The Model Scaling Limit Gelation Smoluchowski Equation Idea of Proof

Coagulating Brownian Particles, Gelation and Smoluchowski Equation

Fraydoun Rezakhanlou

Department of Mathematics UC Berkeley

November 8, 2012

Outline

- The Model
- Scaling Limit
- Gelation
- Smoluchowski Equation
- Idea of Proof

Outline

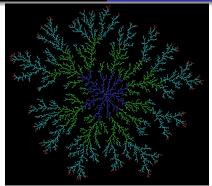
- 1 The Model
- Scaling Limit
- Gelation
- 4 Smoluchowski Equation
- Idea of Proof

- (Configuration) $x_i \in \mathbb{R}^d$, $m_i \in \mathbb{N}$, $r_i \in (0, \infty)$, $i \in I$ are positions (centers), masses and radii of particles (bubbles).
- (Dynamics)
 - x_i travels as a Brownian motion of diffusion constant $d(m_i)$

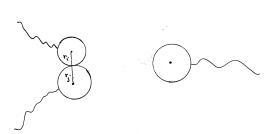
- (Configuration) $x_i \in \mathbb{R}^d$, $m_i \in \mathbb{N}$, $r_i \in (0, \infty)$, $i \in I$ are positions (centers), masses and radii of particles (bubbles).
- (Dynamics)
 - x_i travels as a Brownian motion of diffusion constant $d(m_i)$
 - x_i and x_j coagulate when $x_i x_j = \varepsilon(r_i + r_j)$ (or a smoother variant with a potential). The new particle of mass $m = m_i + m_j$ is at x_i with probability m_i/m .

- (Configuration) $x_i \in \mathbb{R}^d$, $m_i \in \mathbb{N}$, $r_i \in (0, \infty)$, $i \in I$ are positions (centers), masses and radii of particles (bubbles).
- (Dynamics)
 - x_i travels as a Brownian motion of diffusion constant $d(m_i)$
 - x_i and x_j coagulate when $x_i x_j = \varepsilon(r_i + r_j)$ (or a smoother variant with a potential). The new particle of mass $m = m_i + m_j$ is at x_i with probability m_i/m .
 - x_i fragments into two particles of masses m and $m_i m$ with rate $\gamma(m, m_i m)$. The new particles are at x_i and y.

The Model Scaling Limit Gelation Smoluchowski Equation Idea of Proof



The Model Scaling Limit Gelation Smoluchowski Equation Idea of Proof



(Details)

• Relationship between initial total number of particles per unit volume K_{ε} and ε : $K_{\varepsilon} = |\log \varepsilon|$ when d = 2, and $K_{\varepsilon} = \varepsilon^{2-d}$ when d > 3.

(Details)

- Relationship between initial total number of particles per unit volume K_{ε} and ε : $K_{\varepsilon} = |\log \varepsilon|$ when d = 2, and $K_{\varepsilon} = \varepsilon^{2-d}$ when $d \geq 3$.
- Relationship between mass and radius: $r_i = m_i^{\chi}$.

(Details)

- Relationship between initial total number of particles per unit volume K_{ε} and ε : $K_{\varepsilon} = |\log \varepsilon|$ when d = 2, and $K_{\varepsilon} = \varepsilon^{2-d}$ when $d \geq 3$.
- Relationship between mass and radius: $r_i = m_i^{\chi}$.
- The central object to study is the cluster density of a given size; Empirical measures

$$g_n^{\varepsilon}(dx,t) = K_{\varepsilon}^{-1} \sum_i \delta_{x_i(t)}(dx) \mathbb{1}(m_i(t) = n),$$

Outline

- 1 The Model
- Scaling Limit
- Gelation
- Smoluchowski Equation
- Idea of Proof

Theorem (FR and Hammond when $\chi = 0$ and FR when $\chi < (d-2)^{-1}$, 2007)

 $g_n^{\varepsilon}(dx, t)$ converges to $f_n(x, t)dx$ where f_n is a solution to the Smoluchowski's equation.

Smoluchowski's equation (solution is unique as we will see later)

$$\frac{\partial f_n}{\partial t}(x,t) = d(n)\Delta_x f_n(x,t) + Q_n^{+,c}(\mathbf{f}) - Q_n^{-,c}(\mathbf{f}) + Q_n^{+,f}(\mathbf{f}) - Q_n^{-,f}(\mathbf{f}),$$

•
$$Q_n^{+,c}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^n \alpha(m, n-m) f_m f_{n-m}$$

•
$$Q_n^{+,c}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^n \alpha(m, n-m) f_m f_{n-m}$$

•
$$Q_n^{-,c}(\mathbf{f}) = \sum_{m=1}^{\infty} \alpha(m,n) f_m f_n$$

•
$$Q_n^{+,c}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^n \alpha(m, n-m) f_m f_{n-m}$$

•
$$Q_n^{-,c}(\mathbf{f}) = \sum_{m=1}^{\infty} \alpha(m,n) f_m f_n$$

•
$$Q_n^{+,f}(\mathbf{f}) = \sum_{m=1}^{\infty} \beta(m,n) f_{n+m}$$

•
$$Q_n^{+,c}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^n \alpha(m, n-m) f_m f_{n-m}$$

•
$$Q_n^{-,c}(\mathbf{f}) = \sum_{m=1}^{\infty} \alpha(m,n) f_m f_n$$

•
$$Q_n^{+,f}(\mathbf{f}) = \sum_{m=1}^{\infty} \beta(m,n) f_{n+m}$$

•
$$Q_n^{-,f}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^{n-1} \beta(m, n-m) f_n$$

•
$$Q_n^{+,c}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^n \alpha(m, n-m) f_m f_{n-m}$$

•
$$Q_n^{-,c}(\mathbf{f}) = \sum_{m=1}^{\infty} \alpha(m,n) f_m f_n$$

•
$$Q_n^{+,f}(\mathbf{f}) = \sum_{m=1}^{\infty} \beta(m,n) f_{n+m}$$

•
$$Q_n^{-,f}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^{n-1} \beta(m, n-m) f_n$$

•
$$\alpha(m, n) = 2\pi(d(m) + d(n))$$
 when $d = 2$.

•
$$\alpha(m,n) = Cap(unitball)(d(m) + d(n))(r(m) + r(n))^{\frac{1}{d-2}}$$

•
$$\alpha(m,n) = Cap(unitball)(d(m) + d(n))(r(m) + r(n))^{\frac{1}{d-2}}$$

•
$$\alpha(m,n) = c_0(d(m) + d(n))(m^{\chi} + n^{\chi})^{\frac{1}{d-2}}$$

•
$$\alpha(m,n) = Cap(unitball)(d(m) + d(n))(r(m) + r(n))^{\frac{1}{d-2}}$$

•
$$\alpha(m,n) = c_0(d(m) + d(n))(m^{\chi} + n^{\chi})^{\frac{1}{d-2}}$$

• Observe
$$\alpha(m, n) \le c_1(d(m) + d(n))(m^q + n^q)$$
 with $q \le 1$ iff $\chi \le (d-2)^{-1}$.

- $\alpha(m,n) = Cap(unitball)(d(m) + d(n))(r(m) + r(n))^{\frac{1}{d-2}}$
- $\alpha(m,n) = c_0(d(m) + d(n))(m^{\chi} + n^{\chi})^{\frac{1}{d-2}}$
- Observe $\alpha(m, n) \le c_1(d(m) + d(n))(m^q + n^q)$ with $q \le 1$ iff $\chi \le (d-2)^{-1}$.
- (Conjecture) Instantaneous Gelation occurs when $\chi > (d-2)^{-1}$. Smoluchowski is no longer relevant.

Outline

- 1 The Model
- Scaling Limit
- Gelation
- 4 Smoluchowski Equation
- Idea of Proof

The Model Scaling Limit **Gelation** Smoluchowski Equation Idea of Proof

We verify the conjecture for a simpler model. Ignore the location of particles.

Marcus-Lushnikov (ML) Process

• (Configuration) $L_n \in \mathbb{Z}^+$ denotes the number of particles of size n. We assume that the total mass $\sum_n nL_n = N$ is fixed.

We verify the conjecture for a simpler model. Ignore the location of particles.

Marcus-Lushnikov (ML) Process

- (Configuration) $L_n \in \mathbb{Z}^+$ denotes the number of particles of size n. We assume that the total mass $\sum_n nL_n = N$ is fixed.
- (Dynamics)
 - When $n \neq m$, $(L_n, L_m, L_{m+n}) \to (L_n 1, L_m 1, L_{m+n} + 1)$ with rate $N^{-1}\alpha(m, n)L_mL_n$
 - $(L_n, L_{2n}) \to (L_n 2, L_{2n} + 1)$ with rate $N^{-1}\alpha(n, n)L_n(L_n 1)$

Theorem (FR 2012)

• Assume $\alpha(m,n) \geq m^q + n^q$ with q > 1. Then for every $\delta \in (0,1)$, δ fraction of particles are of size $\frac{\log N}{\log \log N}$ at a random time τ that in average is of size $const. |\log N|^{-\theta}$.

Theorem (FR 2012)

- Assume $\alpha(m,n) \geq m^q + n^q$ with q > 1. Then for every $\delta \in (0,1)$, δ fraction of particles are of size $\frac{\log N}{\log \log N}$ at a random time τ that in average is of size $const. |\log N|^{-\theta}$.

 Assume $\alpha(m,n) \geq m^q n + n^q m$ with q > 1. Then complete gelation occurs at a random time τ' that in average is of size $const. (\frac{\log N}{\log \log N})^{1-q}$.
 - Remark: Jeon (2000) proved complete gelation under $\alpha(m, n) \ge m^q n + n^q m$ with no bound on τ' .

The Model
Scaling Limit
Gelation
Smoluchowski Equation
Idea of Proof

Outline

- 1 The Model
- Scaling Limit
- Gelation
- Smoluchowski Equation
- Idea of Proof

For simplicity, assume there is no fragmentation. Recall

$$\frac{\partial f_n}{\partial t}(x,t) = d(n)\Delta_x f_n(x,t) + Q_n^{+,c}(\mathbf{f}) - Q_n^{-,c}(\mathbf{f})$$

with

•
$$Q_n^{+,c}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^n \alpha(m, n-m) f_m f_{n-m}$$

For simplicity, assume there is no fragmentation. Recall

$$\frac{\partial f_n}{\partial t}(x,t) = d(n)\Delta_x f_n(x,t) + Q_n^{+,c}(\mathbf{f}) - Q_n^{-,c}(\mathbf{f})$$

with

•
$$Q_n^{+,c}(\mathbf{f}) = \frac{1}{2} \sum_{m=1}^n \alpha(m, n-m) f_m f_{n-m}$$

•
$$Q_n^{-,c}(\mathbf{f}) = \sum_{m=1}^{\infty} \alpha(m,n) f_m f_n$$

• Existence of Solution: Laurençot and S. Mischler (2002) and Wrzosek (2004) provided $\lim_{n\to\infty} \frac{\alpha(m,n)}{n} = 0$.

- Existence of Solution: Laurençot and S. Mischler (2002) and Wrzosek (2004) provided $\lim_{n\to\infty} \frac{\alpha(m,n)}{n} = 0$.
- *Uniqueness:* If f and g are two solutions, then

$$\frac{d}{dt} \int \sum_{n=1}^{\infty} n|f_n(x,t) - g_n(x,t)| dx$$

$$= c_0 \int \left[\sum_{n=1}^{\infty} n|f_n - g_n| \right] \left[\sum_{m=1}^{\infty} m^2(f_m + g_m) \right] dx.$$

(After Ball and Carr (1997) similar inequality for the homogeneous case)

- Existence of Solution: Laurençot and S. Mischler (2002) and Wrzosek (2004) provided $\lim_{n\to\infty} \frac{\alpha(m,n)}{n} = 0$.
- *Uniqueness:* If f and g are two solutions, then

$$\frac{d}{dt} \int \sum_{n=1}^{\infty} n|f_n(x,t) - g_n(x,t)| dx$$

$$= c_0 \int \left[\sum_{n=1}^{\infty} n|f_n - g_n| \right] \left[\sum_{m=1}^{\infty} m^2(f_m + g_m) \right] dx.$$

(After Ball and Carr (1997) similar inequality for the homogeneous case)

• Moral: We have uniqueness for solutions satisfying

$$\|\sum_{m=1}^{\infty}m^2f_m\|_{L^{\infty}}<\infty$$

Conservation of Mass and Gelation:

• $\frac{d}{dt} \int \sum_{m} m f_{m}(x, t) dx = 0$ if there is no Gelation

Conservation of Mass and Gelation:

- $\frac{d}{dt} \int \sum_{m} m f_{m}(x, t) dx = 0$ if there is no Gelation
- $\frac{d}{dt} \int \sum_{m} m f_{m}(x, t) dx < 0$ if there is Gelation

Conservation of Mass and Gelation:

- $\frac{d}{dt} \int \sum_{m} m f_{m}(x, t) dx = 0$ if there is no Gelation
- $\frac{d}{dt} \int \sum_{m} m f_{m}(x, t) dx < 0$ if there is Gelation
- Gelation:

$$\frac{d}{dt}\int\left[\sum_{m}mf_{m}+\infty f_{\infty}\right](x,t)dx=0,$$

and
$$\int \infty f_{\infty}(x,t)dx > 0$$
 for $t > T_{gel}$.

Conservation of Mass and Gelation:

- $\frac{d}{dt} \int \sum_{m} m f_{m}(x, t) dx = 0$ if there is no Gelation
- $\frac{d}{dt} \int \sum_{m} m f_{m}(x, t) dx < 0$ if there is Gelation
- Gelation:

$$\frac{d}{dt}\int\left[\sum_{m}mf_{m}+\infty f_{\infty}\right](x,t)dx=0,$$

and
$$\int \infty f_{\infty}(x,t)dx > 0$$
 for $t > T_{gel}$.

• (FR and Hammond, 2007) No Gelation if

$$\int_0^T \int \sum_{n,m} nm(n+m)(d(n)+d(m))f_n(x,t)f_m(x,t)dxdt < \infty$$

How do we get various bounds on the solutions?

Theorem (FR and Hammond 2007)

L¹ **bounds:** Under appropriate assumptions on the initial data,

$$\sup_{t} \| \sum_{n} n^{a} f_{n}(\cdot, t) \|_{L^{1}} < \infty$$

$$\int_{0}^{\infty} \int \sum_{n,m} nm(n^{a-1} + m^{a-1}) (d(n) + d(m)) f_{n}(x, t) f_{m} dx dt < \infty,$$

provided

$$\lim_{n+m\to\infty}\frac{\alpha(n,m)}{(n+m)(d(n)+d(m))}=0.$$

Theorem (FR and Hammond 2007)

 L^{∞} bounds: Under appropriate assumptions on the initial data,

$$\sup_t \|\sum_n nd(n)^{d/2} f_n(\cdot,t)\|_{L^\infty} < \infty$$

provided that $d(\cdot)$ is nonincreasing.

Using the previous results we obtain

Theorem (FR and Hammond)

 L^{∞} bounds: Under appropriate assumptions on the initial data,

$$\sup_t \|\sum_n n^a f_n(\cdot,t)\|_{L^\infty} < \infty$$

for all a > 0, provided that $d(\cdot)$ is nonincreasing and $d(n) \ge n^{-b}$ for large n.

Theorem (FR 2012)

 L^{∞} bounds: Under appropriate assumptions on the initial data,

$$\sup_{t}\|\sum_{n}n^{a}f_{n}(\cdot,t)\|_{L^{\infty}}<\infty$$

for all a > 0, provided that the total positive variation of $\log d(\cdot)$ is finite and $d(n) \ge n^{-b}$ for large n. In particular, if $d(\cdot)$ is uniformly positive and bounded.

Outline

- 1 The Model
- Scaling Limit
- Gelation
- 4 Smoluchowski Equation
- Idea of Proof

Comment on L^{∞} bound when $d(\cdot)$ is nonincreasing:

• If $d(n) = \bar{d}$ is constant in n, then $M_t = \bar{d}\Delta M$ for $M = \sum_n n f_n$.

Comment on L^{∞} bound when $d(\cdot)$ is nonincreasing:

• If $d(n) = \bar{d}$ is constant in n, then $M_t = \bar{d}\Delta M$ for $M = \sum_n n f_n$.

$$D^{d/2}P_D(x,t) = (4\pi)^{-d/2} \exp\left(-\frac{|x|^2}{4Dt}\right)$$

is increasing in D.

•

Comment on L^{∞} bound when $d(\cdot)$ is nonincreasing:

• If $d(n) = \bar{d}$ is constant in n, then $M_t = \bar{d}\Delta M$ for $M = \sum_n n f_n$.

$$D^{d/2}P_D(x,t) = (4\pi)^{-d/2} \exp\left(-\frac{|x|^2}{4Dt}\right)$$

is increasing in D.

•

•

$$d(n)^{d/2}P_{d(n)}(x,t) = (4\pi)^{-d/2} \exp\left(-\frac{|x|^2}{4d(n)t}\right)$$

is nonincreasing in n.

Comment on L^{∞} bound when the increasing part of $d(\cdot)$ is controlled:

• Set $\phi(1) = 1$ and

$$\phi(n) = \prod_{m=1}^{n-1} \min \left\{ 1, \frac{d(m)}{d(m+1)} \right\},\,$$

Then $\phi(\cdot)$ and $d(\cdot)\phi(\cdot)$ are nonincreasing

Comment on L^{∞} bound when the increasing part of $d(\cdot)$ is controlled:

• Set $\phi(1) = 1$ and

$$\phi(n) = \prod_{m=1}^{n-1} \min \left\{ 1, \frac{d(m)}{d(m+1)} \right\},\,$$

Then $\phi(\cdot)$ and $d(\cdot)\phi(\cdot)$ are nonincreasing

Differentiate

$$G(t) = \int_{\mathbb{R}^d} \dots \int_{\mathbb{R}^d} \sum_{\mathbf{n}} \Lambda^{\mathbf{n}} K(\mathbf{x}) \prod_{r=1}^k \gamma_k(n_r) f_{n_r}(x_r, t) dx_r.$$

Here

Here

•
$$\gamma_k(m) = md(m)^{d/2}\phi(m)^{\frac{kd}{2}-1}$$
,

•
$$\mathbf{x} = (x_1, \dots, x_k), \, \mathbf{n} = (n_1, \dots, n_k), \, \mathbf{z} = (z_1, \dots, z_k)$$

Here

•
$$\gamma_k(m) = md(m)^{d/2}\phi(m)^{\frac{kd}{2}-1}$$
,

•
$$\mathbf{x} = (x_1, \dots, x_k), \, \mathbf{n} = (n_1, \dots, n_k), \, \mathbf{z} = (z_1, \dots, z_k)$$

• $\Lambda^{\mathbf{n}}K(\mathbf{x})$ is

$$\int \left(\frac{|x_1-z_1|^2}{d(n_1)}+\cdots+\frac{|x_k-z_k|^2}{d(n_k)}\right)^{1-\frac{kd}{2}}K(\mathbf{z})\prod_{r=1}^k d(n_r)^{-\frac{d}{2}}dz_r.$$