4.3.8 Letting A be the coefficient matrix with columns the vectors given. Row reducing, we see that

$$A = \begin{bmatrix} 1 & 0 & 3 & 0 \\ -4 & 3 & -5 & 2 \\ 3 & -1 & 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 5 & 2 \\ 0 & 0 & -8 & -4 \end{bmatrix}.$$

There is a pivot in every row in the reduced matrix, so since being *onto* is preserved by row equivalence, the columns of A span \mathbb{R}^3 . There is also a free variable in the reduced matrix, and so, since the property of having linearly independent columns is preserved under row equivalence, we see that the columns of A must be linearly dependent. Thus the set is not a basis, but it does span \mathbb{R}^3 .

4.3.10 Letting

$$A = \begin{bmatrix} 1 & 0 & -5 & 1 & 4 \\ -2 & 1 & 6 & -2 & -2 \\ 0 & 2 & -8 & 1 & 9 \end{bmatrix},$$

Nul(A) consists of all solutions to the augmented matrix $[A \mid \mathbf{0}]$. Also

$$A = \begin{bmatrix} 1 & 0 & -5 & 1 & 4 \\ -2 & 1 & 6 & -2 & -2 \\ 0 & 2 & -8 & 1 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -5 & 0 & 7 \\ 0 & 1 & -4 & 0 & 6 \\ 0 & 0 & 0 & 1 & -3 \end{bmatrix}.$$

Thus,

$$Nul(A) = \left\{ \mathbf{x} \in \mathbb{R}^5 : \mathbf{x} = x_3 \begin{bmatrix} 5\\4\\1\\0\\0 \end{bmatrix} + x_5 \begin{bmatrix} -7\\-6\\0\\3\\1 \end{bmatrix}, x_3, x_5 \in \mathbb{R} \right\}.$$

It is now easy to check that
$$\begin{bmatrix} 5\\4\\1\\0\\0 \end{bmatrix} \text{ and } \begin{bmatrix} -7\\-6\\0\\3\\1 \end{bmatrix} \text{ together give a basis for } Nul(A)$$

4.3.14 Nul(A) is equal to the solution set to $[A \mid \mathbf{0}]$ which is equal to the solution set of $[B \mid \mathbf{0}]$ which is equal to that of

So a vector parametrization of Nul(A) is

$$x_2 \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} -4\\0\\\frac{7}{5}\\1\\0 \end{bmatrix},$$

and this gives a basis as well.

We verify from B that the pivot columns of A are the first, third, and fifth columns, and we conclude the following is a basis for Col(A):

$$\left\{ \begin{bmatrix} 1\\2\\1\\3 \end{bmatrix}, \begin{bmatrix} -5\\-5\\0\\-5 \end{bmatrix}, \begin{bmatrix} -3\\2\\5\\-2 \end{bmatrix} \right\}.$$

4.3.16 The pivot columns of

$$A = \begin{bmatrix} 1 & -2 & 6 & 5 & 0 \\ 0 & 1 & -1 & -3 & 3 \\ 0 & -1 & 2 & 3 & -1 \\ 1 & 1 & -1 & -4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 6 & 5 & 0 \\ 0 & 1 & -1 & -3 & 3 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

are the first, second, and third, thus a the following is a desired basis:

ſ	[1]		[-2]		[6]	
J	0		1		-1	l
١)	0	,	-1	,	2	ì
	1		1		-1	J
						·

4.3.22

(a) False. The linearly independent set S in question might not span H. For example let $H = \mathbb{R}^2$, and $S = \{\langle 1, 0 \rangle\}$.

(b) True. There are two cases to consider.

If S is nonempty, then it contains a nonzero vector **v**. So $V \neq \{0\}$, and we can apply part (b) of the Spanning Set Theorem.

If S is the empty set, then we know that $V = \{0\}$, and S is a basis for V.

(c) True. A basis \mathscr{B} is linearly independent by definition. Furthermore, since \mathscr{B} spans H, no subset \mathscr{C} of H containing all the elements of \mathscr{B} (other than \mathscr{B} itself) can be linearly independent and thus cannot be a basis. To summarize, if a subset \mathscr{B} of H is a basis for H then for it is linearly independent and it cannot be increased in size and still be a basis. (In fact we will later show that something stronger is true: All bases have the same size.)

(d) False. The method of section 4.2, since it row reduces the matrix A all the way to *reduced* echelon form, gives a vector parametrization of Nul(A) with vectors that are linearly independent.

(e) False. Consider the row reduction of
$$A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
 to $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

4.3.32 If the given set $\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_p)\}$ were linearly dependent, then there exist weights w_1, \ldots, w_p not all zero such that $w_1T(\mathbf{v}_1)+, \ldots, +w_pT(\mathbf{v}_p)\} = 0$. Since T is a linear transformation, we then have $T(w_1\mathbf{v}_1+, \ldots, +w_p\mathbf{v}_p)) = \mathbf{0}$, and since T is one-to-one it follows that $w_1\mathbf{v}_1+, \ldots, +w_p\mathbf{v}_p = \mathbf{0}$ so that the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is linearly dependent as well.

4.4.4 Letting $P_{\mathscr{B}}$ be the change of coordinates matrix for the basis \mathscr{B} , we have

$$\mathbf{x} = P_{\mathscr{B}}[\mathbf{x}]_{\mathscr{B}} = \begin{bmatrix} -1 & 3 & 4\\ 2 & -5 & -7\\ 0 & 2 & 3 \end{bmatrix} \begin{bmatrix} -4\\ 8\\ -7 \end{bmatrix} = \begin{bmatrix} 1\\ 1\\ -5 \end{bmatrix}$$

4.4.8 From $P_{\mathscr{B}}[\mathbf{x}]_{\mathscr{B}} = \mathbf{x}$ we know that

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & 8 & 2 \end{bmatrix} [\mathbf{x}]_{\mathscr{B}} = \begin{bmatrix} 3 \\ -5 \\ 4 \end{bmatrix}$$

So row reduce

$$\begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & -1 & -5 \\ 3 & 8 & 2 & 4 \end{bmatrix}$$

to get $[\mathbf{x}]_{\mathscr{B}} = \langle -2, 0, 5 \rangle$.

4.4.14 We wish to find $[p(t)]_{\mathscr{B}} = \langle w_1, w_2, w_3 \rangle$ such that

$$w_1(1-t^2) + w_2(t-t^2) + w_3(2-2t+t^2) = 3+t-6t^2.$$

We can proceed either by equating terms of like degree and solving for $\langle w_1, w_2, w_3 \rangle$, or we can use the fact that the map $(x, y, z) \mapsto x + yt + zt^2$ is an isomorphism between \mathbb{R}^3 and \mathbb{P}_2 for which reason it suffices to find a solution $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ to

1	0	2		3	
0	1	-2	$\mathbf{w} =$	1	
1	-1	1		-6	

Both approaches lead to the solution $\langle 7, -3, -2 \rangle$.

4.4.16

- (a) True. Since in this case $P_{\mathscr{B}} = I_n$.
- (b) False. The map $\mathbf{x} \mapsto [\mathbf{x}]_{\mathscr{B}}$ is the coordinate mapping.

(c) True. Take any plane P in \mathbb{R}^3 that passes through the origin. Let \mathbf{v} and \mathbf{w} be any two linearly independent vectors in P. Then these vectors form a basis for P and if we let $\mathscr{B} = {\mathbf{v}, \mathbf{w}}$ then the coordinate map $\mathbf{x} \mapsto [\mathbf{x}]_{\mathscr{B}}$ is an isomorphism between P and \mathbb{R}^2 .

4.4.28 Let $\mathscr{B} = \{1, t, t^2, t^3\}$ be the standard basis for \mathbb{P}_3 , so that the coordinate mapping $w + xt + yt^2 + zt^3 \mapsto \langle w, x, y, z \rangle$ is an isomorphism between \mathbb{P}_3 and \mathbb{R}^4 . Then it suffices to check whether the set

$$S = \left\{ \begin{bmatrix} 1\\0\\-2\\-3 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\3\\-2\\0 \end{bmatrix} \right\}$$

is linearly independent. Row reducing the corresponding coefficient matrix reveals a free variable, and we conclude that the set S, and therefore the given set of polynomials is linearly dependent.