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1 Introduction

A random walk on a lattice is one of the simplest and most fundamental models in the
probability theory. For a random walk, a probability density p : Zd → [0, 1] with

∑
z p(z) = 1

is given. The set of such probability densities is denoted by Γ. Given p ∈ Γ, we define a
random walk (Xn : n = 0, 1, . . . ) with the following rules: If Xn = a, then Xn+1 = a+z with
probability p(z). Put differently, for each initial position a ∈ Zd, we construct a probability
measure P a on the space of sequences (xn : n ∈ N) such that P a(x0 = a) = 1 and if
zn = xn+1 − xn, then the sequence (zn : n ∈ N) consists of independent random variables
with each zn distributed according to p(·) ∈ Γ. For simplicity, let us assume that p(·) is of
finite range, i.e., p(z) = 0 for |z| > R0 for some R0. The space of such p(·) is denoted by Γ0.
We now review some basic facts about random walks with p ∈ Γ0:

(i) Law of Large Numbers (LLN). There exists an asymptotic velocity. That is,

(1.1)
1

n
X[nt] = x+ v̄t+ o(1)

with probability one with respect to P [xn], where

(1.2) v̄ =
∑
z

p(z)z.

(ii) Central Limit Theorem (CLT). There exists a Gaussian correction to (1.1), namely

(1.3)
1

n
X[nt] = x+ v̄t+

1√
n
B(t) + o

(
1√
n

)
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with B(·) a diffusion with covariance

(1.4) E(B(t) · a)2 = t
∑
z

p(z)(z · a)2.

(iiii) Large Deviation Principle (LDP). The probability of large deviations from the
mean is exponentially small with a precisely defined exponential decay rate. More precisely,
for every bounded continuous function f : Rd → R,

(1.5) lim
n→∞

1

n
logE[xn] exp

(
nf

(
1

n
X[nt]

))
= sup

v
(f(x+ vt)− tL̄(v))

where L̄ is the Legendre transform of H̄ with H̄ given by

(1.6) H̄(P ) = log
∑
z

ez·Pp(z).

Let us make some comments about (1.5) and (1.6). First observe that if we denote the
right-hand side of (1.5) by ū(x, t), then ū solves a Hamilton–Jacobi PDE of the form

(1.7) ūt = H̄(ūx)

subject to the initial condition ū(x, 0) = f(x). The right-hand side of (1.5) is known as Hopf–
Lax–Oleinik Formula and is valid for any Hamilton–Jacobi PDE with convex Hamiltonian
function H̄.

As our second comment, let us mention that a large-deviation principle is informally
stated as

(1.8) P [xn]

(
1

n
X[nt] ≈ x+ tv

)
≈ e−ntL̄(v).

The equivalence of (1.8) to the statement (1.1) is the celebrated Varadhan’s lemma. Here
is the meaning of (1.8): Imagine that the velocity of the walk is near v for some v 6= v̄. By
LLN, this would happen with a probability that goes to 0. This happens exponentially fast
with an exponential rate given by tL̄(v). Since the approximation on the left-hand side of
(1.8) is of the form X[nt] ≈ nx + (nt)v, the right-hand side is of the form exp(−(nt)L̄(v)).
It is not hard to justify the variational form of ū(x, t). It has to do with the elementary
principle that a sum of exponentials is dominated by the term of the largest exponent, i.e.,

lim
n→∞

1

n
log(eλ1n + · · ·+ eλkn) = sup

1≤j≤k
λj.
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We can also explain the relationship between (1.5) and (1.6). First observee that if we allow
a linear function f(x) = P · x in (1.5), then the left-hand side equals

lim
n→∞

1

n
logE[xn] exp(P ·X[nt]) = t lim

m→∞

1

m
logE0 exp

(
P · [xm]

t
+ P ·Xm

)
= t lim

m→∞

1

m
logE0 exp(P · z0 + · · ·+ P · zm−1) + P · x

= t lim
m→∞

1

m
log[exp(H̄(P ))]m + P · x

= P · x+ tH̄(P ).

This equals the right-hand side of (1.5) if L̄ is the Legendre transform of H̄.
So far we have discussed a homogeneous random walk because the jump rate p(z) is

independent of the position of the walk. More generally we may look at an inhomogeneous
walk with the jump rate from a to a + z given by pa(z) where pa ∈ Γ0 for each a ∈ Zd. In
other words, a collection

ω = (pa(·) : a ∈ Zd) ∈ Ω = ΓZd

0

is given and for any such ω, we define a probability measure P a
ω on the space of sequences

x = (xn : n ∈ N) ∈ (Zd)N, such that P a
ω(x0 = a) = 1, and the law of xn+1 − xn conditioned

on xn = b is given by pb.
Naturally we would like to address the questions of LLN, CLT and LDP for an inhomoge-

neous random walk, but these questions would not have any reasonable answer unless some
regularity or pattern is assumed about the sequence ω ∈ Ω. The type of condition we assume
in this article is that ω itself is selected randomly and the inhomogeneity is stochastically
homogeneous. That is, the law of ω is stationary with respect to the lattice translation.
More precisely, we have a probability measure (Ω,F ,P) with P invariant under the transla-
tion (τa : a ∈ Zd) where τaω = (pa+b : b ∈ Zd) for ω = (pb : b ∈ Zd). We also assume that
P is ergodic in the sense that if a measurable set A ∈ F is invariant under all translations,
i.e., τaA = A for all a ∈ Zd, then P(A) = 0 or 1. Of course we put the product topology on
Ω = ΓZd

0 with each Γ0 equipped with its standard topology. Also F is the Borel σ-algebra
of Ω. We regard each ω ∈ Ω as a realization of an environment, and Pω is the law of the
corresponding random walk. We will be interested in two types of questions for such a walk.
As the first type, we will be interested in the walk Pω for almost all realizations of ω with
respect to P. The probability measure Pω is called a quenched law and the corresponding
walk is referred to as a quenched walk. As the second type, we will be interested in the
averaged law ∫

Ω

Pω(dx)P(dω) =: P̂(dx)

which is known as the annealed law. Note that the quenched law is still the law of a Markov
chain and the main challenge for such a law comes from its inhomogeneity. On the other
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hand the annealed law is the law of a highly non-Markovian walk as we will see in the
proceeding sections.

It is convenient to write p0(ω, z) for the probability of jumping from the origin to z for
a given ω = (pa(·) : a ∈ Zd) ∈ Ω. With such a notation, the probability of jumping from
a to a + z is now given by p0(τaω, z). As a result, the corresponding walk Xn = Xω

n jumps
to Xn + z with probability p0(τXnω, z). Note that Xn is random for a given realization of
ω. Sometimes we write ω′ for the randomness of the walk so that Xn = Xω

n (ω′). These two
layers of randomness makes the analysis of such walks rather complex. Following an idea of
Kozlov, it is often useful to combine the two randomnesses into one by defining a Markov
chain on Ω with the following recipe: the state of chain at time n is ωn = τXnω where Xn

is the walk associated with ω, which starts from the origin. More precisely if ωn = α, then
α changes to τzα with probability p0(α, z). With this idea, we have been able to produce a
Markov chain ωn which has all the information about the original chain Xn. But now the
state space has changed from Zd to Ω which is far more complicated. The interpretation of
ωn is that each time the walk makes a new jump, we shift the environment so that the walker
is always at the origin. In other words, we are looking at the environment from the current
position of the walker. That is, we are taking the point of view of the walker to study the
environment.

Let us see how by taking the point of view of the walker we can calculate the velocity of
the walker. First recall that if Zn = Xn −Xn−1, then

E0
ωXn = E0

ω

n∑
j=1

Zn =
n∑
j=1

∑
z

zp0(τXj
ω, z)

=
n∑
j=1

∑
z

zp0(ωj, z).

Now if Q is an ergodic invariant measure for the chain ωn, then for Q-almost all ω,

(1.9) v̄ =
1

n
E0
ωXn →

∫ ∑
z

zp0(ω, z)Q(dω).

This suggests studying the invariant measures for the chain ωn. Once these invariant mea-
sures are known, then the velocity v̄ for the walker can be evaluated by (1.9). As we will
see later, studying the invariant measures for ωn is a formidable task. For example, it is not
known in general whether or not there is an invariant measure which is absolutely continuous
with respect to P. If such an invariant measure exists, then by a result of Kozlov, we also
have P� Q and Q is the unique invariant measure. This question is rather well-understood
when d = 1 and only nearest neighbor jumps are allowed. We will discuss this in Section 2.

We end this introduction with an overview of some of the known results and an outline
of the rest of the paper.
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The quenched LDP in the case of d = 1 with nearest-neighbor jumps and independent
environment was established by Greven and den Hollander [GH]. Section 2 and 3 are devoted
to LLN and LDP for this case. The extension to the general environment was achieved by
Comets, Gantert and Zeitouni [CGZ]. The first quenched LDP in d ≥ 2 for independent
environment was carried out by Zerner [Z] provided that the nestling condition is satisfied,
i.e., the convex hull of the support of the law

∑
z zp0(ω, z) contains the origin. In Section 3

we discuss a formula of Rosenbluth [R] for the quenched LDP rate function. Varadhan
[V] proved quenched LDP for general stationary ergodic environment in all dimension. He
also established the quenched LDP for an independent environment under some ellipticity
conditions. Section 5 is devoted to Varadhan’s treatment of anealed LDP.

2 RWRE in dimension 1 with nearest neighbor jumps,

LLN

In this section we study RWRE when the dimension is one and only the jumps to the adjacent
sites are allowed. As it turns out, many of the questions we discussed in Section 1 have been
settled successfully in this case. However, many of the arguments used to treat this case are
not applicable for general RWRE.

In spite of significant simplification, it is instructive to understand the case of nearest
neighbor RWRE in dimension one first and use it as a model to compare with when we
discuss the general case in the proceeding sections.

Because of nearest neighbor jumps, we only need to know p0(ω, 1) because p0(ω,−1) =
1− p0(ω, 1) and p0(ω, z) = 0 for z 6= 1,−1. Let us simply write ω) for p0(ω, 1) and observe
that the associated walk Xn jumps to Xn + 1 with probability q(τXnω) and to Xn − 1 with
probability 1 − q(τXnω). The corresponding chain evolves by a simple rule: ωn+1 = T (ωn)
with probability q(ωn) and ωn+1 = T−1(ωn) with probability 1− q(ωn), where T = τ1. The
following theorem is due to Alili [A].

Theorem 2.1 If
∫

log 1−q
q
dP 6= 0, then the chain ωn has an invariant measure Q which is

absolutely continuous with respect to P.

We will give a proof of Theorem 2.1 shortly and in the process we find an explicit formula
for the invariant measure Q. However Q would not be a probability measure unless we make
a more stringent assumption. Also using Q we find an explicit expression for the average
velocity v̄. In the case of an independent environment,

(2.1) v̄ =


1−γ̄
1+γ̄

if γ̄ =
∫

1−q
q
dP < 1,

η̄−1
η̄+1

if η̄ =
∫

q
1−qdP < 1,

0 otherwise.
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The formula (2.1) is due to Solomon [S] who proved LLN for RWRE when in addition the
environment consists of independent jump probabilities.

Proof of Theorem 2.1. If Q is invariant, then

(2.2)

∫
[q(ω)J(T (ω)) + (1− q(ω))J(T−1(ω))]Q(dω) =

∫
JdQ

for every measurable bounded function J . If dQ = ρdP, then (2.2) is equivalent to

(2.3) q(T−1(ω))ρ(T−1(ω)) + (1− q(T (ω)))ρ(T (ω)) = ρ(ω).

So the question is whether (2.3) has a solution for a probability density ρ. In some sense,
(2.3) is a “second order equation” because it involves both T and T−1. In fact if we set
η = q

1−q and R = (1− q)ρ, then (2.3) says

(2.4) R ◦ T 2 −
(

1

1− q
R

)
◦ T + ηR = 0.

We now define the “first order” operator AR = R ◦ T − ηR to write (2.4) as

(2.5) (AR) ◦ T −AR = 0.

Since P is T -ergodic, the only solution of (2.5) is AR ≡ c for a constant c. We now have to
solve the first order equation

(2.6) R ◦ T − ηR ≡ c.

It is not hard to show that if c = 0, then the only solution to (2.6) is R = 0. For a nontrivial
solution, we need to consider the case c 6= 0. For such c, we only need to solve (2.6) for one
choice of c; for any other choice, we multipy R by a suitable constant. We may consider the
choice c = −1, so that the equation (2.6) reads as R = γ(R ◦ T + 1) with γ = 1−q

q
. To find

a solution, start from some R0 and define Rn+1 = γ(Rn ◦ T + 1), which means that

Rn =
n−1∑
j=0

j∏
r=0

γ ◦ T r +

(
n−1∏
r=0

γ ◦ T r
)
R0 ◦ T n.

From this we guess that

R =
∞∑
j=0

j∏
r=0

γ ◦ T r

6



is a solution. As a result

(2.7) ρ = ρ+ = (1 + γ)
∞∑
j=1

j∏
r=1

γ ◦ T r.

But now we have to make sure that the right-hand side of (2.7) is convergent. For this we
need the condition

∫
log 1−q

q
dP =: ζ < 0. This is because

1

j
log

j∏
1

γ ◦ T r =
1

j

j∑
1

log γ ◦ T r → ζ

P-almost surely by Birkhoff’s ergodic theorem. This implies an exponential decay for the
j-th term of the right-hand side of (2.7).

If instead ζ > 0, in the above argument we replace the role of T with T−1. This time

ρ = ρ− = (1 + η)
∞∑
j=1

j∏
r=1

η ◦ T−r

is a solution. �

Note that the invariant measure we constructed in Theorem 2.1 is not necessarily a finite
measure. However if

∫
ρ−dP or

∫
ρ+dP is finite, then we can turn it into a probability density

by setting ρ̂± = 1
Z±
ρ±, with Z± =

∫
ρ±dP. In the case of independent environment, Z± can

be calculated explicitly. For example, if γ̄ =
∫
γdP < 1, then

Z+ = (1 + γ̄)
∞∑
1

γ̄j = γ̄
1 + γ̄

1− γ̄
,

and

v̄ =
1

Z+

∫
(2q − 1)ρ+dP =

1

Z+

∫
1− γ
1 + γ

ρ+dP

=
1− γ̄
Z+

∞∑
1

γ̄j =
1− γ̄
1 + γ̄

> 0,

as we claimed earlier in (2.1). Similarly, if η̄ =
∫
ηdP < 1, then v̄ = η̄−1

η̄+1
< 0. In the

remaining cases,
1

η̄
=

(∫
γ−1dP

)−1

≤ 1 ≤
∫
γdP,

the velocity is 0 as was shown by Solomon.
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3 RWRE in dimension 1 with nearest neighbor jumps,

LDP

Based on our discussion in Section 1, the LDP for RWRE comes in two flavors; quenched
and annealed. The former is stated a

(3.1) lim
n→∞

1

n
u([xn], [tn];ω) = sup

v
(f(x+ vt)− tL̄(v)),

for almost all P− ω realizations, where

(3.2) u(a, n;ω) = logEa
ω exp

(
nf

(
1

n
Xn

))
.

The latter means

(3.3) lim
n→∞

1

n
log E exp(u([xn], [tn];ω)) = sup

v
(f(x+ vt)− tL̂(v)).

In some sense the quenched LDP is really a LDP for Pω but a LLN for the ω-variable. On
the other hand, the annealed LDP is a LDP for the annealed law

∫
PωP(dw) = P̂, because

the left-hand side of (3.3) equals

lim
n→∞

1

n
log Ê exp

(
nf

(
1

n
Xn

))
.

There is yet another interpretation for both (3.1) and (3.2). If we denote the right-hand side
of (3.1) by ū(x, t), then again

(3.4)

{
ūt = H̄(ūx),

ū(x, 0) = f(x)

where H̄ is the Legendre transform of L̄. In some sense, u(a, n;ω) solve a discrete Hamilton–
Jacobi–Bellman equation and (3.2) can be recast as a homogenization problem for such
equation. To explain this further, define an operator H(·;ω) : L(Zd)→ L(Zd)

(3.5)

H(f ;ω)(a) = logEa
ω exp(f(X1)− f(X0))

= log
∑
z

exp(f(a+ z)− f(a))p0(τaω, z)

where L(Zd) consists of functions f : Zd → R. Then u solves

u(a, n+ 1;ω)− u(a, n;ω) = H(u(·, n;ω);ω).
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Now (3.1) says that a homogenization occurs, i.e., 1
n
u([xn], [tn];ω)→ ū(x, t) as n→∞, with

ū independent of ω, solving the homogeneous Hamilton–Jacobi equation (3.4). A LDP for
this homogenization requires a calculation of the sort

lim
n→∞

1

n
log E exp(λu([xn], [tn];ω))

for every λ ∈ R. This for λ = 1 is the annealed LDP (3.2).
In the case of d = 1 with nearest neighbor jumps both the quenched and the annealed

LDP were established in Comets et al. [CGZ]. For the rest of this section, we offer an
alternative approach to understanding the quenched LDP which, in spirit is very close to
the recent work of Yilmaz [Y]. Our presentation of quenched LDP would hopefully help the
reader to appreciate Rosenbluth’s formula for the quenched LD rate function that will be
discussed in Section 4.

Recall that in the homogeneous random walk, we observed that if f(x) = x ·P , then the
corresponding

u(a, n) = logEa exp(P ·Xn) = nH̄(P ) + P · a.
This ultimately has to do with the fact that ū(x, t) = x · P + tH̄(P ) solves the HJ equation
(1.7).

In the case of the inhomogeneous random walk, we may wonder whether or not a suitable
function would play the role of x · P . In this case, we need to add a corrector to the linear
function x · P . More precisely, we search for a function F (x, ω;P ) such that its discrete
derivative is of the form

(3.6) F (x+ z, ω;P )− F (x, ω;P ) = z · P + g(τxω, z;P ),

asymptotically

(3.7)
1

n
F ([xn], ω;P ) = x · P + o(1),

as n→∞, and

(3.8) H(F (·, ω;P );ω) ≡ H̄(P ).

In other words, once a function F with (3.7) and (3.8) is found such that H(F (·, ω;P );ω)
is a constant, then the constant is the number H̄(P ) we are looking for. Indeed for such a
function F we have that

u(a, n, ω;P ) := logEa exp(F (Xn, ω;P )) = F (a, ω;P ) + nH̄(P ),

and

lim
n→∞

1

n
u([xn], [tn], ω;P ) = x · P + tH̄(P ).
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Such functions F (·, ω;P ) can be constructed explicitly in the case of d = 1 with nearest
neighbor jumps. To see this, observe that we want to find g(ω, 1) and g(ω,−1) such that

(3.9) q(ω)eg(ω,1)+P + (1− q(ω))eg(ω,−1)−P = eH̄(P ),

by (3.8). But we need to solve (3.6) for F once g is determined. This forces a compatibility
condition on g; we must have

g(ω, 1;P ) + g(τ1ω,−1;P ) = 0.

If we write g(ω) for g(ω, 1;P ), then g(τ−1ω,−1;P ) = −g(τ−1ω) = −g(T−1(ω)). So (3.9)
becomes

(3.10) q(ω)eg(ω)+P + (1− q(ω))e−g(T
−1(ω))−P = eH̄(P ).

In fact the function F (x, ω;P ) is simply given by

F (x, ω;P ) = x · P +
x−1∑
j=0

g(τjω),

for x a positive integer. Now (3.7) is satisfied if Eg = 0. This suggests setting h = g + P so
that (3.10) now reads

(3.11) q(ω)eh(ω) + (1− q(ω))e−h(T−1(ω)) = λ,

with λ = eH̄(P ) with P = Eh. So, we want to find functions h(ω) such that λ = qeh + (1−
q)e−h◦T

−1
is a constant and once this is achieved, we set H̄(P ) = log λ for P = Eh, so Eh is

H̄−1(log λ). Indeed if we set σl = inf{k : Xk = l}, and

h(ω) = − logE0
ωe

rσ111(σ1 <∞),

then (3.11) is satisfied for H̄(P ) = −r, and the corresponding P is

−P−(r) = P = −E logE0
ωe

rσ111(σ1 <∞).

Note however that h(ω) =∞ if r is too large. In fact there exists a critical r−c > 0 such that
h(ω) < ∞ if and only if r ≤ r−c . We set P−c = P (rc). In summary, for P ∈ [−P−c , 0], we
have that H̄(P ) = −r−(P ) where r−(P ) is the inverse of −P−(r).

If
h′(ω) = logE0

ωe
rσ−111(σ−1 <∞),

then
q(ω)eh

′(T (ω)) + (1− q(ω))e−h
′(ω) = e−r

and h(ω) = h′ ◦ T satisfies

q(ω)eh(ω) + (1− q(ω))e−h(T−1(ω)) = eH̄(P )

where H̄(P ) = r, and

P+(r) = P = E logE0
ωe

rσ−111(σ−1 <∞).
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4 Quenched LDP

In the case of d = 1 with nearest neighbor jumps, we were able to solve (3.8) for a function
F satisfying (3.6) and (3.7). It seems unlikely that such a solution can be found in general.
Instead, we replace (3.8) with

(4.1) H(F (·, ω);ω) ≤ constant

and try to optimize the outcome. First we try to formulate (3.6) more carefully. We define
a set of functions g for which (3.6) has a solution for F . That is, the set of gradient-type
functions. Since we will be dealing with the limit points of gradient-type functions, perhaps
we should look at those functions with 0 curl. More precisely let F0 denote the set of
functions g : Ω→ R such that Eg = 0, and for any loop x0 = x, x1, x2, . . . , xk−1, xk = x, we
have

g(τx0ω, x1 − x0) + g(τx1ω, x2 − x1) + · · ·+ g(τxn−1ω, xn − xn−1) = 0.

Note that the constant in (4.1) can be chosen to be esssupωH(F (·, ω);ω). Here is the
Rosenbluth’s formula for H̄:

(4.2) H̄(P ) = inf
g∈F0

esssup
ω

log
∑
z

exp(z · P + g(ω, z))p0(ω, z),

where the essential supremum is taken with respect to P. The formula (4.2) was derived by
Rosenbluth [R] under the assumption that for some α > 0∫

| log p0(ω, z)|d+αdP <∞.

The way to think about F is that F is the space of closed 1-forms. In fact the space of
1-form is defined by

F1(Ω) = {f = (f(ω, z) : z ∈ R0) : f(·, z) : Ω→ R is bounded measurable for each z ∈ R0}

where R0 ⊆ Zd is chosen so that if z /∈ R0, then p0(ω, z) = 0. Now for 1-form f , we define

H(f) = log
∑
z

ef(ω,z)p0(ω, z).

If L(Ω) is the space of bounded measurable functions, then H : F1 → L(Ω). Recall that F0

is the set of closed 1-form of 0 average. Note that the space F1 contains constant 1-forms

eP = (P · z : z ∈ R0).
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Now we say two 1-forms f and f ′ are equivalent if f − f ′ ∈ F0, i.e., f − f ′ is a We can now
write

H̄(P ) = inf
f∼eP

esssup
ω
H(f),

where the essential supremum is taken with respect to P. More generally, for every 1-form
f , define

H̄(f) = inf
f ′∼f

esssup
ω
H(f ′).

We have the following generalization of (3.1): for every 1-form f ,

(4.3) lim
n→∞

1

n
logE0

ω exp

(
n−1∑
j=0

f(τXj
ω,Xj+1 −Xj)

)
= H̄(f).

This formula was established by Yilmaz [Y]. Note that if f = eP , then H̄(eP ) = H̄(P ) =
supv(P · v− L̄(v)), which is what we get by (3.1) because

∑n−1
j=0 f(τXj

ω,Xj+1−Xj) = P ·Xn

in this case.

5 Annealed LDP

We now turn to the annealed large deviations for a RWRE. Recall that the quenched LDP
is really a LDP for Pω and a LLN for the ω variable. That is why we have a quenched LDP
under a rather mild condition on the environment measure P. For anneald LDP however,
we need to select a tractable law for the environment beacuse we are seeking for a LDP for
the annealed law P̂. Pick a probability measure β on the set Γ0 and set P to be the product
of β to obtain a law on Ω = ΓZd

0 . The annealed measure P̂ =
∫
P ω P(dω) has a simple

description. Let us write Z(n) = X(n + 1)−X(n) for the jump the walk performs at time
n. We certainly have

Pω(X(1) = x1, . . . , X(n) = xn) =
∏

z,x∈Zd

px(z)Nx,z(n),

where ω = (px : a ∈ Zd) and

Nx,z(n) = #{i ∈ {0, 1, . . . , n− 1} : xi = x, xi+1 − xi = z}.

Hence

P̂(X(1) = x1, . . . , X(n) = xn) =
∏
x∈Zd

∫ ∏
z

p(z)Nx,z(n)β(dp).

Evidently P̂ is the law of a non-Markovian walk in Zd. Varadhan in [V] establishes the
annealed large deviations principle under a suitable ellipticity condition on β. The method
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relies on the fact that the environment seen from the walker is a Markov process for which
Donsker–Varadhan Theory may apply if we have enough control on the transition probabil-
ities. If we set

Wn = (0−X(n), X(1)−X(n), . . . , X(n− 1)−X(n), X(n)−X(n)) = (s−n, . . . , s−1, s0 = 0)

for the chain seen from the location X(n), then we obtain a walk of length n that ends at 0.
The space of such walks is denoted by Wn. Under the law P̂, the sequence W1,W2, . . . is a
Markov chain with the following rule:

(5.1) P̂(Wn+1 = TzWn | Wn) =
P̂(TzWn)

P̂(Wn)
=

∫
Γ0
p(z)

∏
a p(a)N0,aβ(dp)∫

Γ0

∏
a p(a)N0,aβ(dp)

,

where N0,a = N0,a(Wn) is the number of jumps of size a from 0 for the walk Wn. Here TzWn

denotes a walk of size n + 1, which is formed by translating the walk Wn by −z so that it
ends at −z instead of 0, and then making the new jump of size z so that it ends at 0. We
wish to establish a large deviation principle for the Markov chain with transition probability
q(W, z) given by (5.1) where W = Wn ∈

⋃∞
m=0 Wm and z is the jump size. We assume

that with probability one, the support of p0(·) is contained in the set D = {z : |z| ≤ C0}.
Naturally q extends to those infinite walks W ∈W∞ with N0,a <∞ for every a ∈ D. If we
let Wtr

∞ denote the set of transient walks, then the expression q(W, z) = q(W,TzW ) given
by (5.1) defines the transition probability for a Markov chain in Wtr

∞. Donsker–Varadhan
Theory suggests that the empirical measure

1

n

n−1∑
m=0

δWn

satisfies a large deviation principle with a rate function

I(µ) =

∫
Wtr
∞

qµ(W, z) log
qµ(W, z)

q(W, z)
µ(dW )

where µ is any T -invariant measure on Wtr
∞ and qµ(W, z) is the conditional probability of

a jump of size z, given the past history. We then use the contraction principle to come up
with a candidate for the large deviation rate function

Ĥ(v) = inf

{
I(µ) :

∫
z0µ(dW ) = v

}
where z0 denotes the jump of a walk W from the origin. Even though we have been able
to state our problem as a LDP for a Markov chain, many difficulties arise because the state
space is rather large and the transition probabilities are not continuous with respect to any
natural topology we may choose. We refer the reader to [V] as how these issues are handeled.
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