P [n,1]
R and P [n,1]

L are termed respectively R-generalized and L-generalized n
step crossing sequences.

Intuition for the following material is as follows. B[n,1] is already defined, but to see
what it is and what the action is, we first note the states are in one-to-one correspondence
with

P
[n,1]
R = Q

(n)
R

Q
(1)
L ×···×Q

(n−1)
L ×Q(n−1)

R

Q
(1)
L ×···×Q

(n−2)
L × · · · ×Q(3)

R

Q
(1)
L ×Q

(2)
L ×Q(2)

R

Q
(1)
L ×Q(1)

R

∼=(bijection) (B[n−2])
Q

(1)
L ×Q(1)

R

and we write a member of this as

(γ, q(1)R ) γ : Q(1)
L → B[n−2].

Now we use the same formula as we did for the action of B(2)�B(1), namely for a ∈ A,

(γ, q(1)R ) · a ∼= (γ, q(1)R )

aL = a
S

(1)
L

0

g
(1)
a aR = a

S
(1)
R


= (γaL( ) · q(1)R g(1)

a , q
(1)
R aR),

where · is the inductively defined action on P
[n,2]
R . It is as simple as that. The details will

follow.
Also, an interpretation can be given to (γn, . . . , γ1) ∈ P [n,1]

R similar to the case n = 2
already given in Section 3, justifying why (γn, . . . , γ1) is called an R-generalized n-step
crossing sequence, namely the following.

The interpretation of (γn, . . . , γ1) ∈ P [n,1]
R is first given by a picture

(I(1)
R , )−̃→(I(1)

R γ1, q
(1)
L )

(I(2)
R , )−̃→(I(2)

R γ2(q
(1)
L ), q(2)L )

...

(I(n−1)
R , )−̃→(I(n−1)

R γn−1(q
(1)
L , . . . , q

(n−2)
L ), q(n−1)

L )

(I(n)
R , )−̃→(I(n)

R γn(q(1)L , . . . , q
(n−1)
L ),−)

Here, ( , ) represents a member of Q(i)
R × Q

(i)
L , for i = 1, . . . , n. Now in words, in con-

sidering B[n,1], if ˜ is an input (i. e., a member of A+
1 ) which takes the R intitial state

of B[n,1] to (γn, . . . , γ2, γ1) ∈ P
[n,1]
R under the action with the first, second, third, . . . ,

(n− 1)st left automaton states being assigned arbitrarily to q(1)L , q(2)L , . . . , q(n−1)
L (no q(n)

L is
given), then the final right states will be I(1)

R γ1, I
(2)
R γ2(q

(1)
L ), . . . , I(n−1)

R γn−1(q
(1)
L , . . . , q

(n−2)
L ),

I
(n)
R γn(q(1)L , . . . , q

(n−1)
L ). The proof is similar to the n = 2 case.

To make a little more sense of the previous pictures, perhaps the following will be helpful.
See [15].
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Let B be an A,B-bimachine. The representing category of B, Cat(B), is the category
with objects QR ×QL and arrows QR ×A∗ ×QL so that the arrow (qR, t, qL) is written

(qR, ) t→− ( , qL)

and determines
(qR, tqL) t→− (qRt, qL).

The multiplication in the category is

(qR, tqL) t→− (qRt, qL = uq′L) u→− (qRtu, q′L)

equals
(qr, tqL = tuq′L) tu→− (qRtu, q′L)

plus identity arrows. The generating arrows QR × A ×QL come equipped with an output
function (qR, a, qL)→ f(qR, a, qL). Later, we may identify some co-terminus (same domain
and range) arrows.

Now this category can be looked at as a “generalized action” generalizing the right
action qR

t→ qRt and the left action uqL
u← qL: given arrow (qR, a, qL), consider

(qR, ) a→− ( , qL),

then fill in by the previous actions to

(qR, aqL) a→− (qRa, qL),

and similarly for t ∈ A+ as follows: if t = a1, . . . , an ∈ A+, then the arrow (qR, t, qL)
decomposes as follows. (Take n = 3 for ease of exposition.) Starting with (qR, t, qL), we
have

(qR, ) t=a1a2a3−→−− ( , qL),

which decomposes as

(qR, ) a1→− (qRa1, ) a2→− (qRa1a2, ) a3→− (qRa1a2a3, ), and

( , a1a2a3qL) a1→− ( , a2a3qL) a2→− ( , a3qL) a3→− ( , qL),

and combining yields the factorization in Cat(B) as

(qR, a1a2a3qL) a1→− (qRa1, a2a3qL) a2→− (qRa1a2, a3qL) a3→− (qRa1a2a3, qL).

And then the output of B is given by

(qR, a1a2a3qL)
a1

// (qRa1, a2a3qL)
a2

// (qRa1a2, a3qL)
a3

// (qRa1a2a3, qL)

f(qR, a1, a2a3qL)︸ ︷︷ ︸

<<<<<<<<<<<<<<

������������

xxxxxxxxxxxxxxxxx
f(qRa1, a2, a3qL)︸ ︷︷ ︸

@@@@@@@@@@@@@@@

������������

xxxxxxxxxxxxxxxxx
f(qRa1a2, a3, qL)︸ ︷︷ ︸

@@@@@@@@@@@@@@@

############

���������������

b1

��
��
��
�

��
��
��
�

b2

��
��
��
�

��
��
��
�

b3

��
��
��
�

��
��
��
�
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So Cat(B) equipped with the output function on the basic arrows QR×A×QL determine
B (and hence αB) and conversely.

If we start with L and R automata (I, SI , S,A) and (A,S, SI , I) for some semigroup
S with generators A, then the Cat of this is the 2-sided Cayley graph denoted Kayley(S)
(notice the “K”).

So looking at Cat(B[n,1]), for generating arrows a ∈ A1, we have

(q(1)R

a = a1 ∈ A1
// q

(1)
L )

f (1)(q(1)R , a1, q
(1)
L )︸ ︷︷ ︸

555555555555

������������

��������������

(q(2)R

a2
//

'''''''''

'''''''''

q
(2)
L )

f (2)(q(2)R , a1, q
(2)
L )︸ ︷︷ ︸

555555555555

������������

��������������

a3

(((((((

(((((((

(q(n)
R

an
// q

(n)
L )

f (n)(q(n)
R , a1, q

(n)
L )

5555555555555

�������������

���������������

Now each f (i) can be done by one move (one Turing bit) of the Turing machine (see Section
8) if we assume B(i) = β0 for all i, so in this Turing machine situation, it takes n compu-
tations to go from a1 to an+1, so in the bimachine β[n,1] consider to be taking all of A+

1 as
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inputs if we are computing this by

A(n)
R−−−−−−−−−→

(linear time)ai

A(n)
L←−−−−−−−−−

(linear time)
ã1 . . . . . .ãi . . . . . . ãn

β[n,1] ↓
b1 . . . . . .bi . . . . . . bn

The coefficients of this linear time for A(n)
R and A(n)

L should be n by the above arguments,
so if an input string ã1 . . . ãi−1 is fed into A(n)

R (the right automaton of β[n,1]), then in time
(i− 1) · n, the output b̃i−1

ã1 . . . . . . . . . ãi−1

A(n)
R

b̃1 . . . . . . . . . b̃i−1

can be computed.
Let us look at this in more detail in the Turing machine context of B(i) = β0 (see Section

8). So, for example, in the Turing machine

b
a

//
←−−
qx
x

e

−−→
a
q′x

>>>>>>>>>>>

���������

c

a′

...

GGGGGGGGG

wwwwwwwww

The general idea is: given a deterministic Turing machine T and input ID of length k and
considering Tn (T running n times) and Tn considered as the bimachine B[n,1] and if the
time and space functions for T are time( ) and space( ), then consider:
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ti
m

e(
k
)

=
n

B
space(k)

a1 . . . ai−1 ai ai+1 . . . ak B
space(k)

t

bi

nnnnnnnnnnnnnnnnnnnnnnnnn

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

ccccccccccccccccccccccccccccccccccccccccccccc

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

(riding the reading head). Or better, following the IDs and not the reading head:

B
space(k)

a1 . . . ai . . . ak B
space k

(ID1)
(ID2)

(IDy)

...

...
(IDn)

(Computation table, [10], p. 167.) Now take the adjoint (i. e., consider columns instead of
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rows):

B
space(k)

a1 . . . ai . . . ak B
space(k)

A(n)
R A(n)

L

−−−−−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−−−−−

bi

This is the dual table, showing the bimachine action. Now Steve Cook’s Theorem showing
Circuit-Sat is NP-complete (and also that Circuit Value is P-complete) is read off from
the computation table (see [10], 165-172), so the bimachines give a moving algebraic picture
(with semigroups and the representation as elliptic maps, etc.) of the computational table.

Note in all the tables that each entry represents one Turing move bit! But how can

a1 . . . an

b1 . . . bn

pppppppppppppppp

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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be turned into
A(n)

R−−−−−−−−−→
(linear time) ai

A(n)
L←−−−−−−−−−

(linear time)?

How can such A(n)
R and A(n)

L exist?

a1 . . . ai−1

A(n)
R−−−−−−−−−−−−−−→

must know the “future” (i. e., the other side L), hence
q
(1)
R

a1...ai−1−−−→ q
(1)
L

...
...

q
(n−1)
R q

(n−1)
L


q
(n)
R

A(n)
R , for input a1 . . . an, must “guess the future”

q
(1)
L

...
q
(n−1)
L


the flow back to the left to

ai

.

Papadimitriou calls this quite subtle ([10], p. 54). [17]
Note to the dual table, we can apply Proposition 2.4 and replace B[n,1] by

αβ( B
space(k)

, a1 . . . ak, B
space(k)

),

showing the power of generalized crossing sequences.
Whenever x = (xn, . . . , x2, x1) we shall write πj(x) = xj for j = 1, . . . , n. Dually, for

y = (y1, . . . , yn) we shall write yπj = yj for j = 1, . . . , n.
Clearly,

P
[n,n−1]
R = Q

[n,n−1]
R , P

[n,n−1]
L = Q

[n,n−1]
L .
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We define next a natural bijection θ[n,k]
R : Q[n,k]

R → P
[n,k]
R by induction on k. We take θ[n,n−1]

R

to be the identity maping. Assume that k ∈ {1, . . . , n− 2} and θ[n,k+1]
R is defined. Since the

bimachines are arbitrary, θ[n,k]
R is essentially the same as θ[n−k+1,1]

R , thus we shall assume
that k = 1 for the sake of notation.

Let

(γ, γ1) ∈ Q[n,2]
R

Q
(1)
L ×Q(1)

R = Q
[n,1]
R .

We proceed to define θ[n,1]
R (γ, γ1) in three steps.

Step 1: We use the bijection θ[n,2]
R to define a bijection

Q
[n,1]
R = Q

[n,2]
R

Q
(1)
L ×Q(1)

R → P
[n,2]
R

Q
(1)
L ×Q(1)

R .

More precisely, we consider (γ, γ1) 7→ (γ̂, γ1) where

γ̂(q(1)L ) = θ
[n,2]
R (γ(q(1)L )).

Step 2: We dissociate γ̂ into its components according to the bijection

P
[n,2]
R

Q
(1)
L → (Q(n)

R

Q
(2)
L ×...×Q

(n−1)
L )Q

(1)
L × (Q(3)

R

Q
(2)
L )Q

(1)
L × (Q(2)

R )Q
(1)
L .

We write (γ̂, γ1) 7→ (γ̂n, . . . , γ̂2, γ1).
Step 3: We use the natural bijections

(Q(j)
R

Q
(2)
L ×...×Q

(j−1)
L )Q

(1)
L → Q

(j)
R

Q
(1)
L ×...×Q

(j−1)
L

to define a mapping (γ̂n, . . . , γ̂2, γ1) 7→ (γn, . . . , γ2, γ1), where

γj(q
(1)
L , . . . , q

(j−1)
L ) = γ̂j(q

(1)
L )(q(2)L , . . . , q

(j−1)
L ).

We make a liberal use of the mappings πi in the following lemma, that provides an
explicit description of the mappings γj from γ. Brackets have been omitted for the sake
of simplicity, since there is only one possible bracketing interpretation in each case. For
instance, we must have

π1π
2
2γ(q

(1)
L )(q(2)L )(q(3)L ) = π1(π2(π2γ(q

(1)
L ))(q(2)L ))(q(3)L ).

Lemma 6.1 For j = 2, . . . , n, we have

γj(q
(1)
L , . . . , q

(j−1)
L ) =


π1π

j−2
2 γ(q(1)L ) . . . (q(j−1)

L ) if j < n

πn−2
2 γ(q(1)L ) . . . (q(n−1)

L ) if j = n.
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Proof. If n = 2, the lemma holds trivially since θ[2,1]
R is the identity, hence we assume that

n > 2.
By definition, we have γj = πjθ

[n,1]
R (γ, γ1). We must show by induction on n that

[πjθ
[n,1]
R (γ, γ1)](q

(1)
L , . . . , q

(j−1)
L ) =


π1π

j−2
2 γ(q(1)L ) . . . (q(j−1)

L ) if j < n

πn−2
2 γ(q(1)L ) . . . (q(n−1)

L ) if j = n

holds for j = 2, . . . , n. We have

[πjθ
[n,1]
R (γ, γ1)](q

(1)
L , . . . , q

(j−1)
L ) = γj(q

(1)
L , . . . , q

(j−1)
L )

= γ̂j(q
(1)
L )(q(2)L , . . . , q

(j−1)
L )

= πj−1γ̂(q
(1)
L )(q(2)L , . . . , q

(j−1)
L )

= πj−1θ
[n,2]
R (γ(q(1)L ))(q(2)L , . . . , q

(j−1)
L )

= πj−1θ
[n,2]
R (π2γ(q

(1)
L ), π1γ(q

(1)
L ))(q(2)L , . . . , q

(j−1)
L )

Ij j = 2, then we get

[π2θ
[n,1]
R (γ, γ1)](q

(1)
L ) = π1θ

[n,2]
R (π2γ(q

(1)
L ), π1γ(q

(1)
L )) = π1γ(q

(1)
L )

as required since j = 2 < n.
Otherwise, the induction hypothesis yields

[πjθ
[n,1]
R (γ, γ1)](q

(1)
L , . . . , q

(j−1)
L ) =


π1π

j−3
2 (π2γ(q

(1)
L ))(q(2)L ) . . . (q(j−1)

L ) if j < n

πn−3
2 (π2γ(q

(1)
L ))(q(2)L ) . . . (q(n−1)

L ) if j = n

and the lemma follows. �

The action of S[n,1]
R on Q[n,1]

R induces an action P [n,1]
R × S[n,1]

R → P
[n,1]
R defined by

(θ[n,1]
R (q[n,1]

R ))s[n,1]
R = θ

[n,1]
R (q[n,1]

R s
[n,1]
R ).

The next lemma, although being of technical nature, unveils some of the properties of the
action.

But first, here is some intuition and pictures for the following.

(q(1)R

−→a i−→−− q(1)L )
−→a i+1−→−−

This denotes an input string −→a i ∈ A+
I and an output string −→a i+1 ∈ A+

i+1. If B(1) is started

in states q(i)R and q(i)L (see Proposition 2.4), then −→a i is mapped to −→a i+1, i. e.,

α
(i)
B (u,−→a i, w) = −→a i+1
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with I(i)
R u = q

(i)
R and q(i)L = wI

(i)
L . See Proposition 2.4.

Then, for some −→a ∈ A+
1 ,

q
(1)
R

−→a =−→a 1−→−− q
(1)
L

q
(2)
R q

(2)
L

...
...

q
(n−1)
R q

(n−1)
L


q
(n)
R

=


q
(1)
R ·
−→a 1

q
(2)
R ·
−→a 2

...
q
(n−1)
R · −→a n−1

qn
R ·
−→a n

with −→a 1 = −→a and

(q(1)R

−→a i−→−− q(1)L )
−→a i+1−→−−

and q(i)R ·
−→a i denoting action in (Q(i)

R , S
(i)
R , Ai).

There is also the dual formulation

←−a 1 · q(1)L
...

←−a n−1 · q(n−1)
L

←−a n · q(n)
L

=

q
(1)
R

←−a−−←− q(1)L
...

...
q
(n−1)
R q

(n−1)
L

q
(n)
L

 .

Now the two-sided semidirect multiplication is seen to be
q
(1)
R

−→a 1−→−−
−→
b 1−→−− q

(1)
L

...
...

... q
(n−1)
L


q
(n)
R

=


q
(1)
R

−→a 1−→−−
←−
b 1 · q(1)L

...
...

q
(n−1)
R

←−
b n−1 · q(n−1)

L


q
(n)
R

·


q
(1)
R · −→a 1

b1−→−− q
(1)
L

...
...

q
(n−1)
R · −→a n−1 q

(n−1)
L

 .

q
(n)
R · −→a n

Another way to look at this is the following.

Proposition 6.2

(a) Given −→a ∈ A+
1 and q

(1)
L , . . . , q(n−1)

L (notice the n − 1), this gives a member of the
wreath product, see [5, vol. B], or [12].

(Q(n)
R , S

(n)
R ) ◦ · · · ◦ (Q(1)

R , S
(1)
R )
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(notice the n), denoted
−→a−−→ q

(1)
L

...
q
(n−1)
L

 .

(b)
−→a−−→ q

(1)
L

...
q
(i)
L


for i ≤ n− 1 is given by projecting

−→a−−→ q
(1)
L

...
q
(n)
L


from

(Q(n)
R , S

(n)
R ) ◦ · · · ◦ (Q(1)

R , S
(1)
R )

to
(Q(i)

R , S
(i)
R ) ◦ · · · ◦ (Q(1)

R , S
(1)
R ).

Proof. The proof is straighforward, but the statement is subtle. �

We note that, for all q[n,j]
R ∈ Q[n,j]

R (j < n) and u ∈ A+, we have

π1(q
[n,j]
R u) = π1((π2(q

[n,j]
R ), π1(q

[n,j]
R ))u) = (π1(q

[n,j]
R ))u (12)

since the action on the second component does not depend on the first.

Lemma 6.3 Let (γn, . . . , γ1) ∈ P
[n,1]
R and u1 ∈ A+

1 . Then (γn, . . . , γ1)u1 = (γ′n, . . . , γ
′
1)

with
γ′j(q

(1)
L , . . . , q

(j−1)
L ) = (γj(u1q

(1)
L , . . . , uj−1q

(j−1)
L ))uj ,

where the words u2, . . . , un are defined recursively by

uj+1 = (γj(u1q
(1)
L , . . . , uj−1q

(j−1)
L ))g(j)

uj
q
(j)
L (j = 1, . . . , n− 1).

Proof. Assume that (γn, . . . , γ1) = θ
[n,1]
R (γ, γ1). Then

(γ, γ1)u1 = (γu1 · γ1g
(1)
u1
, γ1u1). (13)

Since γ′1 = γ1u1, the lemma holds for j = 1. Suppose next that j ∈ {2, . . . , n− 1}.
Lemma 6.1 and (13) yield

γ′j(q
(1)
L , . . . , q

(j−1)
L ) = π1π

j−2
2 (γu1 · γ1g

(1)
u1 )(q(1)L ) . . . (q(j−1)

L )

= π1π
j−2
2 [(γ(u1q

(1)
L ))u2](q

(2)
L ) . . . (q(j−1)

L ).
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We show that

γ′j(q
(1)
L , . . . , q

(j−1)
L ) = π1π

j−i
2 [(πi−2

2 γ(u1q
(1)
L ) . . . (ui−1q

(i−1)
L ))ui](q

(i)
L ) . . . (q(j−1)

L ). (14)

for i = 2, . . . , j by induction on i.
This was already proved for i = 2. Assume that it holds for i ∈ {2, . . . , j − 1}. Then by

Lemma 6.1

γ′j(q
(1)
L , . . . , q

(j−1)
L ) = π1π

j−i
2 [(πi−2

2 γ(u1q
(1)
L ) . . . (ui−1q

(i−1)
L ))ui](q

(i)
L ) . . . (q(j−1)

L )

= π1π
j−i
2 [(πi−1

2 γ(u1q
(1)
L ) . . . (ui−1q

(i−1)
L ), π1π

i−2
2 γ(u1q

(1)
L ) . . . (ui−1q

(i−1)
L ))ui]

(q(i)L ) . . . (q(j−1)
L )

= π1π
j−i
2 [(πi−1

2 γ(u1q
(1)
L ) . . . (ui−1q

(i−1)
L ), γi(u1q

(1)
L , . . . , ui−1q

(i−1)
L ))ui]

(q(i)L ) . . . (q(j−1)
L )

= π1π
j−i−1
2 [(πi−1

2 γ(u1q
(1)
L ) . . . (ui−1q

(i−1)
L ))ui · (γi(u1q

(1)
L , . . . , ui−1q

(i−1)
L ))g(i)

ui ]

(q(i)L ) . . . (q(j−1)
L )

= π1π
j−(i+1)
2 [πi−1

2 γ(u1q
(1)
L ) . . . (uiq

(i)
L ) · (γi(u1q

(1)
L , . . . , ui−1q

(i−1)
L ))g(i)

ui q
(i)
L ]

(q(i+1)
L ) . . . (q(j−1)

L )

= π1π
j−(i+1)
2 [(πi−1

2 γ(u1q
(1)
L ) . . . (uiq

(i)
L ))ui+1](q

(i+1)
L ) . . . (q(j−1)

L ),

and so (14) holds. In particular, for i = j, we obtain

γ′j(q
(1)
L , . . . , q

(j−1)
L ) = π1[(π

j−2
2 γ(u1q

(1)
L ) . . . (uj−1q

(j−1)
L ))uj ]

and so
γ′j(q

(1)
L , . . . , q

(j−1)
L ) = (π1π

j−2
2 γ(u1q

(1)
L ) . . . (uj−1q

(j−1)
L ))uj

= (γj(u1q
(1)
L , . . . , uj−1q

(j−1)
L ))uj

by (12) and Lemma 6.1.
The case j = n is actually a simplification of the preceding case and can safely be

omitted. �

Since P [n,1]
R is a direct product of n factors, we can view it as a tree of depth n having

uniform degree for each depth. Typically, the state (γn, . . . , γ1) ∈ P [n,1]
R is represented in
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this tree as a path
root

xxxxxxxx

γ1

FFFFFFFF

γ2

γn−1

xxxxxxxx

γn

and can be identified with the corresponding leaf. Naturally, each node of depth j ∈

{0, . . . n− 1} has precisely |Q(j)
R

Q
(1)
L ×...×Q

(j−1)
L | sons.

Following the terminology of [12], we say that an elliptic contraction Ψ of P [n,1]
R is a

depth-preserving endomorphism of the associated tree. More precisely, we view Ψ of a
mapping that sends vertices to vertices of same depth (fixing the root in particular) and
edges to edges, preserving adjacency.

Alternatively, if Ψ(γn, . . . , γ1) = (γ′n, . . . , γ
′
1) and Ψ(βn, . . . , β1) = (β′n, . . . , β

′
1), then

(γ1 = β1, . . . , γj = βj)⇒ (γ′1 = β′1, . . . , γ
′
j = β′j)

holds for j = 1, . . . , n. This amounts to say that πjΨ(γn, . . . , γ1) depends on (γj , . . . , γ1)
only.

Theorem 6.4 For every u ∈ A+
1 , the right action of u on P

[n,1]
R induces an elliptic con-

traction νu of P [n,1]
R .

Proof. By Lemma 6.3, it is clear that whenever (γn, . . . , γ1)u = (γ′n, . . . , γ
′
1) then γ′j de-

pends on γj , . . . , γ1 and u only. �

We can also refer to this property by saying that the right action on P [n,1]
R is sequential.

An immediate consequence of Theorem 6.4 is the following result, which will play an
important role in going into profinite limits. Note that for m ≤ n there exists a natural
onto mapping π[m,1] : P [n,1]

R → P
[m,1]
R defined by

π[m,1](p
[n,1]
R ) = (πm(p[n,1]

R ), . . . , π1(p
[n,1]
R )).

Corollary 6.5 For all p[n,1]
R ∈ P [n,1]

R and u ∈ A+
1 ,

π[m,1](p
[n,1]
R u) = (π[m,1](p

[n,1]
R ))u.

We consider next then expression of the initial state in the P [n,1]
R description.
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Proposition 6.6 θ
[n,1]
R (I [n,1]

R ) = (γn, . . . , γ2, I
(1)
R ) with γj(q

(1)
L , . . . , q

(j−1)
L ) = I

(j)
R for j =

2, . . . , n.

Proof. We use induction on n. The case n = 2 is trivial since θ[2,1]
R is the identity mapping.

Assume that n > 2 and the proposition holds for n − 1. We have I [n,1]
R = (γ, I(1)

R ) with
γ(q(1)L ) = I

[n,2]
R for every q(1)L ∈ Q(1)

L . By the induction hypothesis, (γ, I(1)
R ) is taken by θ[n,1]

R

in the first step to (γ̂, I(1)
R ), where each γ̂(q(1)L ) is an (n − 1)-uple of constant mappings

defined by
γ̂j(q

(1)
L )(q(2)L , . . . , q

(j−1)
L ) = I

(j)
R , (j = 2, . . . , n− 1).

Thus γj(q
(1)
L , . . . , q

(j−1)
L ) = I

(j)
R and the lemma holds. �

Naturally, all the results presented in this section for P [n,1]
R have dual versions for P [n,1]

L

which will wisely be omitted.
We end this section by computing the output function in terms of the states P [n,1]

R and
P

[n,1]
L . To avoid introducing extra notation, we keep the notation f [n,1] for the function

P
[n,1]
R ×A1 × P [n,1]

L →An+1

(θ[n,1]
R (q[n,1]

R ), a, q[n,1]
L θ

[n,1]
L ) 7→ f [n,1](q[n,1]

R , a, q
[n,1]
L )

.
Proposition 6.7 Let (γn, . . . , γ1) ∈ P [n,1]

R , (δ1, . . . , δn) ∈ P [n,1]
L and a1 ∈ A1. Let q(1)R = γ1,

q
(1)
L = δ1 and define q(j)R ∈ Q(j)

R , q(j)L ∈ Q(j)
L and aj ∈ Aj (j = 2, . . . n) recursively by

q
(j)
R = γj(a1q

(1)
L , . . . , aj−1q

(j−1)
L ), q

(j)
L = (q(j−1)

R aj−1, . . . , q
[1]
R a1)δj ,

aj = f (j−1)(q(j−1)
R , aj−1, q

(j−1)
L ).

Then
f [n,1]((γn, . . . , γ1), a1, (δ1, . . . , δn)) = f (n)(q(n)

R , an, q
(n)
L ).

Proof. We show that

f [n,1]((γn, . . . , γ1), a1, (δ1, . . . , δn))

= f [n,j]((πj−1
2 γ(a1q

(1)
L ) . . . (aj−1q

(j−1)
L ), q(j)R ), aj , (q

(j)
L , (q(j−1)

R aj−1) . . . (q
(1)
R a1)δπ

j−1
2 ))

holds for j = 1, . . . , n.
Since

f [n,1]((γn, . . . , γ1), a1, (δ1, . . . , δn)) = f [n,1]((γ, q[1]R ), a1, (q
(1)
L , δ)),
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the claim holds for j = 1. Assume that it holds for j < n− 1. Then

f [n,1]((γn, . . . , γ1), a1, (δ1, . . . , δn))

= f [n,j]((πj−1
2 γ(a1q

(1)
L ) . . . (aj−1q

(j−1)
L ), q(j)R ), aj , (q

(j)
L , (q(j−1)

R aj−1) . . . (q
(1)
R a1)δπ

j−1
2 ))

= f [n,j+1](πj−1
2 γ(a1q

(1)
L ) . . . (ajq

(j)
L ), f [j](q(j)R , aj , q

(j)
L ), (q(j)R aj) . . . (q

(1)
R a1)δπ

j−1
2 )

= f [n,j+1]((πj
2γ(a1q

(1)
L ) . . . (ajq

(j)
L ), π1π

j−1
2 γ(a1q

(1)
L ) . . . (ajq

(j)
L )), aj+1,

((q(j)R aj) . . . (q
(1)
R a1)δπ

j−1
2 π1, (q

(j)
R aj) . . . (q

(1)
R a1)δπ

j
2))

= f [n,j+1]((πj
2γ(a1q

(1)
L ) . . . (ajq

(j)
L ), q(j+1)

R ), aj+1, (q
(j+1)
L , (q(j)R aj) . . . (q

(1)
R a1)δπ

j
2))

since
π1π

j−1
2 γ(a1q

(1)
L ) . . . (ajq

(j)
L ) = γj+1(a1q

(1)
L , . . . , ajq

(j)
L ) = q

(j+1)
R ,

(q(j)R aj) . . . (q
(1)
R a1)δπ

j−1
2 π1 = (q(j)R aj , . . . , q

(1)
R a1)δj+1 = q

(j+1)
L

by Lemma 6.1 and its dual. It follows that the claim holds for j+1 and therefore fot n− 1.
Thus

f [n,1]((γn, . . . , γ1), a1, (δ1, . . . , δn))

= f (n,n−1)((πn−2
2 γ(a1q

(1)
L ) . . . (an−2q

(n−2)
L ), q(n−1)

R ), an−1,

(q(n−1)
L , (q(n−2)

R an−2) . . . (q
(1)
R a1)δπn−2

2 )

= f (n)(πn−2
2 γ(a1q

(1)
L ) . . . (an−1q

(n−1)
L ), f (n−1)(q(n−1)

R , an−1, q
(n−1)
L ),

(q(n−1)
R an−1) . . . (q

(1)
R a1)δπn−2

2 ))

= f (n)(γn(a1q
(1)
L , . . . , an−1q

(n−1)
L ), an, (q

(n−1)
R an−1, . . . , q

(1)
R a1)δn)

= f (n)(q(n)
R , an, q

(n)
L )

as required. �

7 The matrix representation

We develop in this section a matrix representation for the (iterated) block product of finite
bimachines. Let B(1) = ((I(1)

R , Q
(1)
R , S

(1)
R ), f (1), (S(1)

L , Q
(1)
L , I

(1)
L )), be an A1, A2-bimachine.

We assume that the state sets Q(1)
R and Q(1)

L are totally ordered. Let u ∈ A+
1 . We define a

Q
(1)
R ×Q

(1)
R boolean matrix M (1)

R,u by

(M (1)
R,u)

p
(1)
R ,q

(1)
R

=

1 if q(1)R = p
(1)
R u

0 otherwise.
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Dually, we define a Q(1)
L ×Q

(1)
L boolean matrix M (1)

L,u by

(M (1)
L,u)

p
(1)
L ,q

(1)
L

=

1 if p(1)
L = uq

(1)
L

0 otherwise.

We write
M

(1)
R = {M (1)

R,u | u ∈ A
+}, M

(1)
L = {M (1)

L,u | u ∈ A
+}.

We shall present the R-versions of our results, omitting the dual L-versions.
Lemma 7.1 For all u, v ∈ A+

1 ,

M
(1)
R,uM

(1)
R,v = M

(1)
R,uv.

Moreover, M (1)
R is an A1-semigroup and a quotient of S(1)

R .

Proof. Let p(1)
R , q

(1)
R ∈ Q(1)

R . We have

(M (1)
R,uM

(1)
R,v)p

(1)
R ,q

(1)
R

=
∑

t
(1)
R ∈Q

(1)
R

(M (1)
R,u)

p
(1)
R ,t

(1)
R

(M (1)
R,v)t

(1)
R ,q

(1)
R

.

We have (M (1)
R,u)

p
(1)
R ,t

(1)
R

(M (1)
R,v)t

(1)
R ,q

(1)
R

= 1 if and only if t(1)R = p
(1)
R u and q

(1)
R = t

(1)
R v, hence

(M (1)
R,uM

(1)
R,v)p

(1)
R ,q

(1)
R

6= 0 if and only if there exists some t(1)R ∈ Q(1)
R such that t(1)R = p

(1)
R u and

q
(1)
R = t

(1)
R v, that is, if and only if q(1)R = p

(1)
R uv. Since t(1)R is then necessarily unique, we

conclude that
(M (1)

R,uM
(1)
R,v)p

(1)
R ,q

(1)
R

= (M (1)
R,uv)p

(1)
R ,q

(1)
R

.

It follows that M (1)
R is an A1-semigroup. Given u, v ∈ A+

1 , u = v in S
(1)
R implies that

their action on Q(1)
R is the same and so M (1)

R,u = M
(1)
R,v. Thus M (1)

R is a quotient of S(1)
R . �

In the faithful case, these matrix semigroups turn out to be a representation of the
bimachine semigroups:

Lemma 7.2 If B(1) is faithful, then M
(1)
R
∼= S

(1)
R .

Proof. By Lemma 7.1, it suffices to note that M (1)
R,u = M

(1)
R,v implies u

S
(1)
R

= v
S

(1)
R

for all

u, v ∈ A+
1 . Clearly, if M (1)

R,u = M
(1)
R,v, then u and v have the same action on Q

(1)
R and the

claim follows from faithfullness. �

We consider now the states (the R-version). We associate to every q
(1)
R ∈ Q

(1)
R the

{1} ×Q(1)
R boolean row matrix W (1)

R,q
(1)
R

defined by

(W (1)

R,q
(1)
R

)
1,p

(1)
R

=

1 if p(1)
R = q

(1)
R

0 otherwise.

Together with Lemma 7.2, the following result shows that our matrices provide a matrix
representation for the faithful case.
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Proposition 7.3 For all q(1)R ∈ Q(1)
R and u ∈ A+

1 , we have

W
(1)

R,q
(1)
R

M
(1)
R,u = W

(1)

R,q
(1)
R u

.

Proof. Let p(1)
R ∈ Q(1)

R . We have (W (1)

R,q
(1)
R

M
(1)
R,u)

1,p
(1)
R

= 1 if and only if

∑
t
(1)
R ∈Q

(1)
R

(W (1)

R,q
(1)
R

)
1,t

(1)
R

(M (1)
R,u)

t
(1)
R ,p

(1)
R

= 1.

Since (W (1)

R,q
(1)
R

)
1,t

(1)
R

= 1 if and only if t(1)R = q
(1)
R , it follows that

(W (1)

R,q
(1)
R

M
(1)
R,u)

1,p
(1)
R

= 1⇔ (M (1)
R,u)

q
(1)
R ,p

(1)
R

= 1

⇔ p
(1)
R = q

(1)
R u

⇔ (W (1)

R,q
(1)
R u

)
1,p

(1)
R

= 1.

Thus W (1)

R,q
(1)
R

M
(1)
R,u = W

(1)

R,q
(1)
R u

. �

Assume now that B(2) = ((I(2)
R , Q

(2)
R , S

(2)
R ), f (2), (S(2)

L , Q
(2)
L , I

(2)
L )) is an A2, A3-bimachine.

For every u ∈ A+
1 , we define a Q(1)

R ×Q
(1)
L matrix M (1)

gu by

(M (1)
gu

)
q
(1)
R ,q

(1)
L

= q
(1)
R g(1)

u q
(1)
L

and a (|Q(1)
R |+ |Q

(1)
L |)× (|Q(1)

R |+ |Q
(1)
L |) matrix

M
(21)
R,u =

M
(1)
L,u 0

M
(1)
gu M

(1)
R,u

 .

If we consider the natural matrix multiplication for the matrices M (21)
R,u (i.e. 0 and 1 act

on A∗2 by 0u = u0 = 1, 1u = u1 = u and we concatenate words as usual), then we can
prove:
Proposition 7.4 For all u, v ∈ A+

1 ,

M
(21)
R,uM

(21)
R,v = M

(21)
R,uv.

Proof. We must show thatM
(1)
L,u 0

M
(1)
gu M

(1)
R,u


M

(1)
L,v 0

M
(1)
gv M

(1)
R,v

 =

M
(1)
L,uv 0

M
(1)
guv M

(1)
R,uv

 ,
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that is,  M
(1)
L,uM

(1)
L,v 0

M
(1)
gu M

(1)
L,v ·M

(1)
R,uM

(1)
gv M

(1)
R,uM

(1)
R,v

 =

M
(1)
L,uv 0

M
(1)
guv M

(1)
R,uv

 .

Clearly, Lemma 7.1 and its dual yield M
(1)
L,uM

(1)
L,v = M

(1)
L,uv and M

(1)
R,uM

(1)
R,v = M

(1)
R,uv. It

remains to prove that

M (1)
gu
M

(1)
L,v ·M

(1)
R,uM

(1)
gv

= M (1)
guv
. (15)

For all q(1)R ∈ Q(1)
R and q(1)L ∈ Q(1)

L , we have

(M (1)
gu M

(1)
L,v ·M

(1)
R,uM

(1)
gv )

q
(1)
R ,q

(1)
L

= (M (1)
gu M

(1)
L,v)q

(1)
R ,q

(1)
L

· (M (1)
R,uM

(1)
gv )

q
(1)
R ,q

(1)
L

=
∏

p
(1)
L ∈Q

(1)
L

(M (1)
gu )

q
(1)
R ,p

(1)
L

(M (1)
L,v)p

(1)
L ,q

(1)
L

·
∏

p
(1)
R ∈Q

(1)
R

(M (1)
R,u)

q
(1)
R ,p

(1)
R

· (M (1)
gv )

p
(1)
R ,q

(1)
L

.

Since (M (1)
L,v)p

(1)
L ,q

(1)
L

= 1 if and only if p(1)
L = vq

(1)
L and (M (1)

R,u)
q
(1)
R ,p

(1)
R

= 1 if and only if

p
(1)
R = q

(1)
R u, it follows that

(M (1)
gu M

(1)
L,v ·M

(1)
R,uM

(1)
gv )

q
(1)
R ,q

(1)
L

= (M (1)
gu )

q
(1)
R ,vq

(1)
L

· (M (1)
gv )

q
(1)
R u,q

(1)
L

= q
(1)
R gu(vq(1)L ) · (q(1)R u)gvq

(1)
L

= q
(1)
R guvq

(1)
L

= (M (1)
guv)q

(1)
R ,q

(1)
L

since (
uv 0
g
(1)
uv uv

)
=

(
u 0
g
(1)
u u

)(
v 0
g
(1)
v v

)
=

(
uv 0

g
(1)
u v · ug(1)

v uv

)
.

Thus (15) holds as required. �

Next we define, for every q(21)
R = (γ, q(1)R ) ∈ Q(21)

R , a {1} × (|Q(1)
L |+ |Q

(1)
R |) boolean row

matrix
W

(21)

R,q
(21)
R

=
(
Wγ W

(1)

R,q
(1)
R

)
,

where
(Wγ)

1,q
(1)
L

= γ(q(1)L ) ∈ Q(2)
R .

If we consider the natural matrix multiplication for the matrices W (21)

R,q
(21)
R

and M (21)
R,u (i.e.

words of A+
2 act on Q(2)

R as expected), then we can prove:
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Proposition 7.5 For all q(21)
R ∈ Q(21)

R and u ∈ A+
1 ,

W
(21)

R,q
(21)
R

M
(21)
R,u = W

(21)

R,q
(21)
R u

.

Proof. Let q(1)L ∈ Q(1)
L . We have

(W (21)

R,q
(21)
R

M
(21)
R,u )

1,q
(1)
L

= (WγM
(1)
L,u ·W

(1)

R,q
(1)
R

M (1)
gu

)
1,q

(1)
L

.

Since (M (21)
L,u )

p
(1)
L ,q

(1)
L

= 1 if and only if p(1)
L = uq

(1)
L , and (W (1)

R,q
(1)
R

)
1,p

(1)
R

= 1 if and only if

p
(1)
R = q

(1)
R , it follows that

(W (21)

R,q
(21)
R

M
(21)
R,u )

1,q
(1)
L

= (Wγ)
1,uq

(1)
L

· (M (1)
gu )

q
(1)
R ,q

(1)
L

= γ(uq(1)L ) · q(1)R g
(1)
u q

(1)
L

= (γu · q(1)R g
(1)
u )(q(1)L )

= (W (21)

R,q
(21)
R u

)
1,q

(1)
L

.

Now let q(1)R ∈ Q(1)
R . It follows from Proposition 7.3 that

(W (21)

R,q
(21)
R

M
(21)
R,u )

1,q
(1)
R

= (W (1)

R,q
(1)
R

M
(1)
R,u)

1,q
(1)
R

= (W (1)

R,q
(1)
R u

)
1,q

(1)
R

= (W (21)

R,q
(21)
R u

)
1,q

(1)
R

,

hence W (21)

R,q
(21)
R

M
(21)
R,u = W

(21)

R,q
(21)
R u

and the lemma holds. �

We can expand our matrices to boolean matrices as follows. Let u ∈ A+
1 . We define

a (|Q(1)
R | + |Q

(1)
L |)(|Q

(2)
R | + |Q

(2)
L |) × (|Q(1)

R | + |Q
(1)
L |)(|Q

(2)
R | + |Q

(2)
L |) boolean matrix M

(21)
R,u

replacing in M (21)
R,u

• each word w ∈ A+
2 by M (2)

R,w;

• each 1 by the Q(2)
R ×Q

(2)
R identity matrix;

• each 0 by the Q(2)
R ×Q

(2)
R zero matrix.

Given q(21)
R ∈ Q(21)

R , we define a {1}×(|Q(1)
R |+|Q

(1)
L |)|Q

(2)
R | boolean matrix W (21)

R,q
(21)
R

replacing

in W (21)

R,q
(21)
R
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• each word q(2)R ∈ Q(2)
R by W (2)

R,q
(2)
R

;

• each 1 by the {1} ×Q(2)
R matrix with all entries 1;

• each 0 by the {1} ×Q(2)
R zero matrix.

It would be nice to have versions of Propositions 7.4 and 7.5 for these boolean matrices,
but unfortunately the matrix operation cannot be plain multiplication of boolean matrices.
Indeed, multiplication of matrices must be operated at two levels, and full exploration of
this operation remains to be completed.

8 Turing machines and bimachines

We are interested in deterministic Turing machines that halt for all inputs, particularly
those that can solve NP-complete problems. In comparison with the most standard model
of deterministic Turing machine, the model we shall be considering in this paper presents
three particular features:

• the “tape” is potentially infinite in both directions and has a distinguished cell named
the origin;

• the origin contains the symbol # until the very last move of the computation, and #
appears in no other cell;

• the machine always halts in one of a very restricted set of configurations.

There are of course many ways of achieving these goals, we shall just choose a particular
one.

Our deterministic Turing machine is then a quadruple of the form T = (Q, q0, A, δ)
where

• Q is a finite set (set of states) containing the initial state q0;

• A is a finite set (restricted tape alphabet) containing the special symbols B (blank),
B′ (pseudoblank), Y (yes), N (no), G (garbage) and # (origin);

• δ is a union of full maps

Q× (A \ {#})→ Q× (A \ {#, B, Y,N,G})× {L,R},

Q× {#} → (Q× {#} × {L,R}) ∪ {Y,N,G}.

We write Ao = A \ {#, B}.
Since the machine is not allowed to write blanks on the tape, we shall use the pseu-

doblank as a substitute to avoid unnecessary information in the final configurations. Since
we must consider space functions, it is not convenient to allow the blanks to perform that
job.
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Note that, in the final move of a computation, the control head is removed from the
tape and so we allow {Y,N,G} in the image of δ. The symbols Y,N,G are used to classify
the final configurations: for a TM solving a certain problem, Y will stand for correct input,
acceptance, N for correct input, rejection, and G for incorrect input.

We intend to work exclusively with words, hence we shall soon exchange the classical
model of “tape” and “control head” by a purely algebraic formalism. We introduce what
we shall call henceforth the extended tape alphabet:

A′ = A ∪ {aq | a ∈ A, q ∈ Q}.

The exponent q on a symbol acnowledges the present scanning of the corresponding cell by
the control head, under state q.

We are now naturally led to the concept of instantaneous description for T . Informally,
instantaneous descriptions are meant to encode all (theoretically) possible configurations
of the tape during any sequence of computations. Formally, let for : A′+ → A+ be the
“forgetting” homomorphism defined by

for(a) = a, for(aq) = a (a ∈ A, q ∈ Q),

and let exp : A′+ → (IN,+) be the “counting” homomorphism defined by

exp(a) = 0, exp(aq) = 1 (a ∈ A, q ∈ Q).

Then we define

ID = B∗{w ∈ A′+ | for(w) ∈ ({1} ∪B)(Ao)∗({1,#})(Ao)∗({1} ∪B), exp(w) ≤ 1}B∗.

As an example, the instantaneous description BBab#abqaBBB indicates that ab#aba is
the content of the tape, the third cell is the origin, the control head is scanning the fifth cell
under state q. The presence of some blanks on the left or/and on the right can be useful
in some circumstances, in others can be ignored. We should always keep in mind that the
tape is potentially an infinite word . . . BBBBabc#abaBBBB . . . Note that we may have
exp(w) = 0 or 1 due to our peculiar stopping conditions. The interdiction of blanks between
non-blanks follows of course from the impossibility of writing blanks.

We denote by ID the set of all nonempty factors of words in ID.
The Turing machine T induces a mapping β : ID → ID (the one-move mapping) as

follows:
Let w ∈ ID. If |exp(w)| = 0, let β(w) = w. Suppose now that w = uaqv with a ∈ A

and q ∈ Q.

• if δ(q, a) = b ∈ {Y,N,G}, let β(w) = ubv;

• if δ(q, a) = (p, b, R) and c is the first letter of v = cv′, let β(w) = ubcpv′;

• if δ(q, a) = (p, b, R) and v = 1, let β(w) = ubBp;

• if δ(q, a) = (p, b, L) and c is the last letter of u = u′c, let β(w) = u′cpbv;

• if δ(q, a) = (p, b, R) and u = 1, let β(w) = Bpbv.
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Given w ∈ ID, it should be clear that the sequence (βn(w))n is eventually constant if
and only if T stops after finitely many moves if and only if βm(w) ∈ A+ for some m ∈ IN.
In this case, we write

lim
n→∞

βn(w) = βm(w).

More generally, given any eventually constant sequence (un)n, we shall use limn→∞ un with
the obvious meaning.

We say that our deterministic Turing machine (TM) is normalized if

• (βn(w))n is eventually constant for every w ∈ ID;

• limn→∞ β
n(w) ∈ B∗B′∗{Y,N,G}B′∗B∗ for every w ∈ ID.

In view of our stopping conventions, this implies in particular that the symbol Y , N or
G must be precisely at the origin. Normalized TMs will be used as models for solving
a certain problem, and we can now be more precise with respect to the possible final
configurations: limn→∞ β

n(w) ∈ B∗B′∗Y B′∗B∗ will correspond to correct input, accep-
tance, limn→∞ β

n(w) ∈ B∗B′∗NB′∗B∗ to correct input, rejection, and limn→∞ β
n(w) ∈

B∗B′∗GB′∗B∗ to incorrect input. It may be convenient to assume that the identification of
incorrect input (garbage) can be made at low cost complexity (say polynomially).

It should be clear that any algorithm of yes/no type to solve a particular problem
can be performed by a normalized TM of our type: we can keep the origin symbol con-
stant at the cost of introducing extra states, we can always add new states so that the
machine does not stop immediately following acceptance/rejection and add a terminal sub-
routine that will change the acceptance/rejection configuration into one of the desired form
B∗B′∗{Y,N,G}B′∗B∗.

The space and time functions for the normalized TM T can be naturally defined by

sT : ID→ IN
w 7→ | limn→∞ β

n(w)|,

tT : ID→ IN
w 7→min{m ∈ IN : βm(w) = limn→∞ β

n(w)}.

Indeed, we are assuming that our TM halts after finitely many moves, and the length of
the limit gives precisely the number of cells that have been used in the computation (if
we include all the cells occupied by w). On the other hand, since each iteration of β
corresponds to one move of T , the time function computes the number of moves needed to
get to a terminal configuration. It follows from known results (see [2]) that any deterministic
(multi-tape) Turing machine solving a problem with space and time complexities of order
s(n) and t(n) (not less than linear) can be turned into a normalized TM with space and
time functions of order s(n) and (t(n))2, respectively. In particular, if s(n) and t(n) are
polynomial, we remain within the realm of polynomial complexity.

We note that, for every w ∈ ID, β(w) either has the same length or is one letter longer
than w (when β(w) is of the form w′Bp or Bpw′). The one-move lp-mapping β0 : ID → ID
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is defined by

β0(w) =


β(w) if |β(w)| = |w|

w′ if |β(w)| = |w|+ 1 and β(w) = w′Bp;

w′ if |β(w)| = |w|+ 1 and β(w) = Bpw′.

Alternatively, we can say that β0(w) is obtained from β(BwB) by removing the first and
the last letter. Similarly, we can consider the extension β0 : ID → ID which is also an
lp-mapping.

We remark that, if |β(w)| = |w| + 1, then β0(w) ∈ A+ and so we cannot deduce β(w)
from β0(w). This loss of information is only apparent: it is a fact for a particular input,
but not if we consider the full domain of instantaneous descriptions: indeed, we can deduce
β(w) from β0(BwB) and, more generally, βn(w) from β0(BnwBn).

Let ιB : ID → (A′\{B})+ be the mapping that removes all blanks from a given w ∈ ID.
Lemma 8.1 Let T be a normalized TM with one-move mapping β.Let w ∈ ID be such that
for(w) ∈ (A \ {B})+. Then

(i) limn→∞ β
n(w) = limn→∞ ιB(βn

0 (BnwBn));

(ii) sT (w) = | limn→∞ ιB(βn
0 (BnwBn))|;

(iii) tT (w) = min{m ∈ IN : ιB(βm
0 (BmwBm)) = limn→∞ ιB(βn

0 (BnwBn))}.

Proof. It is immediate that βn(BnwBn) = βn
0 (BnwBn) for every n ∈ IN, and so

ιB(βn
0 (BnwBn)) = ιB(βn(BnwBn)) = βn(w).

Thus the result follows from T being normalized and the definitions of space and time
functions. �

We prefer to extend β0 : ID → ID to an lp-mapping β0 : A′+ → ID for formal reasons.
Since we are not really interested in non-IDs, we may consider some arbitrary lp-mapping
∆ : A′+ → ID fixing every w ∈ ID and then take the composition β0∆. We can take for
instance

∆(w) =
{
w if w ∈ ID
GB′|w|−1 otherwise.

So far, we have associated to the normalized TM T an lp-mapping β0 encoding the full
computational power of T with space and time functions equivalent to those of T . We
proceed now to define a canonical finite bimachine matching β0 in ID.

The A′, A′-bimachine

BT = ((IR, QR, SR), f, (SL, QL, IL))

is defined as follows:

• QR = A′ ∪ {IR}, QL = A′ ∪ {IL};
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• SR = A′ is a right zero semigroup (ab = b);

• SL = A′ is a left zero semigroup (ab = a);

• the action QR × SR → QR is defined by qRa = a;

• the action SL ×QL → QL is defined by aqL = a

For the output function, let us write I ′R = B and q′R = qR for every qR ∈ QR \ {IR}.
Similarly, we define q′L. Given qR ∈ QR, a ∈ A′ and qL ∈ QL, let

f(qR, a, qL) = β0(q′R, a, q
′
L).

If qRaqL ∈ ID, then qRaqL will encode the situation of three consecutive tape cells at a
certain moment. Then f(qR, a, qL) describes the situation of the middle cell after one move
of T . If qRaqL /∈ ID, then f(qR, a, qL) will have some pretty arbitrary meaning, depending
on the choice of ∆ previously taken.
Proposition 8.2 Let T be a normalized TM with one-move lp-mapping β0. Then αBT (w) =
β0(w) for every w ∈ ID.

Proof. Write α = αBT . Let w ∈ ID and write w = uav with a ∈ A′. We must show that
α(u, a, v) = β0(u, a, v). Now

α(u, a, v) = f(IRu, a, vIL) = f(qR, a, qL)

where

qR =
{
IR if u = 1
last letter of u otherwise,

qL =
{
IL if v = 1
first letter of v otherwise.

By definition, we have
f(qR, a, qL) = β0(q′R, a, q

′
L).

On the other hand, we certainly have

β0(u, a, v) = β0(qR, a, qL) = β0(q′R, a, q
′
L)

if u, v 6= 1. If u = 1 and v 6= 1, then

f(qR, a, qL) = β0(B, a, qL) = β0(u, a, v)

since both B and u are irrelevant to the computation. The other cases being of course
similar, the result follows. �

We consider next some sort of converse statement for our assignment of a finite bima-
chine to a normalized TM. We assume that A is a typical TM (restricted) tape alphabet,
containing in particular the blank B.

Let B be a finite A,A-bimachine and write α = αB. Assume that

(1) α(u, a, v) 6= B if a 6= B;
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(2) (αn(w))n is eventually constant for every w ∈ A+;

(3) there exists a (polynomial) space function sB : A+ → IN defined by

sB(w) = | lim
n→∞

ιB(αn(BnwBn))|;

(4) there exists a (polynomial) time function sB : A+ → IN defined by

tB(w) = min{m ∈ IN : ιB(αm(BmwBm)) = lim
n→∞

ιB(αn(BnwBn))},

where the limits are taken for eventually constant sequences. Then there exists some nor-
malized TM T with (polynomial) sT (w) = sB(w) and tT (w) = O((sB(w)tB(w))2) that
computes limn→∞ ιB(αn(BnwBn)).

In fact, let w ∈ A+. Each time we perform an iteration of α on BmwBm (for the
smallest m we need to obtain the space and time limits), we perform at most sB(w) changes
of symbols. Therefore the limit can be reached within a maximum of sB(w)tB(w) elementary
operations, that can be assumed to have constant cost since they can be computed by the
finite bimachine. In view of Church’s thesis and [2], this yields a deterministic Turing
machine with the claimed time bound (it is obvious for space), and the subroutines to make
it normalized can be afforded at the same level of complexity.

9 A profinite differential equation

We assume from now on that B(1) = B(2) = B(3) = . . . are countably many copies of
the A′, A′-bimachine B defined in the preceding section for the one-move lp-mapping of a
normalized TM.

Let m,n ≥ 1 with m < n. We can extend the canonical surjective homomorphism

ξ
[n,m]
R : (I [n,m]

R , Q
[n,m]
R , S

[n,m]
R )→ (I(m)

R , Q
(m)
R , S

(m)
R )

given by Proposition 3.5 to a morphism

ξR
[n,m] : (I [n,1]

R , Q
[n,1]
R , S

[n,1]
R )→ (I [m,1]

R , Q
[m,1]
R , S

[m,1]
R )

by successive application of Proposition 3.4. Similarly, we define a morphism

ξL
[n,m] : (S[n,1]

L , Q
[n,1]
L , I

[n,1]
L )→ (S[m,1]

L , Q
[m,1]
L , I

[m,1]
L ).

Let ξ[n,n]
R and ξ[n,n]

L be the obvious identity mappings.
It is straightforward that if we choose to represent the states in the P [n,1]

R , P [n,1]
L versions,

then
ξR

[n,m](γn, . . . , γ1) = (γm, . . . , γ1), (δ1, . . . , δn)ξL
[n,m] = (δ1, . . . , δm). (16)

In fact, these are the mappings considered in Section 6 before Corollary 6.5.
We recall the definition of projective system and projective limit. A set {Pn | n ≥ 1} of

algebras and morphisms {πij : Pi → Pj | i ≥ j} is said to be a projective system if
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• πnn is the identity mapping for every n ∈ IN;

• πijπjk = πik whenever i ≥ j ≥ k.

Its projective limit is defined as

P = {(an)n ∈
∞∏

n=1

Pn | aiπij = aj whenever i ≥ j}.

Lemma 9.1 {(I [n,1]
R , Q

[n,1]
R , S

[n,1]
R ) | n ≥ 1} and the morphisms ξR

[n,m] (n ≥ m) constitute
a projective system of right A′, A′-automata.

Proof. We must show that ξR
[m,k]

ξR
[n,m] = ξR

[n,k] whenever n ≥ m ≥ k. This follows
immediately from (16). �

We denote by
(Iω

R, Q
ω
R, S

ω
R)

the projective limit of the projective system defined above. If we represent the states in the
P

[n,1]
R , P [n,1]

L versions, it is routine to see that

. . .×Q(n)
R

Q
(1)
L ×...×Q

(n−1)
L

Q
(n)
R

Q
(1)
L ×...×Q

(n−1)
L ×Q(n−1)

R

Q
(1)
L ×...×Q

(n−2)
L × . . .×Q(1)

R

provides a representation of Qω
R. Moreover, the initial state Iω

R coresponds to

(. . . , I(3)
R , I

(2)
R , I

(1)
R ),

where I(n)
R is the constant mapping with image I(n)

R .
In view of Theorem 6.4 and Corollary 6.5, it should be clear that the action of A′+ on

Pω
R is fully determined by the action on P [n,1]

R in the obvious way.
We have dual L-versions of these definitions and results that lead to a projective limit

(Sω
L , Q

ω
L, I

ω
L)

and a representation

Qω
L = Q

(1)
L × . . .×

Q
(n−2)
R

×...×Q
(1)
R Q

(n−1)
L ×

Q
(n−1)
R

×...×Q
(1)
R Q

(n)
L × . . .

We define now an A′, A′-bimachine

Bω = ((Iω
R, Q

ω
R, S

ω
R), fω, (Sω

L , Q
ω
L, I

ω
L))

as follows. Given u, v ∈ A′+ and a ∈ A′, we define

fω(Iω
Ru, a, vI

ω
L) = lim

n→∞
f [n,1](I [n,1]

R Bnu, a, vBnI
[n,1]
L ).

If either qω
R or qω

L is not accessible, fω(qω
R, a, q

ω
L) is arbitrary (say for simplicity fω(qω

R, a, q
ω
L) =

a).
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We show that fω(Iω
Ru, a, vI

ω
L) is well defined. Indeed

f [n,1](I [n,1]
R Bnu, a, vBnI

[n,1]
L ) = αB[n,1](Bnu, a, vBn) = βn

0 (Bnu, a, vBn).

If uav ∈ ID, we have that

lim
n→∞

βn(uav) = lim
n→∞

ιB(βn
0 (BnuavBn))

by Lemma 8.1 and so (βn
0 (Bnu, a, vBn))n and therefore (f [n,1](I [n,1]

R Bnu, a, vBnI
[n,1]
L ))n is

eventually constant. If uav /∈ ID, then

βn
0 (BnuavBn) = BnGB′

|uav|−1
Bn

and (f [n,1](I [n,1]
R Bnu, a, vBnI

[n,1]
L ))n is also eventually constant. Thus fω is well defined.

We show now that the bimachine Bω satisfies the following property, referred to as the
differential equation.
Theorem 9.2 Bω ∼= Bω�B.
Proof. Write B(ω,1) = Bω�B. Since

Qω
R = . . .×QR

(QL)n−1 ×QR
(QL)n−2 × . . .×QR,

we define
ζR : Qω

R → Q
(ω,1)
R = Qω

R
QL ×QR

by
ζR(. . . , γ2, γ1) = (γ̂, γ1),

where
γ̂ = (. . . , γ̂2, γ̂1)

and γ̂n(q(1)L ) ∈ QR
(QL)n−1

is defined for n ≥ 1 by

γ̂n(q(1)L )(q(2)L , . . . , q
(n)
L ) = γn+1(q

(1)
L , . . . , q

(n)
L ).

Given (γ̂, γ1) ∈ Q(ω,1)
R with γ̂ = (. . . , γ̂2, γ̂1), define (. . . , γ2, γ1) ∈ Qω

R by

γn+1(q
(1)
L , . . . , q

(n)
L ) = γ̂n(q(1)L )(q(2)L , . . . , q

(n)
L ).

It is immediate that (γ̂, γ1) = ζR(. . . , γ2, γ1), hence ζR is surjective. It is simple routine to
check that ζR is injective and preserves the initial state.

We show next that ζR preserves the action. Let u ∈ A+
1 . We may write

(. . . , γ2, γ1)u1 = (. . . , γ′2, γ
′
1)

with the γ′n defined as in Lemma 6.3. By Theorem 6.4, the action of A′+ on Q
[n,1]
R is

sequential and so must be the action of A′+ on Qω
R. Thus it suffices to remark that the

mapping

ζ
(n)
R : P [n,1]

R → P
[n,2]
R

QL ×QR

(γn, . . . , γ1) 7→ ((γ̂n−1, . . . , γ̂1), γ1)

preserves the action. This is essentially the identity mapping on Q[n,1]
R with different repre-

sentations of the states. Since the action is the same in

53



• Q[n,2]
R and P [n,2]

R ,

• Q[n,1]
R = Q

[n,2]
R

QL ×QR and P [n,1]
R ,

it follows that ζR preserves the action.
We show next that

S
(ω,1)
R

∼= Sω
R. (17)

Let u, v ∈ A′+. We have

uSω
R

= vSω
R
⇔∀n ≥ 1 u

S
[n,1]
R

= v
S

[n,1]
R

⇔ uSR
= vSR

∧ ∀n ≥ 2 ∀qR ∈ QR ∀qL ∈ QL (qRguqL)
S

[n,2]
R

= (qRgvqL)
S

[n,2]
R

⇔ uSR
= vSR

∧ ∀n ≥ 1 ∀qR ∈ QR ∀qL ∈ QL (qRguqL)
S

[n,1]
R

= (qRgvqL)
S

[n,1]
R

⇔ uSR
= vSR

∧ ∀qR ∈ QR ∀qL ∈ QL (qRguqL)Sω
R

= (qRgvqL)Sω
R

⇔ u
S

(ω,1)
R

= v
S

(ω,1)
R

,

thus (17) holds and therefore ζR is an isomorphism of right A′-automata.
Similarly, the mapping

ζL : Qω
L → Q

(ω,1)
L = QL ×

QRQω
L

defined by
(δ1, δ2, . . .)ζL = (δ1, δ̂),

where
δ̂ = (δ̂1, δ̂2, . . .)

and q(1)R δ̂n ∈
(QR)n−1

QL is defined for n ≥ 1 by

(q(n)
R , . . . , q

(2)
R )(q(1)R δ̂n) = (q(n)

R , . . . , q
(1)
R )δn+1,

is an isomorphism of left A′-automata.
Finally, we must show that

f (ω,1)(I(ω,1)
R u, a, vI

(ω,1)
L ) = fω(Iω

Ru, a, vI
ω
L)
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holds for all u, v ∈ A′+. Indeed,

f (ω,1)(I(ω,1)
R u, a, vI

(ω,1)
L )

= f (ω,1)((γ0, IR)u, a, v(IL, δ0))

= f (ω,1)((γ0u · IRgu, IRu), a, (vIL, hvIL · vδ0))

= fω(Iω
R · IRgu(vIL), f(IRu, a, vIL), (IRu)hvIL · Iω

L)

= limn→∞ f
[n,1](I [n,1]

R · IRgu(vIL), f(IRu, a, vIL), (IRu)hvIL · I [n,1]
L )

= limn→∞ f
[n+1,2](I [n+1,2]

R · IRgu(vIL), f(IRu, a, vIL), (IRu)hvIL · I [n+1,2]
L )

= limn→∞ f
[n+1,1]((γ0u · IRgu, IRu), a, (vIL, hvIL · vδ0))

= limn→∞ f
[n+1,1]((γ0, IR)u, a, v(IL, δ0))

= fω(Iω
Ru, a, vI

ω
L)

as required. �

Back to our tree model, we remark next that the elliptic contractions induced by the
letters are constant at a given depth for our bimachine B.

For every u ∈ A′+, consider the elliptic contraction

νu : P [n,1]
R → P

[n,1]
R

(γn, . . . , γ1) 7→ (γn, . . . , γ1)u.

Given (γn−1, . . . , γ1) ∈ P [n−1,1]
R , let

νu,γn−1,...,γ1 : QR
(Q

(1)
L )n−1 → QR

(Q
(1)
L )n−1

be the mapping defined by

νu,γn−1,...,γ1(γn) = πnνu(γn, . . . , γ1).

Proposition 9.3 The mapping νu,γn−1,...,γ1 is constant for all u ∈ A′+ and (γn−1, . . . , γ1) ∈
P

[n−1,1]
R .

Proof. Write u1 = u ∈ A′+ and let (γn, . . . , γ1) ∈ P
[n,1]
R . By Lemma 6.3, we have

(γn, . . . , γ1)u1 = (γ′n, . . . , γ
′
1) with

γ′j(q
(1)
L , . . . , q

(j−1)
L ) = (γj(u1q

(1)
L , . . . , uj−1q

(j−1)
L ))uj , (18)

where the words u2, . . . , un are defined recursively by

uj+1 = (γj(u1q
(1)
L , . . . , uj−1q

(j−1)
L ))g(j)

uj
q
(j)
L (j = 1, . . . , n− 1). (19)
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By (18), and since the action is right zero, it is enough to show that the last letter of
the word un is independent from γn. Now by (19) and Lemma 3.1, this last letter is of the
form

f((γn−1(u1q
(1)
L , . . . , un−2q

(n−2)
L ))u′n−1), u

′′
n−1, q

(n−1)
L ),

where un−1 = u′n−1u
′′
n−1 and u′′n−1 ∈ A′, therefore νu,γn−1,...,γ1 is constant. �

10 Random walks on semigroups and Turing machines

10.1 Random walks on semigroups

Let S be a semigroup finitely generated by A and let S act to the right of the set X, not
necessarily faithfully, denoted (X,S,A). In the following, a knowledge of the paper [9] is
useful.

First for each a ∈ A we can consider the X×X matrix with entry (x, xa) equal to 1 and
all other entries equal to zero. The entries could be in any semiring, but we will consider
them in the real or complex field. We denote this matrix by op(·a) (operator of right action
· of a).

We denote the transpose op(·a), (op(·a))∗, as op(a−1·).
Now the adjacency matrix for (X,S,A), denoted Adj(X,S,A), is by definition∑

a∈A

op(·a) + op(a−1·),

a self-adjoint matrix or operator on the suitable Hilbert space with nonnegative integer
entries. See [9].

The 2-sided simple random walk (2SRW) on (X,S,A) is

transition
(∑

a∈A

op(·a) + op(a−1·)
)

≡ transition(Adj(X,S,A)).

Here transition(M), where M is a matrix with nonnegative entries, is the matrix obtained
by multiplying row x by the inverse of the sum of the entries in row x ≡ 1/

∑
x, so we must

assume
∑

x <∞ for all x ∈ X.
So the 2SRW (assuming it exists) is a self-adjoint operator on the Hilbert space l2(X)

and is a stochastic matrix with nonnegative entries and with row sums 1. See [9]. So
compute its spectrum, eigenvalues, spectral radius, etc. The norm of the operator is ≤ 1.
The first question is what is the 2SRW of (A+, A+, A)? (This is well defined because A+ is
cancellative.) See [4]. Even for |A| = 1, the 2SRW becomes

1 0 0 0 0 0 0 . . .
1
2 0 1

2 0 0 0 0 . . .
0 1

2 0 1
2 0 0 0 . . .

0 0 1
2 0 1

2 0 0 . . .
...

...
...

...
...

...
...

. . .

.
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Clearly, the 2SRW of (X,S,A) is well defined if X is finite. Now in our situation for
Turing machines from Section 6 we have a finite number of elliptic contractions operating
on a symmetric tree (see [12]), so in this case, the 2SRW is well defined by restricting the
action to those vertices distance ≤ n from the root and then taking their 2SRW and limiting
(i. e., obtaining the operator for the 2SRW as the limit of the finite operators for each n).

Notice by going to the ends ∂ with product measure µ, the adjacency matrix of the finite
number of elliptic contractions A = {a1, . . . , ak} can be defined by considering L2(∂, µ) and
then considering the operator

( )f → (·a)f
which corresponds to op(a−1·). So the adjoint of this operator corresponds to op(·a), so the
2SRW is a row normalization of this Adj operator, with Adj =

∑
a∈A(op(a−1·) + op(·a)).

Now given α : A+ → B+ a lp-mapping, we can go to the minimal bimachine Bα

(Proposition 2.3) calculating α and obtain the right and left A-automata and take their
2SRWs, denoted R2SRW and L2SRW (assuming they are well-defined, which they will be if
we apply ( )L and ( )R to the minimal bimachine semigroups). Thus, given an NP-complete
problem P , we can obtain two 2SRWs: R2SRW(P ) and L2SRW(P ). We make this well
defined by applying ( )L and ( )R to the minimal bimachine.

Also, given a deterministic Turing machine TP solving the problem P , via Section 6,
we obtain for R (for L) a finite number of elliptic contractions on a symmetric tree, so
the 2SRW is defined, which we denote R2SRW(TP ) (and L2SRW(TP )). Then we want to
understand how R2SRW(TP ) and L2SRW(TP ) are related. (We need limit theorems for
spectra, spectral radii, etc.)

Working Conjecture (as of 09 June, 2006). If R2SRW(P ) and L2SRW(P ) are
the free 2SRW of (A+, A) for suitable finite A (or close to it), then P has no polynomial-
time algorithm, by considering the spectral radius of the free vs. the spectral radius of
R2SRW(TP ).

Another approach is possible using the Brown/Steinberg method utilizing triangular
complex matrices. See [18], [19].
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