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6.7.1

(a)

‖x‖ =
√
〈x,x〉 =

√
4(1)(1) + 5(1)(1) = 3

‖y‖ =
√
〈y,y〉 =

√
4(5)(5) + 5(−1)(−1) =

√
105

|〈x,y〉|2 = |4(1)(5) + 5(1)(−1)|2 = 152 = 225

(b) (z1, z2) is orthogonal to y iff 0 = 〈(z1, z2),y〉 = 4(z1)(5) + 5(z2)(−1).
So the vectors orthogonal to y coincide with the line 20z1 − 5z2 = 0.

6.7.8

〈q, p〉 = (3+2(−1)2)(3(−1)−(−1)2)+(3+2(0)2)(3(0)−02)+(3+2(1)2)(3(1)−12) = −10

〈q, p〉 = (3 + 2(−1)2)2 + (3 + 2(0)2)2 + (3 + 2(1)2)2 = 59

Thus

projp(q) =
〈q, p〉
〈p, p〉

p = −10

59
(3t− t2).

6.7.11 If W = Span{1, t, t2− 2} then projW (t3) = a0 +a1t+a2(t2− 2) where

a0 =
〈t3, 1〉
〈1, 1〉

,

a1 =
〈t3, t〉
〈t, t〉

,

a2 =
〈t3, t2 − 2〉
〈t2 − 2, t2 − 2〉

,

Now
〈t3, 1〉 = (−2)3 + (−1)3 + 0 + 13 + 23 = 0

and

〈t3, t2−2〉 = (−2)3((−2)2−2)+(−1)3((−1)2−2+0+13(12−2)+23(22−2) = 0.

So a0 = a2 = 0. Also

〈t3, t〉 = (−2)3(−2) + (−1)3(−1) + 0 + 13 + 23(2) = 34

〈t, t〉 = (−2)(−2) + (−1)(−1) + 0 + 1 + 2(2) = 10.

So projW (t3) = 17
5 t.
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6.7.16 We see that

‖u− v‖2 = ‖u + (−v)‖2 = ‖u‖2 + ‖−v‖2 = ‖u‖2 + |−1|2‖v‖2 = 2.

The second equality follows from the Pythagorian Theorem and the fact that
〈u,−v〉 = −〈u,v〉 = 0. The last equality follows from the fact that u and v
have length 1. Finally, we can take positive square roots of both sides (since
lengths are non-negative) to prove the claim.

6.7.17 It suffices to show that

4〈u,v〉 = ‖u + v‖2 − ‖u− v‖2.

But by the axioms of an inner product we see that

‖u+v‖2 = 〈u+v,u+v〉 = 〈u,u〉+〈v,v〉+〈u,v〉+〈v,u〉 = 〈u,u〉+〈v,v〉+2〈u,v〉,

and similarly
‖u− v‖2 = 〈u,u〉+ 〈v,v〉 − 2〈u,v〉.

Subtracting the second from the first we see that the claim is true.

7.1.12 As mentioned on pg. 331, any square matrix with orthonormal columns
is orthogonal. It is straightforward to check that the columns of this matrix
each have unit length and that they are pairwise orthogonal. Thus this is an
orthogonal matrix and by definition its inverse is equal to its transpose.

7.1.24 We first check the eigenvalues for v1 and v2. We see that

Av1 = (−20, 20, 10) = 10v1

Av2 = (1, 1, 0) = v2.

We now find bases for the corresponding eigenspaces:

A− 10I =

 −5 −4 −2
−4 −5 2
−2 2 −8

 ∼
 1 0 2

0 1 −2
0 0 0

 .
Thus a basis for the λ = 10 eigenspace is {(−2, 2, 1)}.

A− I =

 4 −4 −2
−4 4 2
−2 2 1

 ∼
 1 −1 −.5

0 0 0
0 0 0

 .
So a basis for the λ = 1 eigenspace is {(1, 1, 0), (.5, 0, 1)}. Also, since A is
symmetric, part (b) of the spectral theorem (pg 392) tells us that there are no
other eigenvalues.
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We now orthogonalize the λ = 1 basis which we label by x1 = (1, 1, 0),x2 =
(.5, 0, 1). We let v1 = x1, and let

v2 = x2 − projv1(x2) = x2 −
x2 · v1

v1 · v1
v1 = (.5, 0, 1)− 1

4
(1, 1, 0) = (.25,−.25, 1).

We let w1 = (−2, 2, 1),w2 = (1, 1, 0), and w3 = (.25,−.25, 1), and normalize
these.

‖w1‖ =
√

4 + 4 + 1 = 3;

‖w2‖ =
√

1 + 1 + 0 =
√

2;

‖w3‖ =

√
1

16
+
√

116 + 1 =
3
√

2

4
.

So

‖ŵ1‖ =

(
−2

3
,

2

3
,

1

3

)
‖ŵ2‖ =

(
1√
2
,

1√
2
, 0

)
‖ŵ3‖ =

(
1

3
√

2
,− 1

3
√

2
,

4

3
√

2

)
.

We conclude that A = PDP−1 is an orthogonal diagonalization where

D =

 10 0 0
0 1 0
0 0 1



P =

 −
2
3

1√
2

1
3
√
2

2
3

1√
2
− 1

3
√
2

1
3 0 4

3
√
2

 .
7.1.26

(a) True. By Theorem 2 and the fact that every symmetric matrix is
square.

(b) True. Since PT = P−1 we have both that B = PDPT = PDP−1 and
that P is an orthogonal matrix. So, by definition, B is orthogonally diagonal-
izable (and also square, being a product of square matrices). Thus Theorem 2
tells us B must be symmetric.

(c) False. Recall the matrix from Exercise 7.1.12 was orthogonal, but it is
clearly not symmetric and thus by Theorem 2 not orthogonally diagonalizable.

(d) True. Theorem 3(b).
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7.1.30 Since A and B are both orthogonally diagonalizable (and thus square),
thus they are both symmetric and thus AT = A and BT = B. Thus (AB)T =
BTAT = BA = AB and so AB is symmetric. Thus AB is orthogonally diago-
nalizable by Theorem 2.
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