
SOLUTIONS TO HOMEWORK #7, MATH 54 SECTION 001, SPRING 2012

JASON FERGUSON

Beware of typos. These may not be the only ways to solve these problems. In fact, these may not even
be the best ways to solve these problems. Congratulations to you if you find better solutions!

1. Ex. 5.2.6: Find the characteristic polynomial and the eigenvalues of the matrices in Exercises 1-8.[
3 −4
4 8

]
Solution. Let A be the matrix in the problem statement. Then the characteristic polynomial of A is:

|A− λI| =
∣∣∣∣3− λ −4

4 8− λ

∣∣∣∣ = (3− λ)(8− λ)− (−4)4 = λ2 − 11λ+ 40 .

From the quadratic formula, the eigenvalues of A are:

11±
√

121− 160

2
=

11±
√

39i

2
.

“ There are no real eigenvalues ” is also an acceptable answer. �

2. Ex. 5.2.12: Exercises 9-14 require techniques from Section 3.1. Find the characteristic polynomial of
each matrix, using either a cofactor expansion or the special formula for 3 × 3 determinants described in
Exercises 15-18 in Section 3.1. [ Note: Finding the characteristic polynomial of a 3 × 3 matrix is not easy

to do with just row operations, because the variable λ is involved.]

−1 0 1
−3 4 1
0 0 2


Solution. Let A be the matrix in the problem statement. Then the characteristic polynomial of A is:

|A− λI| =

∣∣∣∣∣∣
−1− λ 0 1
−3 4− λ 1
0 0 2− λ

∣∣∣∣∣∣ = (4− λ)

∣∣∣∣−1− λ 1
0 2− λ

∣∣∣∣ = (4− λ)(−1− λ)(2− λ) . �

3. Ex. 5.2.17: For the matrices in Exercises 15-17, list the eigenvalues, repeated according to their multi-

plicities.


3 0 0 0 0
−5 1 0 0 0
3 8 0 0 0
0 −7 2 1 0
−4 1 9 −2 3


Solution. The eigenvalues of a triangular matrix with multiplicities are the entries along its main diagonal,
with multiplicities. The answer is 0, 1, 1, 3, 3 . �

4. Ex. 5.2.18: It can be shown that the algebraic multiplicity of an eigenvalue λ is always greater than or
equal to the dimension of the eigenspace corresponding to λ. Find h in the matrix A below such that the

eigenspace for λ = 5 is two-dimensional: A =


5 −2 6 −1
0 3 h 0
0 0 5 4
0 0 0 1


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Solution. Let B equal:

A− 5I =


0 −2 6 −1
0 −2 h 0
0 0 0 4
0 0 0 −4

 ,
and let b1, . . . ,b4 be the columns of B.

Then the eigenspace for 5 is NulB, so we want to find all h for which dim NulB = 2. From the rank-nullity
theorem, this is the same as needing dim ColB = 4− 2 = 2.

Because b2 and b4 are nonzero and not constant multiples of each other, {b2,b4} is linearly independent.
Then dim ColB will be 2 if and only if {b2,b4} is a basis of ColB, if and only if {b2,b4} spans ColB. Since
b1 is already in Span{b2,b4}, we only need to find those h for which b3 is in Span ColB, i.e. when there
are constants x1, x2 for which:

x1b2 + x2b4 = b3.

Rewriting this in matrix form, we have:
−2 −1 6
−2 0 h
0 4 0
0 −4 0

 ∼

−2 −1 6
0 1 h− 6
0 4 0
0 −4 0

 ∼

−2 −1 6
0 4 0
0 1 h− 6
0 −4 0

 ∼

−2 −1 6
0 1 0
0 0 h− 6
0 0 0

 .
Therefore, there are constants x1, x2 for which x1b2 + x2b4 = b3 if and only if h = 6 , and tracing back
through gives that this is the final answer. �

5. Ex. 5.2.22: In Exercises 21 and 22, A and B are n × n matrices. Mark each statement True or False.
Justify each answer.

a. If A is 3 × 3, with columns a1, a2, a3, then detA equals the volume of the parallelepiped determined
by a1, a2, a3.

b. detAT = (−1) detA.
c. The multiplicity of a root r of the characteristic equation of A is called the algebraic multiplicity of r

as an eigenvalue of A.
d. A row replacement operation on A does not change the eigenvalues.

Solution. a. False . Let A =

1 0 0
0 1 0
0 0 −1

. Then detA = −1 < 0, and so cannot be the volume of any

shape in R3 at all. (The correct statement is that |detA| is the volume of the parallelepiped determined by
a1, a2, a3.)

b. False . Let A = I. Then detAT = detA = 1, but (−1) detA = (−1)1 = −1. (The correct rule is that

detAT = detA.)

c. True . This the definition of algebraic multiplicity as found on p.282, just before Example 4 of Section
5.2.

d. False . Let A =

[
1 0
0 2

]
, and B = I2 =

[
1 0
0 1

]
. Then since A is triangular, its eigenvalues are the

entries on the main diagonal, i.e. 1 and 2. Likewise, 1 is the only eigenvalue of B. Therefore, A and B have
different eigenvalues, even though B can be obtained from A by a single row replacement operation. �

6. Ex. 5.3.3: In Exercises 3 and 4, use the factorization A = PDP−1 to compute Ak, where k represents
an arbitrary positive integer. [

a 0
3(a− b) b

]
=

[
1 0
3 1

] [
a 0
0 b

] [
1 0
−3 1

]
.

Solution.

Ak = PDkP−1 =

[
1 0
3 1

] [
ak 0
0 bk

] [
1 0
−3 1

]
=

[
ak 0
3ak bk

] [
1 0
−3 1

]
=

[
ak 0

3(ak − bk) bk

]
. �
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7. Ex. 5.3.6: In Exercises 5 and 6, the matrix A is factored in the form PDP−1. Use the Diagonalization
Theorem to find the eigenvalues of A and a basis for each eigenspace.4 0 −2

2 5 4
0 0 5

 =

−2 0 −1
0 1 2
1 0 0

5 0 0
0 5 0
0 0 4

 0 0 1
2 1 4
−1 0 −2

 .
Solution. By the diagonalization theorem, the eigenvalues of A are 5 and 4 . Bases for the eigenspaces of 5

and 4 are


−2

0
1

 ,
0

1
0

 and


−1

2
0

 , respectively. �

8. Ex. 5.3.18: Diagonalize the matrices in Exercises 7-20, if possible... For Exercise 18, one eigenvalue is

λ = 5 and one eigenvector is (−2, 1, 2).

−7 −16 4
6 13 −2
12 16 1


Solution. Let A be the matrix in the problem statement. We are given that (−2, 1, 2) is an eigenvector of
A. We compute: −7 −16 4

6 13 −2
12 16 1

−2
1
2

 =

 14− 16 + 8
−12 + 13− 4
−24 + 16 + 2

 =

 6
−3
−6

 = (−3)

−2
1
2

 .
Therefore, −3 is the eigenvalue of A corresponding to (−2, 1, 2). We are also given that 5 is an eigenvalue
of A.

Since we need to find the eigenspaces of 5 and −3 anyway, we will start by computing them:

[
A− 5I 0

]
=

−12 −16 4 0
6 8 −2 0
12 16 −4 0

 ∼
 3 4 −1 0

6 8 −2 0
12 16 −4 0

 ∼
1 4

3 −1
3 0

0 0 0 0
0 0 0 0


Therefore, if (A− 5I)x = 0, then x2 and x3 are free and x1 = −4

3x2 + 1
3x3. Thus:x1x2

x3

 = x2

−4
3

1
0

+ x3

1
3
0
1

 .
Therefore, λ = 5 has two associated linearly independent eigenvectors, for example (4,−3, 0) and (1, 0, 3).

We also know that λ = −3 has (−2, 1, 2) as an associated eigenvector. This gives three linearly independent

eigenvectors, so A is diagonalizable , and by the Diagonal Matrix theorem:5 0 0
0 5 0
0 0 −3

 =

 4 1 −2
−3 0 1
0 3 2

−1 −7 −16 4
6 13 −2
12 16 1

 4 1 −2
−3 0 1
0 3 2

 . �

9. Ex. 5.3.22: In Exercises 21 and 22, A, B, P , and D are n× n matrices. Mark each statement True or
False. Justify each answer. (Study Theorems 5 and 6 and the examples in this section carefully before you
try these exercises.)

a. A is diagonalizable if A has n eigenvectors.
b. If A is diagonalizable, then A has n distinct eigenvalues.
c. If AP = PD, with D diagonal, then the nonzero columns of P must be eigenvectors of A.
d. If A is invertible, then A is diagonalizable.

Solution. a. False. As was shown in Example 4, A =

 2 4 3
−4 −6 −3
3 3 1

 is not diagonalizable, but it does

have λ = 1 as an eigenvalue, with associated eigenvector (1,−1, 1). But then (2,−2, 2) and (−1, 1,−1) are
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also eigenvectors of A, so A has three different eigenvectors. (One possible corrected statement is “A is
diagonalizable if A has n linearly independent eigenvectors.”)

b. False. Let A = I2 =

[
1 0
0 1

]
. Then because A is diagonal, A is diagonalizable (since A = I−1AI).

However, since A is triangular, its eigenvalues are the entries on the main diagonal, so A has only one
eigenvalue. (One possible corrected statement is “If A has n distinct eigenvalues, then A is diagonalizable.”)

c. True. (Warning: The problem did not say that we could assume P is invertible! My solution will not
assume it.) Let p1, . . . ,pn be the n columns of P , and let d1, . . . , dn be the diagonal entries of D. Then
the ith column of AP is Api, while the ith column of PD is dipi. Since AP = PD, we have Api = dipi.
Therefore, if pi 6= 0, then pi is an eigenvector of A with associated eigenvalue di.

d. False. As was shown in Example 4, A =

 2 4 3
−4 −6 −3
3 3 1

 is not diagonalizable. However, its determi-

nant is:

2

[
−6 −3
3 1

]
− 4

[
−4 −3
3 1

]
+ 3

[
−4 −6
3 3

]
= 2 · 3− 4 · 5 + 3 · 6 = 4 6= 0,

and so is invertible. (The matrix

[
a 1
0 a

]
for any a 6= 0 is the simplest counterexample I could think of.) �

10. Ex. 5.4.4: Let B = {b1,b2,b3} be a basis for a vector space V and T : V → R2 be a linear transformation
with the property that

T (x1b1 + x2b2 + x3b3) =

[
2x1 − 4x2 + 5x3
−x2 + 3x5

]
Find the matrix for T relative to B and the standard basis for R2.

Solution. For any vector v in R2, the coordinate representation of v relative to the standard basis of R2 is
v itself. Therefore, the formula for the matrix of T relative to B and the standard basis for R2 simplifies to:[

T (b1) T (b2) T (b3)
]

=

[
2 −4 5
0 −1 3

]
. �

11. Ex. 5.4.6: Let T : P2 → P4 be the transformation that maps a polynomial p(t) into the polynomial
p(t) + t2p(t).

a. Find the image of p(t) = 2− t+ t2.
b. Show that T is a linear transformation.
c. Find the matrix for T relative to the bases {1, t, t2} and {1, t, t2, t3, t4}.

Solution. a. T (2− t+ t2) = (2− t+ t2) + t2(2− t+ t2) = 2− t+ 3t2 − t3 + t4 .
b. Let p and q be any polynomials in P2, and let c be any real scalar. Then:

T (p + q) = (p + q) + t2(p + q) = (p + t2p) + (q + t2q) = T (p) + T (q)

T (cp) = (cp) + t2(cp) = c(p + t2p) = cT (p),

which is what it means for T to be linear.
c. Let C be the basis {1, t, t2, t3, t4} of P4. Then the matrix of T relative to {1, t, t2} and C is:

[
[T (1)]C [T (t)]C [T (t2)]C

]
=
[[

1 + t2
]
C
[
t+ t3

]
C
[
t2 + t4

]
C
]

=


1 0 0
0 1 0
1 0 1
0 1 0
0 0 1

 . �

12. Ex. 5.4.21: Verify the statements in Exercises 19-24. The matrices are square.
If B is similar to A and C is similar to A, then B is similar to C.

4



Solution. Since B is similar to A, there is an invertible matrix P with P−1AP = B. Multiplying on the left
by P and on the right by P−1 gives

A = PBP−1.

Since C is similar to A, there is an invertible matrix Q with Q−1AQ = C, and plugging in A = PBP−1

gives:

Q−1PBP−1Q = C.

Then P−1Q is invertible, and its inverse is Q−1(P−1)−1 = Q−1P . Therefore, (P−1Q)−1B(P−1Q) = C, so
B is similar to C. �

13. Ex. 5.4.22: If A is diagonalizable and B is similar to A, then B is also diagonalizable.

Solution. Since A is diagonalizable, there is a diagonal matrix D for which D is similar to A. Then by the
previous exercise, D is similar to B, so B is diagonalizable. �

14. Ex. 5.5.4: Let each matrix in Exercises 1-6 act on C2. Find the eigenvalues and a basis for each

eigenspace in C2.

[
5 −2
1 3

]
Solution. Let A be the matrix in the problem statement. Then the characteristic polynomial of A is:

detA− λI =

∣∣∣∣5− λ −2
1 3− λ

∣∣∣∣ = (5− λ)(3− λ)− 1(−2) = λ2 − 8λ+ 17.

Its roots, i.e. the eigenvalues of A are:

8±
√

64− 68

2
= 4± i .

Because 4 + i is an eigenvalue of A, A− (4 + i)I must have row rank 1, so:

A− (4 + i)I =

[
1− i −2

1 −1− i

]
∼
[
1− i −2

0 0

]
.

Therefore,

{[
2

1− i

]}
is a (complex) basis of the eigenspace of A corresponding to 4 + i. Since A is real,{[

2
1 + i

]}
is a (complex) basis of the eigenspace of A corresponding to 4− i. �

15. Ex. 5.5.6:

[
4 3
−3 4

]
Solution. Let A be the matrix in the problem statement. Then the characteristic polynomial of A is:

detA− λI =

∣∣∣∣4− λ 3
−3 4− λ

∣∣∣∣ = (4− λ)2 − 32 = (λ− 4)2 − 32.

Its roots, i.e. the eigenvalues of A are therefore 4± 3i .

A− (4 + 3i)I =

[
−3i 3
−3 −3i

]
∼
[
i −1
−3 −3i

]
∼
[
i −1
0 0

]
.

Therefore,

{[
1
i

]}
is a (complex) basis of the eigenspace of A corresponding to 4 + 3i. Since A is real,{[

1
−i

]}
is a (complex) basis of the eigenspace of A corresponding to 4− 3i. �
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16. Ex. 5.5.14: In Exercises 13-20, find an invertible matrix P and a matrix C of the form

[
a −b
b a

]
such

that the given matrix has the form A = PCP−1. For Exercises 13-16, use information from Exercises 1-4.[
5 −5
1 1

]
Solution. Let A be the matrix in the problem statement. Then the characteristic polynomial of A is:

detA− λI =

∣∣∣∣5− λ −5
1 1− λ

∣∣∣∣ = (5− λ)(1− λ)− (−5)1 = λ2 − 6λ+ 10.

Its roots, i.e. the eigenvalues of A are:

6±
√

36− 40

2
= 3± i.

Because 3− i is an eigenvalue of A, A− (3− i)I must have row rank 1, so:

A− (3− i)I =

∣∣∣∣2 + i −5
1 −2 + i

∣∣∣∣ ∼ [2 + i −5
0 0

]
.

Therefore, v =

[
5

2 + i

]
is a complex eigenvalue of A corresponding to λ = 3− i.

By Theorem 9, if:

P =
[
Rev Imv

]
=

[
5 0
2 1

]
, C =

[
3 −1
1 3

]
,

then P is invertible and A = PCP−1, as needed. �

17. Ex. 5.5.16:

[
5 −2
1 3

]
Solution. By my solution to Ex. 5.5.4, 4− i is an eigenvalue of this matrix, with corresponding eigenvector[

2
1 + i

]
. Then by Theorem 9, if P =

[
2 0
1 1

]
and C =

[
4 −1
1 4

]
then P is invertible and A = PCP−1. �
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