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The Model

@ (Configuration) x; € R, m; €N, ri€(0,00), i€l
are positions (centers) , masses and radii of particles
(bubbles).

@ (Dynamics)

e x; travels as a Brownian motion of diffusion constant d(m;)

Fraydoun Rezakhanlou Coagulating Brownian Particles, Gelation and Smoluchowski Equ:



The Model

@ (Configuration) x; € R, m; €N, ri€(0,00), i€l
are positions (centers) , masses and radii of particles
(bubbles).

@ (Dynamics)

e x; travels as a Brownian motion of diffusion constant d(m;)
e x; and x; coagulate when x; — x; = ¢(r; + r;) (or a smoother
variant with a potential). The new particle of mass
m = m; + my; is at x; with probability m;/m.
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The Model

@ (Configuration) x; € R, m; €N, ri€(0,00), i€l
are positions (centers) , masses and radii of particles
(bubbles).

@ (Dynamics)

e x; travels as a Brownian motion of diffusion constant d(m;)

e x; and x; coagulate when x; — x; = ¢(r; + r;) (or a smoother
variant with a potential). The new particle of mass
m = m; + my; is at x; with probability m;/m.

e x; fragments into two particles of masses mand m; — m
with rate v(m, m; — m). The new particles are at x; and y.
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The Model

(Details)
@ Relationship between initial total number of particles per

unit volume K. and ¢: K. = |loge| when d = 2, and
K. = ¢2=9 when d > 3.
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The Model

(Details)

@ Relationship between initial total number of particles per
unit volume K. and ¢: K. = |loge| when d = 2, and
K. =29 when d > 3.

@ Relationship between mass and radius: r; = m.
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The Model

(Details)

@ Relationship between initial total number of particles per
unit volume K. and : K. = |loge| when d = 2, and
K. =29 when d > 3.

@ Relationship between mass and radius: r; = m.

@ The central object to study is the cluster density of a given
size; Empirical measures

gnldx, t) = 1Z5x(t ()1 (m;(t) = n),
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@ Scaling Limit

doun Rezakhanlou Coagulating Brownian Particles, Gelatio



Scaling Limit

Theorem (FR and Hammond when x = 0 and FR when
x < (d—2)71, 2007)

g5(dx, t) converges to fy(x, t)dx where f, is a solution to the
Smoluchowski’s equation.

Smoluchowski’s equation (solution is unique as we will see
later)

0fy

51 (6D = d(MDAxha(x, )+ Qa°(H — Q (D + @y '()) - @ (),
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Scaling Limit

o Q°(f)=3>n_sa(mn—m)fnfrm
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Scaling Limit

° Q°(f) =10 _a(mn—m)fnfrm
® Q,°(f)=>_00_s a(m, n)fnty
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Scaling Limit

° Q+°(f) =330 _a(m,n— m)fnfa_m
(f) Zm:1 a(m, n)fnf
o+ () = Sy B(m, N)frym
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Scaling Limit

° QJr ‘M) =130 s a(mn—m)fnfy_m
(f) Zm:1 a(m, n)fnf

° o+ ") =S 15(m M) m
Q,'(f) = 3 o0 B(m,n— m)f
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Scaling Limit

f) =33 1 a(mn—m)fufom
) = > m=1 a(m, n)fmfy
= m 15(”’ M foim

1(6) = 3 5my B(m, n— m)fy
a(m, n) = 2x(d(m) + d(n)) when d = 2.

® 6 6 6 o
~
AA
—r
N—r
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Scaling Limit

When d > 2
@ a(m, n) = Cap(unitball)(d(m) + d(n))(r(m) + r(n))ﬁ
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Scaling Limit

When d > 2
o a(m, n) = Cap(unitball)(d(m) + d(n))(r(m) + r(n))@
® a(m,n) = co(d(m) + d(m))(m¥ + nX)72
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Scaling Limit

When d > 2
@ a(m,n) = Cap(unitball)(d(m) + d(n))(r(m) + r(n))ﬁ
® a(m, n) = co(d(m) + d(n))(mX + nX)7=
@ Observe a(m, n) < c1(d(m)+ d(n))(m9 + n?) with g < 1 iff
x < (d-2)7".
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Scaling Limit

When d > 2
@ a(m, n) = Cap(unitball)(d(m) + d(n))(r(m) + r(n))ﬁ
o a(m,n) = co(d(m) + d(n))(mX + nX)72
@ Observe a(m, n) < c1(d(m)+ d(n))(m9 + n?) with g < 1 iff
x<(d-2)"
@ (Conjecture) Instantaneous Gelation occurs when
x > (d —2)~". Smoluchowski is no longer relevant.
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Gelation

We verify the conjecture for a simpler model. Ignore the
location of particles.
Marcus-Lushnikov (ML) Process

@ (Configuration) L, € Z* denotes the number of particles
of size n. We assume that the total mass >, nL, = N is
fixed.
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Gelation

We verify the conjecture for a simpler model. Ignore the
location of particles.
Marcus-Lushnikov (ML) Process

@ (Configuration) L, € Z* denotes the number of particles
of size n. We assume that the total mass >, nL, = N is
fixed.

@ (Dynamics)

e When n#m, (L, L, Linin) = (Ln =1, Ly — 1, Linen + 1)
with rate N='a(m, n)LL,
o (Lp,Lon) = (Lp — 2, Lop + 1) with rate N="a(n, n)Ln(Ly — 1)
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Gelation

Theorem (FR 2012)

@ o Assume a(m,n) > m?+ n9 with g > 1. Then for every § € (0, 1),
d fraction of particles are of size log’ﬁ)g’,\, at a random time 7 that
in average is of size const.|log N|~°.
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Gelation

Theorem (FR 2012)

@ o Assume a(m,n) > m?+ n9 with g > 1. Then for every § € (0, 1),
d fraction of particles are of size log’ﬁ)g’,\, at a random time 7 that
in average is of size const.|log N|~°.
Assume a(m, n) > m9n+ n?m with g > 1. Then complete
gelation occurs at a random time 7’ that in average is of size

logN \1—¢
const. (Iog log N)

@ Remark: Jeon (2000) proved complete gelation under
a(m, n) > m9n+ n9m with no bound on 7.
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Gelation
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Smoluchowski Equation
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e Smoluchowski Equation
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Smoluchowski Equation

For simplicity, assume there is no fragmentation. Recall

%f;(X, t) = d(n)Axfa(x, t) + Q;r,c(f) Q)

with

o Q°(f)=3>m_ya(mn—m)fnfrm
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Smoluchowski Equation

For simplicity, assume there is no fragmentation. Recall

8@?()(, ) = d(n)Axha(x, 1) + Qp °(f) — @y °(F)
with
o Q°(f)=3>m_ya(mn—m)fnfrm

° Q,°(f)= >t a(m, n)fnfy
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Smoluchowski Equation

@ Existence of Solution: Laurencot and S. Mischler (2002)
and Wrzosek (2004) provided limp_,, 20 — 0.

n
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Smoluchowski Equation

@ Existence of Solution: Laurencot and S. Mischler (2002)
and Wrzosek (2004) provided limp_,, 20 — 0.

n
@ Uniqueness: If f and g are two solutions, then

d o0
o [ > it~ gnlx. )0k
n=1

[ ]
n=1 m=1

(After Ball and Carr (1997) similar inequality for the
homogeneous case)

ax.
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Smoluchowski Equation

@ Existence of Solution: Laurencot and S. Mischler (2002)
and Wrzosek (2004) provided limp_,, 20 — 0.

n
@ Uniqueness: If f and g are two solutions, then

d o0
o [ > it~ gnlx. )0k
n=1

[ ]
n=1 m=1

(After Ball and Carr (1997) similar inequality for the
homogeneous case)
@ Moral: We have uniqueness for solutions satisfying

o
IS Ml < o0
m=1

ax.
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Smoluchowski Equation

Conservation of Mass and Gelation:
o &[S, min(x,t)dx = 0 if there is no Gelation
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Smoluchowski Equation

Conservation of Mass and Gelation:
o &[S, min(x,t)dx = 0 if there is no Gelation
o &[S, min(x,t)dx < 0 if there is Gelation
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Smoluchowski Equation

Conservation of Mass and Gelation:
o &[S, min(x,t)dx = 0 if there is no Gelation
o &[S, min(x,t)dx < 0 if there is Gelation
@ Gelation:

gt/ [Z Mfy + oofm] (x,t)dx =0,
m

and [ oof(x,t)dx > 0fort > Tye.
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Smoluchowski Equation

Conservation of Mass and Gelation:
o &[S, min(x,t)dx = 0 if there is no Gelation
o &[S, min(x,t)dx < 0 if there is Gelation
@ Gelation:

gt/ [Z Miy + oofm] (x,t)dx =0,
m

and [ oof(x,t)dx > 0fort > Tye.
@ (FR and Hammond, 2007) No Gelation if

/T / Z nm(n+ m)(d(n) + d(m))fa(x, t)fm(x, t)dxdt < oo
0 n,m
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Smoluchowski Equation

How do we get various bounds on the solutions?

Theorem (FR and Hammond 2007)
L' bounds: Under appropriate assumptions on the initial data,

S| > ()l < oo
n

/ h / S nm(n®" + mA=1)(d(n) + d(m))fa(x, t)fmdxalt < oo,
0 nm

provided
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Smoluchowski Equation

Theorem (FR and Hammond 2007)
L*> bounds: Under appropriate assumptions on the initial data,

sup 1>~ nd(n)@2fa(-, )]l < o0
n

provided that d(-) is nonincreasing.
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Smoluchowski Equation

Using the previous results we obtain

Theorem (FR and Hammond)
L> bounds: Under appropriate assumptions on the initial data,

sup| Y (Bl < oo
n

for all a > 0, provided that d(-) is nonincreasing and d(n) > n?
for large n.
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Smoluchowski Equation

Theorem (FR 2012)
L> bounds: Under appropriate assumptions on the initial data,

sup | > (- )l < o0
n

for all a > 0, provided that the total positive variation of log d(+)
is finite and d(n) > n~? for large n. In particular, if d(-) is
uniformly positive and bounded.
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Idea of Proof

Comment on L>° bound when d(-) is nonincreasing:
e If d(n) = d is constant in n, then M; = dAM for
M — Zn nfn
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Idea of Proof

Comment on L>° bound when d(-) is nonincreasing:
e If d(n) = d is constant in n, then M; = dAM for
M =", nf,.
°

2
D2Pp(x, ) = (4m)~ d/2exp< |4L|7t)

is increasing in D.
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Idea of Proof

Comment on L>° bound when d(-) is nonincreasing:
e If d(n) = d is constant in n, then M; = dAM for

M =>", nf,.
’ |x[?
d/2 _ d/2
D=Pp(x,t) = (4m)~ exp( 4Dt)
is increasing in D.
°

2
()2 Py, 1) = (4) P2 exp (g

is nonincreasing in n.
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Idea of Proof

Comment on L>° bound when the increasing part of d(-) is
controlled:

@ Set¢(1)=1and

H m'”{ aimi)

Then ¢(-) and d(-)¢(-) are nonincreasing
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Idea of Proof

Comment on L>° bound when the increasing part of d(-) is
controlled:

@ Set¢(1)=1and

H m'”{ aimi)

Then ¢(-) and d(-)¢(+) are nonincreasing
e Differentiate

k
G(t) = / /]R , 3N Tk )
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Idea of Proof

Here
® ~(m) = md(m)a2¢(m)% ",
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Idea of Proof

Here
@ yk(m) = md(m)¥/2p(m)E ",
(*] X:(X1,...,Xk), n:(n1,...,nk),z: (Z1,...,Zk)
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Idea of Proof

Here
® " (m) = md(m)4/2¢(m)E ",
o X=(X{,...,Xk),N=(nNy,...,N), 2= (21,...,2)
® A"K(x) is

/ <’X1 Al el Zk‘2>1k2d K(2) ] d(n) 2z
d(m) d(m) ) e
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