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1 Introduction

One of the main purposes of statistical mechanics is to explain the macroscopic behavior of
various phenomena in terms of the statistics of their microscopic structures. Macroscopically
we often have a PDE involving a small number of parameters. The microscopic description
however involves a large number of components that are evolving by either deterministic
or stochastic rules. Let us name three reasons to justify our interest in understanding the
connection between the microscopic and macroscopic descriptions.

As our first reason, we remark that historically the macroscopic equation is formally
derived from the microscopic description of the phenomenon under study. It is an important
task of statistical mechanics to justify such a derivation rigorously and verify the validity of
the macroscopic PDE.

For our second reason, we note that we often have simple dynamical rules for the micro-
scopic model and the main challenging feature of the model has to do with its large size.
On the other hand, the macroscopic evolution involve only a few variables but dictated by a
rather sophisticated nonlinear rules. It is the case for many examples that the macroscopic
equation is not fully understood. Hopefully by exploring its relation with its microscopic
counterpart we may discover new tools and techniques for the macroscopic equation.

∗This work is supported in part by NSF grant DMS-0707890.

1



As our third reason, we should mention that even though the macroscopic equation is
preferred because of its dependence on a small number of variables, it is only a reduced
description of the microscopic phenomenon at hand and we would like to find practical ways
of recovering some of the lost information as we switch to the macroscopic world. Since the
passage from the microscopic details to macroscopic parameters can be recast as a law of
large numbers for some conserved quantities in many scenarios, probability theory suggests
some standard routes for going beyond law of large numbers and gain new information. The
celebrated central limit theorem and large deviations for classical examples are guidelines
for producing some vital information for the microscopic model under study.

It is the latter reason which is the chief motivation for the present article. Our microscopic
model is a system of coagulating-fragmenting Brownain particles which is macroscopically
described by an inhomogeneous Smoluchowski’s equation. This equation is derived as a law
of large numbers. The main contribution of this article is a central limit theorem for the
aforementioned law of large numbers when the system is in equilibrium.

In our model , we start with N particles with each particle traveling in Rd as a Brownain
motion. Each particle has a size m ∈ Z and a radius r ∈ (0,∞). In fact our interpretation
of the location x of a particle is that x is the center of a ball of radius r and in some sense
only a small fraction of the ball is occupied by the true particle. It turns out that in reality
each particle is a cluster of smaller objects and the cluster is a complex fractal like entity
that is too complicated to be treated with the existing techniques. That is why we simplify
the model by replacing the cluster with a ball of radius r(m) = mχ so that when χ > 1

d
, we

are taking into account the fact that the mass of the particle comes from a small portion of
the ball which is occupied by the cluster. This may appear somewhat native and not too
realistic from physical point of view. Nevertheless, as was explained in [HR1–3] and [R2],
the model does exhibit some expected features of the underlying physics. For example, the
condition χ < 1

d−2
guarantees that no gelation occurs in finite time. That is, no particle

of size infinity is formed in finite time at macroscopic level. We also conjecture that an
instantaneous gelation would occur if χ > 1

d−2
.

In fact the true radius of a particle is εr with ε very small. A calculation involving Wiener
sausages reveals that if N = ε2−d when d ≥ 3 and N =| log ε | when d = 2, then the expected
value of the number of times a particle coagulates with other particles in one unit of time
stays positive and finite as ε → 0. This property allows us to obtain the Smoluchowski’s
equation for the evolution of cluster densities in low ε limit. To further simplify the involving
mathematical technicalities, we forget about balls presenting each particle and regard each
particle as a point. Now the coagulation occurs stochastically only when particles of positions
x and y and masses m and n, satisfy

| x− y |≤ c0ε(m
χ + nχ),

for a constant c0. In the preceding works [HR1–2], [R2] and [HRY], we were able to derive
the macroscopic equation as a law of large numbers; if we label the locations and masses of
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particles as (xi,mi), i ∈ I, then our law of large numbers asserts

1

Kε

∑
i∈I

δxi(t)(dx)11(mi(t) = n)→ fn(x, t)dx

with fn solving the Smoluchowski’s equation (2.6) of Section 2. Here

(1.1) Kε =

{
ε2−d if d ≥ 3,

| log ε| if d = 2.

As a central limit theorem, we are interested in the limit of the fluctuation fields

(1.2) ξεn(dx, t) =
√
Kε

(
Kε
−1
∑
i

δxi(t)(dx) 11(mi(t) = n)− fn(x, t)dx

)
as ε → 0. In Section 2, we state a conjecture regarding the evolution of ξεn in low ε limit.
According to this conjecture, the limit ξ solves an Ornstein-Uhlenbeck stochastic differential
equation in an infinite dimensional setting with ξ living in a negative Sobolev space. The
conjecture is formulated using the so-called fluctuation–dissipation principle of non-
equilibrium statistical mechanics. In this article, we establish the conjecture only when the
dimension is 2 and the model satisfies a detailed-balance condition. Some steps of our proof
does not apply to higher dimensions. The case d ≥ 3 is more challenging and is left for a
future investigation.

We continue this introduction by mentioning some previous work related to our model.
Smoluchowski’s equation was introduced by Smoluchowski in the seminal work [Sm]. The
first mathematically rigorous derivation of Smoluchowski’s equation from a model of coagu-
lating Brownian particles was carried out by Lang–Nyugen [LN] when d = 3 and all particles
have the same diffusion coefficient. A related problem has been studied by Sznitman [Sz]
when d = 2. A completely different approach has been employed in [HR1-2] and [YRH] to
treat the model in general. A thorough survey on related models and their applications can
be found in Aldous [A]. In fact Open Problem 16 in [A] is exactly our central limit theorem
when there is no spacial dependence. We refer to the monograph [Sp] for an introduction
to related questions in statistical mechanics and a discussion of the fluctuation–dissipation
principle. An equilibrium fluctuation result has been studied in [R1] for a model of colliding
particle associated with discrete Boltzmann equation.

We end this section with an outline of the paper. In Section 2, we state a conjecture
for the macroscopic evolution of the fluctuation fields. In Section 3, a family of reversible
invariant measures for the microscopic model is constructed. In this section, the conjecture
is restated as the main result of this paper under the assumption that the model starts from
one of the reversible measures and that the dimension is 2. In Section 4, the strategy of the
proof is described. The first step of the proof is a regularity of the coagulation term and is
carried out in Sections 5–7. The proof of the main result is completed in Sections 8 and 9.
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2 A Conjecture

We start with the description of our model. The configuration space Ω consists of pairs
ω = (x,m) with x a subset of Rd with no accumulation point and m : x→ N = {1, 2, 3, . . . }
is a map that assigns a positive integer to each element of x. Throughout this section we
assume that d ≥ 2. It is often convenient to write ω = (xi,mi)i∈I with xi ∈ Rd and mi ∈ N,
where I = I(ω) is a countable index set. We regard x as a collection of cluster positions
in Rd with no accumulation point and m assigns a size to each such a position. We may
also identify ω = (x,m) as a discrete measure ω̂ =

∑
i∈I δ(xi,mi) on Rd × N. Using this

identification we equip the space Ω with the topology of vague convergence.
We now describe the evolution of coagulating and fragmenting Brownian clusters as a

Markov process on the configuration space Ω. For this, functions d : N → (0,∞), α :
N× N→ (0,∞) and β : N× N→ (0,∞) are given which represent the diffusion coefficient,
the coagulation rate and the fragmentation rate respectively. We assume that both α and
β are symmetric. Also a parameter χ ∈ [0,∞) and a continuously differentiable function
V : Rd → [0,∞) are given for our model. We then define a Markov process ω(t) with
infinitesimal generator A = A0 +Ac +Af where A0 represents the “Brownian motion” part
of the dynamics, and Ac and Af represent the coagulation and fragmentation parts of the
evolution. For the “Brownian motion” part, we use the representation ω = (xi,mi)i∈I to
write

(2.1) A0F (ω) =
∑
i∈I

d(mi)∆xi
F (ω),

for any C2 function F . Here ∆xi
represents the Lapalce operator which acts on the xi

variable.
As for the coagulation part, we write AcF (ω) = A+

c F (ω) − A−c F (ω) with A+
c and A−c

are given by

A+
c F (ω) =

1

2

∑
i,j∈I
i 6=j

α(mi,mj)Vε(xi − xj;mi,mj)

[
mi

mi +mj

F (S1
ijω) +

mj

mi +mj

F (S2
ijω)

]
,

A−c F (ω) =
1

2

∑
i,j∈I
i 6=j

α(mi,mj)Vε(xi − xj;mi,mj)F (ω).

Here,

(i) ε > 0 is a small parameter that represents the range of interaction.

(ii) the function Vε(x;m,n) = λ(ε)V
(
x
ε
;m,n

)
where

(2.2) λ(ε) =

{
| log ε|−1ε−2 if d = 2,

ε−2 if d ≥ 3,
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and

(2.3) V (x;m,n) = r(m,n)−2V

(
x

r(m,n)

)
,

with r(m,n) = r(m) + r(n), for r(n) = nχ, and V is a symmetric Hölder continuous
function of compact support and total integral 1.

(iii) we denote by S1
ijω the configuration formed from ω by removing xj from x and assigning

the size mi+mj to the surviving cluster at xi. The configuration S2
ijω is defined in the

same way, except that we remove xi from x and assign the size mi +mj to the cluster
at xj. We note that the cluster at xi survives the coagulation with probability mi

mi+mj
.

Before describing the fragmentation part of the dynamics, let us explain the form of the
function Vε. Note that Vε(xi−xj;mi,mj) 6= 0 only if xi−xj is of order ε(r(mi)+r(mj)) with
r(m) = mχ. This means that we regard a particle of size m to be roughly a ball of radius
εr(m) so that a pair of clusters of centers xi and xj coagulate when their corresponding
balls overlap. If we assume that the mass of the ith cluster is distributed evenly in the
ball Br(mi)(xi), then we expect to have χ = 1

d
. However, in reality a cluster is far from

being a round ball and expected to be a fractal like object. By allowing χ ∈ (0,∞) we are
hoping to have a more physically relevant model. In particular, the case χ < 1

d
represents a

scenario in which the ball Br(mi)(xi) contains the true cluster and only a fraction of the ball
is occupied with the cluster. We believe that the case χ > 1

d−2
corresponds to the occurrence

of “gelation”. We refer to [HR1], [HR3] and [R2] for more discussions. (Note that no finite
χ can cause gelation when d = 2; we guess that the radius must grow exponentially with the
mass in order to have a gel in this case.)

The occurrence of the factor λ(ε) in the definition of Vε is to guarantee that when two
clusters collide, then they coagulate with a probability that stays away from 0 as ε →
0. Indeed B = xi − xj is a Brownian motion that spends a time of order ε2r(mi,mj)

2

(respectively ε2r(mi,mj)
2| log ε|) in the support of Vε when d ≥ 3 (respectively d = 2). We

also multiply the sum in the definition Ac by 1/2 to ensure that the summation is over
unordered pairs {i, j}.

As for the fragmentation part, AfF (ω) = A+
f F (ω)−A−f F (ω), is given by

1

2

∑
i

mi−1∑
m=1

β(m,mi −m)

∫
V ε(xi − y;mi −m,m)(F (Sy,mi ω)− F (ω))dy,

with

A+
f F (ω) =

1

2

∑
i

mi−1∑
m=1

β(m,mi −m)

∫
V ε(xi − y;mi −m,m)F (Sy,mi ω)dy.
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Here,

(2.4) V ε(a;m,n) = ε−dV
(a
ε

;m,n
)
,

and Sy,mi is that configuration formed from ω by replacing (xi,mi) with a pair of clusters of
positions xi and y and sizes m and mi −m.

The central object to study is the cluster density of a given size. Microscopically we are
interested in the empirical measures

gεn(dx, t) = K−1
ε

∑
i

δxi(t)(dx)11(mi(t) = n),

where Kε was defined by (1.1). If for example we select (x1(0),m1(0)), . . . , (xN(0),mN(0))
randomly and independently with the law

(2.5) P(xi(0) ∈ A,mi(0) = n) =
1

Z

∫
A

f 0
n(x)dx,

with Z =
∑

n

∫
f 0
ndx, then by the law of large numbers, gεn(dx, 0) converges weakly to f 0

n(x)dx
provided that N = KεZ and ε→ 0. Note that such a choice of initial condition implies that
on average there are Kε

∫
f 0
n(x)dx many particles of size n. A Wiener Sausage calculation

reveals that in average, each particle in our model experiences finitely many coagulations
per unit time. This explains our reason for choosing Kε as above.

The main result of [HR1]–[HR2], and [R1] states that if χ < 1
d−2

, there is no fragmenta-
tion, and α satisfies some technical conditions, then the empirical density gεn(dx, t) converges
to fn(x, t)dx where fn is a solution to the Smoluchowski’s equation, subject to the initial
condition fn(x, 0) = f 0

n(x). It is shown in [HR3] that this solution is unique.
Smoluchowski’s equation has the form

(2.6)
∂fn
∂t

(x, t) = d(n)∆xfn(x, t) +Q+,c
n (f)−Q−,cn (f) +Q+,f

n (f)−Q−,fn (f),

where f = (fn : n ∈ N), and

Q+,c
n (f) =

1

2

n∑
m=1

α̂(m,n−m)fmfn−m, Q−,cn (f) =
∞∑
m=1

α̂(m,n)fmfn,

Q+,f
n (f) =

∞∑
m=1

β̂(m,n)fn+m, Q−,fn (f) =
1

2

n−1∑
m=1

β̂(m,n−m)fn,

with

(2.7) α̂(m,n) = η(m,n)α(m,n), β̂(m,n) = η(m,n)β(m,n).
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The function η(m,n) is calculated in terms of the microscopic details of the model. We start
with the case d = 2. In this case η is independent of the function V and the parameter χ,
and is simply given by

(2.8) η(m,n) =
2π(d(m) + d(n))

2π(d(m) + d(n)) + α(m,n)
.

The formula for η(m,n) is more complicated when d ≥ 3 and does depend on both V and
χ. Here is the recipe for η: First we find the unique solution to the equation

(2.9) (d(m) + d(n))∆um,n(x) = α(m,n)V (x;m,n)(1 + um,n(x))

with u(x;m,n) = um,n(x) satisfying um,n(x)→ 0, as |x| → ∞. Then we set

(2.10) η(m,n) =

∫
V (x;m,n)(1 + um,n(x))dx.

Remark 2.1.

• For the purposes of this section, we have assumed that
∑

n

∫
f 0
ndx <∞, which implies

that there are finitely many particles almost surely. However in Section 3 when the
main result of this article is discussed, the density f 0

n is constant and the system
involves infinitely many particles. The existence of such a particle system is no longer
obvious, and in Remark 3.5 we will explain how such a particle system is constructed.

• Note that we deliberately choose a mechanism for the fragmentation that is, in some
sense, dual to the coagulation mechanism. This allows us to easily construct reversible
invariant measures for the process ω(t). In other words the fragmentation is defined
in such a way that if we reverse time after a coagulation, we obtain a fragmentation.
For the kinetic limit however, we can use a kernel W for the fragmentation that is
different from V , or even choose two new locations y1 and y2 near xi for the locations
of new clusters of a fragmented cluster. However, for this fragmentation mechanism,
the macroscopic coagulation and fragmentation rates read α̂ = αη, β̂ = βη′ with
possibly η 6= η′.

• Let us write Qn = Q+,c
n − Q−,cn + Q+,f

n − Q−,fn . We then have the following useful
formula: For any sequence (Jn : n ∈ N),∑

n

JnQn =
1

2

∑
n,m

(α̂(m,n)fmfn − β̂(m,n)fm+n)(Jm+n − Jm − Jn).

�
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The main goal of this article is to derive an equation for the evolution of the density
fluctuations about the solution to the Smoluchowski’s equation.

To this end, recall the fluctuation fields ξεn(dx, t) that was defined by (1.2). Let us
assume that χ < (d− 2)−1 and that the total mass

∫ ∑
n nf

0
n dx is finite.

Conjecture 2.1 As ε → 0, the process ξεn converges to ξn where ξn is the unique
solution to the Uhlenbeck–Ornstein equation

∂ξn
∂t

= d(n)∆xξn + Lcnξξξ + Lfnξξξ + γn,(2.11)

ξn(x, 0) = ξ̄n(x),

where ξξξ = (ξn : n ∈ N), and

(2.12) Lcn = L+,c
n − L−,cn , Lfn = L+,f

n − L−,fn ,

with

L+,c
n ξξξ =

n−1∑
m=1

α̂(m,n−m)fmξn−m, L−,cn ξξξ = 2
∞∑
m=1

α̂(m,n)(fmξn + fnξm),(2.13)

L+,f
n ξξξ =

∞∑
m=1

β̂(m,n)ξn+m, L−,fn ξξξ =
1

2

n−1∑
m=1

β̂(m,n−m)ξn,(2.14)

and γn is a space-time white noise with variance given by〈(∑
n

∫∫
Jnγndxdt

)2〉
= 2

∫∫ ∑
n

d(n)fn|∇Jn|2dxdt

+
1

2

∫∫ ∑
m,n

α̂(m,n)fnfm(Jn+m − Jn − Jm)2dxdt(2.15)

+
1

2

∫∫ ∑
m,n

β̂(m,n)fn+m(Jn+m − Jn − Jm)2dxdt(2.16)

for any smooth test function J = (Jn : n ∈ N) of compact support in Rd × (0,∞).

In fact γ belongs to a suitable negative Sobolev space and the integral of Jnγn must
be understood as the value of the distribution γn at the smooth test function Jn. See
the next section or the beginning of Section 8 for the precise definition of ξ and γ and
the meaning of the equation (2.11).

The main result of this paper asserts that Conjecture 2.1 is valid if the initial distri-
bution of the cluster is chosen according to a reversible equilibrium state and d = 2.
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3 Equilibrium Fluctuations

We start with constructing reversible invariant measures for the process ω(t). For this
we take a collection of positive numbers λλλ = (λn : n ∈ N) such that

∑
n λn <∞, and

(3.1) α(m,n)λnλm = β(m,n)λn+m

for every m,n ∈ N. Note that for such a collection, the functions fn(x, t) ≡ λn do solve
the Smoluchowski’s equation because by (2.7) and (3.1),

(3.2) α̂(m,n)λnλm = β̂(m,n)λn+m

and this in turn implies

(3.3) Q+,c
n (λλλ) = Q−,fn (λλλ), Q−,cn (λλλ) = Q+,f

n (λλλ).

Given such λλλ, we construct a reversible invariant measure µλλλ for our process ω(t): Let
xn to be a Poisson point process with intensity Kελn. Assume that (xn, n ∈ N) are
independent and define ω = (x,m) by x =

⋃∞
n=1 xn and m(a) = n for a ∈ xn. In

words, particles of size n form a Poisson point process of intensity of Kελn and these
processes are independent for different choices of n. We note that if Λ is a bounded
subset of Rd, then ∫

MΛdµλλλ = |Λ|Kε

∑
n

λn

where

Mn
Λ(ω) = Mn

Λ(x,m) = #{a ∈ x : a ∈ Λ,m(a) = n}, MΛ =
∞∑
n=1

Mn
Λ .

Hence, if we assume that
∑

n λn < ∞, then there are finitely many clusters in a
bounded domain almost surely with respect to µλλλ.

We now assert that µλλλ is indeed reversible. To explain this, let us take two bounded
local C2 functions F,G : Ω → R. By a local function F we mean that there exists a
positive constant c0 such that F depends only on particles (xi,mi) such that |xi|,mi ≤
c0. We then have

(3.4)

∫
G AF dµλλλ =

∫
F AG dµλλλ.

Indeed, ∫
G A0F dµλλλ = −

∫ ∑
i

d(mi)∇xi
F · ∇xi

G dµλλλ,(3.5) ∫
G A+

c F dµλλλ =

∫
F A−f G dµλλλ,

∫
G A−c F dµλλλ =

∫
F A+

f G dµλλλ.(3.6)
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Note that (3.6) is the microscopic analog of (3.3), and together with (3.5) imply (3.4).
The proof of (3.5) follows from an integration by parts. As for (3.6), observe that for
any bounded set Λ,

(3.7) µΛ
λλλ (dωΛ) =

∑
L1,L2,...

∞∏
n=1

[
Ln∏
i=1

11(mni = n, xni ∈ Λ)dxni

]
(λnKε)

Ln

Ln!
e−λnKε|Λ|

where ωΛ is the configuration in the set Λ and µΛ
λλλ is the law of ωΛ under µλλλ. Here we

have labeled particles of size n by n1, n2, . . . , nLn and Ln = Mn
Λ is the number of such

particles. Using the representation (3.7), one can readily verify (3.6).

Let us write Pωε and Eω
ε for the probability and the expectation with respect to the

process ω(·) subject to the initial condition ω(0) = ω. When ω(0) is distributed
according to an invariant measure µλλλ, we write Peqε and Eeq

ε instead. Given ω(·), we
define

(3.8) ξεn(t, J) =
√
Kε

(
1

Kε

∑
i

J(xi(t))11(mi(t) = n)− λn
∫
J(x)dx

)

for every smooth J : Rd → R of compact support. Let D denote the space of smooth
functions of compact support and let D′ denote the space of distributions (the dual
of D). We regard ξεn as an element of the Skorohod space D = D([0, T ], (D′)N). The
transformation ω(·) 7→ ξε induces a probability measure Pε on D. We regard ξεn(t, J)
as the value of the distribution ξεn(t) at J

To state our assumptions, take a nondecreasing function a ≥ 1, such that α′(m,n) =
α(m,n)/(d(m) + d(n)) ≤ a(n) + a(m), and set β′(n) =

∑n−1
m=1 β(n−m,m).

Hypothesis 3.1. The function d(·) is bounded. Moreover for some θ > 1/2,

(3.9) lim
ε→0

τ(ε) := lim
ε→0

K1/2
ε

∑
2εr(n)>δ(ε)

a(n)λn = 0,

where δ(ε) = | log ε|−θ, and

(3.10)
∑
n

[a(n)(r(n) + β′(n) log n) + a(n)2(a(n) + log n)]λn <∞.

Remark 3.1. Note that by detailed balance, we have that β(n,m) = α(m,n)λnλm/λm+n.
Hence, if α and λλλ are known, then β is determined. As an example, consider the case
with λn decaying like e−cn, as n → ∞. In this case, we can readily see that if a(n)
is growing at most like a polynomial as n gets large, then both (3.9) and (3.10) are
satisfied.
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Theorem 3.1 Assume Hypothesis 3.1 and that the dimension d = 2. Then the finite
dimensional marginals of the sequence Pε converges to the finite dimensional marginals
of P, where P is the distribution of a stationary Ornstein–Uhlenbeck Gaussian process
with covariance

(3.11)

∫∫ ∞∑
n=1

ξn(t, Jn)ξn(0, Hn)P(dξ) =

∫ ∞∑
n=1

(TtJn)(x)Hn(x)λndx.

Here Jn, Hn ∈ D for n ∈ N and Tt is the semigroup generated by the linear Smolu-
chowski’s operator

(ΓJ)n = d(n)∆xJn +
∞∑
m=1

β̂(m,n)Jn+m −
1

2

n−1∑
m=1

β̂(m,n−m)Jn

+
n−1∑
m=1

α̂(m,n−m)Jn−mλm −
∞∑
m=1

α̂(m,n)(Jnλm + Jmλn).(3.12)

Remark 3.2. Note that the macroscopic coagulation and fragmentation rates α̂ and
β̂ are strictly smaller than their microscopic counterparts α and β. We refer the reader
to Section 4 for a heuristic explanation and how a fundamental auxiliary function uε

would allow us to switch from the microscopic rates α and β to macroscopic rates α̂
and β̂. Note also that even though the “strengths” of the noises associated with the
coagulation and fragmentation are given by α and β, the corresponding macroscopic
“strengths” are given by α̂ and β̂ as the expressions (2.15) and (2.16) indicate. In fact
this reduction in the strength happens in a very curious way:

– The auxiliary function uε corrects the original noises coming from the coagulation
and fragmention by reducing their strengths to α̃ = αη2 and β̃ = βη2. (See
formulas (8.33) and (8.37) and the definitions of Ac0 and Af0 which are given
right after (8.26) and (8.34).)

– The Brownian part of the dynamics uses the corrector uε and produces some noise
which enhances the reduced strengths α̃ and β̃ to their final values α̂ and β̂. (See
formula (8.24), expression A02121111 which is defined right before (8.23), and the
final step of the proof of (8.4).)

Remark 3.3. In fact what we can prove is somewhat stronger than what has appeared
in the statement of Theorem 3.1. We will show that the process ξε = ξ′− ξ′′ with both
ξ′ and ξ′′ stationary processes in time, where the law of ξ′ under Peqε converges to P ,
and

lim
ε→0

Eeq
ε |ξ′′(t, J)| = 0
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for every t, n ∈ N, and test function J . We refer the reader to Section 9 for the details.

An alternative description of the law P is the martingale formulation of Holley and
Stroock [HS] that will be defined in Section 8. It is this formulation which we use for
the proof of Theorem 3.1.

Remark 3.4. The intuition behind (3.11) is the standard dissipation-fluctuation prin-
ciple. This principle is used to predict the form of the diffusion coefficient once the
drift and the invariant measure for the fluctuation fields are known. In fact (3.11)
is equivalent to saying that the process ξ is a solution to the stochastic differential
equation

(3.13) dξ = Γξdt+ BdWt

where dWt = (dW1,t, . . . , dWn,t, . . . ) with (dWn : n ∈ N) independent space-time white
noises and the operator B is determined by∫ ∞∑

n=1

(Bζζζ)n(BH)ndx = 2

∫ ∞∑
n=1

λn∇xJn · ∇xHndx

+
1

2

∫ ∞∑
m,n=1

α̂(m,n)λnλm(Jn+m − Jn − Jm)(Hn+m −Hn −Hm)dx

+
1

2

∫ ∞∑
m,n=1

β̂(m,n)λn+m(Jn+m − Jn − Jm)(Hn+m −Hn −Hm)dx.

Indeed if we start with the ansatz that ξ satisfies an Ornstein-Uhlenbeck equation of
the form (3.13), then we have an obvious guess for the linear drift Γξ, namely the
linearization of the right-hand side of the macroscopic equation (2.6). We also have a
candidate for its invariant measure, namely the measure P0 given by (3.11) at t = 0;∫∫ ∞∑

n=1

ξ0
n(Jn)ξ0

n(Hn)P0(dξ0) =

∫ ∞∑
n=1

Jn(x)Hn(x)λndx.

We then select the diffusion operator B to be compatible with what we have for the
drift and the invariant measure of the process ξ.

Remark 3.5. As our final remark, we comment that it is not obvious that our Markov
process ω(·) exists because we are dealing with infinitely many interacting diffusions.
However, since we are only interested in the process ω(·) at equilibrium, its existence
can be shown by rather standard arguments which we now sketch.

– (i) Observe that if initial macroscopic densities (f 0
n : n ∈ N) satisfy

∑
n

∫
f 0
ndx <

∞, then we can construct our process by starting from N independent particles

12



(x1,m1), . . . , (xN ,mN) satisfying (2.5), where N and ε are related by the equation
N = Kε

∑
n

∫
f 0
ndx. In other words, if the total density is finite macroscopically,

then initially we are dealing with finitely many particles almost surely and the
existence of the process ω(·) is obvious. However, since at equilibrium f 0

n ≡ λn is
not integrable, we need to consider a Poisson point process with infinitely many
particles.

– (ii) We now argue that we can construct our process if we make two assumptions:∑
n

∫
|x|≤r

nf 0
n(x)dx <∞,(3.14)

α(m,n) = β(m,n) = 0 if m+ n > `,(3.15)

for every r > 0 and some ` > 0. In other words, we assume that locally the
total mass is finite macroscopically but now we assume that no interaction occurs
if particles are large. To construct ω(·) in this case, we first replace f 0 with
f 011(|x| ≤ k). Our process exists for such an initial macroscopic density by (i).
The corresponding process is denoted by ωk(·). We now want to send k to infinity
and show that the sequence (ωk : k ∈ N) is tight and that any of its limit
point ω is a solution to the martingale problem associated with the generator
A. That is, F (ω(t))−

∫ t
0
AF (ω(s)ds, is a martingale for every C2 local function

F . This can be readily achieved by establishing a control on the total number
of particles in a ball {x : |x| ≤ r}. Here is a way of establishing such a control
uniformy in k: Pick a positive smooth function J which equals to exp(−|x|) for
large x, and set H(x) = −

∫
|y|≤1

log |y|J(x − y)dy. We can readily show that

that H > 0 and that ∆H ≤ c0H for a constant c0. Then use the martingale
M(t) = F (ωk(t))−

∫ t
0
AF (ωk(s)ds for F (ω) =

∑
iH(xi)mi to show

(3.16) sup
k

E sup
t∈[0,T ]

F (ωk(t))
2 <∞,

for every T . This can be used to establish the tightness of ωk and the existence
of our process provided that (3.14) and (3.15) are true.

– (iii) It remains to relax the restriction (3.15). We now would like to take advantage
of the fact that we only need to consider f 0

n ≡ λn. More precisely, by (ii),
we know that Peq exists if we assume that (3.15) is true. Let us write ω` for
our process when α and β are replaced with α`(m,n) = α(m,n)11(m + n ≤ `),
β`(m,n) = β(m,n)11(m+n) ≤ `). Again, we need to show the tightness of ω` and
pass to the limit in the martingale formulation of our process. For this, we need
to show something like (3.16) for the sequence ω`. This can be readily achieved
by bounding various terms that appear in the martigale M(·), using the fact that
the process ω` is stationary in time.

13



4 A Sketch of the Proof

We aim to show that the expression

(4.1) Xε(ω(t)) = K−1/2
ε

∑
i

J(xi(t),mi(t)),

with J(x, n) = Jn(x) satisfying
∫
Jndx = 0, is close to

∑
n ξn(t, Jn), with the distribu-

tions (ξn : n ∈ N) solving (3.13) in the weak sense. To derive (3.13), we use Markov
property of the process ω(t) to write

Xε(ω(t)) = Xε(ω(0)) +
∑
n

∫ t

0

A0Xε(ω(s))ds+

∫ t

0

AcXε(ω(s))ds

+

∫ t

0

AfXε(ω(s))ds+Mε(t)(4.2)

=: Y 1
ε + Y 2

ε (t) + Y 3
ε (t) + Y 4

ε (t) +Mε(t),

with Mε a martingale for which

(4.3) Nε(t) = Mε(t)
2 −

∫ t

0

(AX2
ε − 2XεAXε)(ω(s))ds,

is a martingale.

The identity (4.2) should be compared to what we have as the weak form of (3.13),
namely ∑

n

ξn(Jn, t) =
∑
n

ξn(Jn, 0) +

∫ t

0

∑
n

d(n)ξn(∆Jn, s)ds

+

∫ t

0

∑
m,n

α̂(m,n)λmξn(Jn+m − Jm − Jn, s)ds(4.4)

+

∫ t

0

∑
m,n

β̂(m,n)ξn+m(Jn+m − Jm − Jn, s)ds+M(t)

=: Y 1 + Y 2(t) + Y 3(t) + Y 4(t) +M(t),
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where the process M(t) is a martingale for which

N(t) = M(t)2 − t
∫

2
∑
n

d(n)λn|∇Jn(x)|2dx

− t

2

∫ ∑
m,n

α̂(m,n)λmλn(Jn+m − Jn − Jm)2(x)dx

− t

2

∫ ∑
m,n

β̂(m,n)λn+m(Jn+m − Jn − Jm)2(x)dx,

is a martingale.

To establish Theorem 3.1, we may try to show

Y j
ε → Y j, Mε →M,

for i = 1, . . . , 4. It turns out that this is not what is going on! Firstly, it is rather
straightforward to show that Y 1

ε → Y 1 by the classical central limit theorem with Y 1

a Gaussian random variable with variance
∑

n λn
∫
J2
ndx. Also, virtually by definition,

we have that if ξξξε converges to ξξξ, then Y 2
ε →

∑
n d(n)

∫ t
0
ξn(∆Jn, s)ds. This stems from

the fact that Y 2
ε corresponds to the “non-interacting” part of the evolution, namely

the Laplacian operator ∆. However we need to split the “interacting” part of the
microscopic evolution into 3 distinct parts of completely different natures. Indeed, we
have a decomposition

(4.5) Y 3
ε = Y 3,1

ε + Y 3,2
ε + Y 3,3

ε ,

where Y 3,1
ε → Y 3 as ε→ 0, the term Y 3,2

ε contributes to the fragmentation term so that
Y 3,2
ε +Y 4

ε → Y 4, and Y 3,3
ε contributes to the martingale part. That is, Y 3,3

ε +Mε →M .
It is as if a part of the microscopic “drift” becomes some type of “white noise” as
ε→ 0. Perhaps this is the most surprising aspect of the present work and is in complete
contrast with some earlier works on the equilibrium and non-equilibrium fluctuations
on models with diffusive scaling [CY], [C] and a stochastic model with kinetic scaling
[R1]. This ramification of the diffusion coefficient by the “drift” is reminiscent of a
similar phenomenon for the tagged particles in the exclusion processes (see Kipnis-
Vardhan [KV]). In our setting however, the ramification of the noise happens in a
rather curious way as we explained in Remark 3.2.

To explain the decomposition (4.5), and sketch our method of proof further, we need
to recall how the Smoluchowski’s equation has been derived from our microscopic
model in the articles [HR1, HR2], [R2] and [HRY]. For this derivation, we need to
understand how the microscopic coagulation (respectively fragmentation) rate α(m,n)
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(respectively β(m,n)) leads to the macroscopic coagulation rate α̂(m,n) (respectively
β̂(m,n)).

For the derivation of (2.6), we start from the expression

X̂ε(ω(t)) = K−1/2
ε Xε(ω(t)) = K−1

ε

∑
i

J(xi(t),mi(t)),

and study the corresponding (4.2) which we obtain by multiplying both sides of (4.2) by

K
−1/2
ε . Since K

−1/2
ε Mε → 0, we only need to concentrate on K

−1/2
ε Y 3

ε and K
−1/2
ε Y 4

ε .

The term K
−1/2
ε Y 4

ε is in some sense linear and all challenges come from K
−1/2
ε Y 3

ε .

It turns out that there is a splitting K
−1/2
ε Y 3

ε = Z1
ε + Z2

ε with Z1
ε converging to∫ t

0

∫ ∑
n Jn(x)Qc

n(f)(x, t)dx and Z2
ε+K

−1/2
ε Y 4

ε converging to
∫ t

0

∫ ∑
n Jn(x)Qf

n(f)(x, t)dx.
This splitting is not hard to justify; when a fragmentation occurs, a pair of particles are
produced which are within a distance of order O(ε) and prone to coagulate. Of course
such a coagulation undoes the fragmentation that has just been occurred. Indeed Z2

ε

is negative which results in a macroscopic fragmentation β̂ strictly less than β.

To describe the decomposition (4.5), let us observe

Y 3
ε =

1

2
K−1/2
ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)J̃(xi,mi, xj,mj)(4.6)

=
1

2
K−3/2
ε

∑
i,j

α(mi,mj)V
ε(xi − xj;mi,mj)J̃(xi,mi, xj,mj),

where V ε = KεVε and J̃(xi,mi, xj,mj) is given by

(4.7)
mi

mi +mj

J(xi,mi +mj) +
mj

mi +mj

J(xj,mi +mj)− J(xi,mi)− J(xj,mj).

Our goal would be a decomposition of the form

(4.8)

∫ t

0

Y 3
ε (s)ds =

∫ t

0

Bz
ε (ω(s))ds+

∫ t

0

Cε(ω(s))ds+Dε(t) + Error,

where

(4.9) Bz
ε (ω) =

1

2
K−3/2
ε

∑
i,j

α(mi,mj)W
ε(xi − xj + z;m,n)J̃(xi,mi, xj,mj),

for a suitable function W ε which will be defined shortly, and Error represents a term
that will go to zero as ε → 0 and |z| → 0. The form of W ε would allow us to replace
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α with its macroscopic counterpart α̂. The term Cε is given by∫
K−3/2
ε

∑
i

mi−1∑
m=1

β(m,mi −m)V ε(xi − y;m,mi −m)

uε(xi − y;m,mi −m)J̃(xi,m, y,mi −m)dy,

and the term Dε(t) is a martingale. It is the decomposition (4.8) that leads to the
decomposition (4.5).

To achieve the decomposition (4.8), fix z and start from the expression

(4.10) Gε(ω) = K−3/2
ε

∑
i,j

ûε(xi − xj;mi,mj)J̃(xi,mi, xj,mj),

where ûε(a;m,n) = uε(a+z;m,n)−uε(a;m,n), with uε(a;m,n) satisfying the equation

(4.11) (d(m) + d(n))∆uε(x;m,n) = α(m,n) [Vε(x;m,n)uε(x;m,n) + V ε(x;m,n)] .

(The functions V ε and Vε were defined by (2.4) and right before (2.2) rescepectively.)
We then apply the martingale decomposition as in (4.2) to assert

(4.12) Gε(ω(t)) = Gε(ω(0)) +

∫ t

0

AGε(ω(s)) + Eε(t),

with Eε(t) a martingale. This involves various terms as we apply the operators A0, Ac
and Af on Gε. As it turns out, the first term Gε(ω(0)) and many other terms on the
right-hand side of (4.12) are small if |z| is sufficiently small. However, the choice of uε

results in a component in (A0 +Ac)Gε, which is exactly our 2(Bz
ε − Y 3

ε ) in (4.9), and
a component in AfGε which is exactly Cε. The function W ε in (4.9) is given by

(4.13) W ε(a;m,n) = V ε(a;m,n)(1 +K−1
ε uε(a;m,n)).

Of course we need to show that all other components in (A0 + Ac)Gε, and AfGε are
small if ε and |z| are small. This can be achieved by rather straightforward reasoning
if we require

(4.14) K1/2
ε |z|| log |z|| → 0, K−1/2

ε | log |z|| → 0.

(In higher dimension, the second condition is replaced with K
−1/2
ε |z|2−d → 0, which

is inconsistent with the first condition if d ≥ 3.) These two conditions are satisfied
if |z| = | log ε|−θ, for some θ > 1/2. At this stage, we simply use the smallness of ûε

for z satisfying ε << |z| << 1. In other words, we do not take advantage of the fact
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that J is of 0 average and do not apply any central limit-type arguments. (For higher
dimensions, this line of reasoning is not applicable and we really need to establish a
central limit-type theorem to show that the error term in (4.8) is small.) Of course
we may try to square the error term and take advantage of the fact that J is of 0
average and that particles are independent at equilibrium. This turns out to be rather
technical and challenging and will be dealt with in a future publication.

So far we have learned that the expression Y 3
ε can be replaced with the right hand-side

of (4.8). Once this is achieved, we take a smooth function ζ of compact support, set
ζδ(a) = δ−dζ

(
a
δ

)
, and define

f δn(x, t) = K−1
ε

∑
i

ζδ(xi(t)− x)11(mi(t) = n).

We think of this as an approximation of the density of particles of cluster size n. We
choose δ = δ(ε) = | log ε|−θ with θ > 1/2. The outcome f̃ εn(x, t) = f

δ(ε)
n (x, t) converges

weakly to λn as ε → 0. So far we have not carried out any CLT. We know that if
|z2 − z1| ≤ δ(ε), then

(4.15)

∫ t

0

Y 3
ε (s)ds =

∫ t

0

Bz2−z1
ε (ω(s))ds+

∫ t

0

Cε(ω(s))ds+Dε(t) + Error1(ε)

with limε→0 Error1(ε) = 0 and Dε(t) a martingale. We multiply both sides of (4.15)
by ζδ(z1)ζδ(z2) and integrate with respect to z1 and z2. After a change of variables
z1 7→ z1 − xi, z2 7→ z2 − xj, we obtain

1

2

∫ t

0

∫∫
K−3/2
ε

∑
i,j

α(mi,mj)W
ε(z1 − z2;mi,mj)J̃(xi,mi, xj,mj)

ζδ(ε)(xi − z1)ζδ(ε)(xj − z2)dz1dz2ds,

for the first term of the right-hand side of (4.15). Since J is smooth and ζ is of compact
support, we may replace J̃(xi,mi, xj,mj) with J̃(z1,mi, z2,mj) for an error of order
O(δ(ε)). We then carry out the summation over i and j to obtain

1

2

∑
m,n

α(m,n)

∫ t

0

∫∫
K1/2
ε f δ(ε)n (z1, s)f

δ(ε)
m (z2, s)W

ε(z1−z2;m,n)J̃(z1,m, z2, n)dz1dz2ds.

Since J is of zero average, the integrand

Λ := K1/2
ε (f δ(ε)n (z1, s)f

δ(ε)
m (z2, s)− λnλm)W ε(z1 − z2;m,n)J̃(z1,m, z2, n),

can be written as

(4.16) Λ = Λ1 + Λ2 + Λ3,
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where

Λ1 = K1/2
ε (f δ(ε)n (z1, s)− λn)λmW

ε(z1 − z2;m,n)J̃(z1,m, z2, n),

Λ2 = K1/2
ε (f δ(ε)m (z1, s)− λm)λnW

ε(z1 − z2;m,n)J̃(z1,m, z2, n),

Λ3 = K1/2
ε [(f δ(ε)n (z1, s)− λn)(f δ(ε)m (z2, s)− λm)]W ε(z1 − z2;m,n)J̃(z1,m, z2, n).

To achieve our goals, we wish to show that Λ3 is small in average. Formally, if Λ1 is
a bounded quantity, then Λ3 is smaller than Λ1 because of the additional small term
f
δ(ε)
m −λm. This turns out to be wrong; the term f δm−λm is small only in a weak sense

and its product with f δn − λn is no longer small. This is not surprising at all because
δ = δ(ε) is not sufficiently large enough for a central limit theorem to take place.
Indeed the support of ζδ is a set of volume O(δd) and as a result, the particle density
f δn involves O(Kεδ

d) many particles in average. For a CLT taking place, we need a
density which deals with a large number of particles. In other words, we expect Λ3 to
be small only when Kεδ

d →∞ as ε→∞. This would not be the case if δ = | log ε|−θ
for a θ > 1/2.

In order to figure out a successful way of going beyond | log ε|−θ and reach a density
f δ with δ satisfying Kεδ

d →∞, we need to review what has been achieved so far and
what to learn from it.

Basically our goal is a central limit theorem (CLT) for the particle density (4.1) and for
this we need to perform some type of CLT for the time average of (4.6). Note that Y 3

ε

is in some sense singular because the function V ε is a delta-type expression. That is, in
a region of volume O(εd), V ε is of order O(ε−d). In fact if we calculate Eeq

ε Y
3
ε (ω)2, we

get an expression that blows up as ε→ 0. All this ultimately stems from the fact that
the coagulation occurs when particles are microscopically close. We wish to replace
V ε with a smoother kernel and this is exactly what purpose (4.8) serves. We try to
replace xi − xj, the argument of V ε, with xi − xj + z. That is, we try to figure out
the coagulation rate when particles xi and xj are not microscopically close but only
macroscopically close, i.e., xi − xj = z + O(ε) with |z| → 0 after sending ε → 0. (For
example |z| could be as “large” as | log ε|−θ.) However there is a price to pay for such
a replacement; we need to replace V ε with W ε and modify the fragmentation term
(we are referring to the term Cε), and even the noise is modified (the term Dε). To
carry this out, we encountered various additional terms which are presumably small.
We have a relatively easy ride, if |z| << | log ε|−1/2. Even though we have not reached
out ultimate goal |z| >> | log ε|−1/2, we have already achieved three important tasks:

– (i) The correctors Cε and Dε would modify the fragmentation and martingle terms
as required in the proof of the main result Theorem 3.1.

– (ii) The term W ε would allow us to replace α with α̂ because lim
∫
W ε = η as

ε→ 0.
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– (iii) We have been able to replace the singular term V ε(a;m,n) with a less singular
term W̄ ε(a;m,n) =

∫
W ε(a + z;m,n)ζδ(ε)(z)dz, where δ(ε) = | log ε|−θ for some

θ > 1/2.

We are now in a position to explain the central role of the equation (4.11). Because
of the time average in

∫ t
0
Y 3
ε (s)ds, we are dealing with an expression which is almost

as smooth as A−1Y 3
ε . Of course A−1 is too complicated to use. The message behind

the equation (4.11) and its use is that we only need to consider 2-particles dynamics.
Namely, the fact that xi − xj is a diffusion with generator (d(mi) + d(mj))∆, and
that once a coagulation occurs with rate α(mi,mj) between the i-th and j-th particles,
(xi, xj) as a pair no longer exists and hence the dynamics of xi−xj has an infinitesimal
generator of a killed Brownian motion:

Γε = (d(m) + d(n))∆− α(m,n)Vε(·;m,n),

with m = mi and n = mj. Now the function uε = Γ−1
ε V ε is smoother than V ε and this

allows us to perturb its argument by a small vector z and obtain (4.8). By (iii), we are
now dealing W̄ ε in place of V ε. We note that W̄ ε = O(δ(ε)−d), and has a support of
diameter O(δ(ε)). To replace W̄ ε with W̃ ε(a;m,n) =

∫
W ε(a+ z;m,n)ζδ

′(ε)(z)dz, for
some δ′(ε) >> | log ε|−1/2, we almost repeat the formula (4.12) where V ε is replaced
with W̄ ε, and uε is replaced with vε which now solves

(4.17) (d(m) + d(n))∆vε(x;m,n) = α(m,n)W̄ ε(x;m,n).

This time we can show that various terms that appear in AGε are small provided that
|z| ≤ δ′(ε) for δ′ that is now can be chosen as large as | log log ε|−θ′

for any θ′ > 1/2. For
this step of the proof we show that all the error terms have small second moments, in
other words, a CLT is taking place and the errors have small variances. (See Section 7).

As a consequence of the main result of Section 7, we have the decomposition (4.15)
where δ(ε) is replaced with δ′(ε). We can now rigorously show that Λ3 is small by ig-
noring the time integration and showing that the integrand has a small second moment
with respect to the equilibrium measure. As for Λ1, we first carry out dz2 integration
and use the fact that lim

∫
W ε(a;m,n)da = η(m,n), as ε → 0. (This was proved as

Theorem 3.2 in [HR2].) After some straightforward manipulations,∫ t

0

∫∫
Λ1 dz1dz2ds =

[∫ t

0

ξn(t, J)ds

]
η(m,n)λm + Error2(ε).

As for Λ2, we first replace J(z1) with J(z2) for a small error because |z1 − z2| = O(ε).
We then integrate with respect to z1 and repeat our reasoning for Λ1 to obtain∫ t

0

∫∫
Λ2 dz1dz2ds =

[∫ t

0

ξm(s, J)ds

]
η(m,n)λn + Error3(ε).
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In summary

(4.18)

∫ t

0

Y 3
ε (s)ds =

1

2

∑
m,n

α̂(m,n)

∫ t

0

(ξm(s, J)λn+ ξn(s, J)λm)ds+Dε(t)+Error(ε)

for an error Error(ε) that goes to 0 on ε→ 0.

5 Regularity of the Coagulation Term, Part I

As we mentioned in Section 4, the main ingredient for the proof of Theorem 3.1 is the
statement (4.18). In this section this statement is partially established and the full
proof of of (4.18) will be achieved in Section 7.

We now prepare for the main result of this section, which will appear as Theorem 5.1 at
the end of the section. The proof of Theorem 5.1 will be given in Section 6. Note that
the function J in (4.1) is of compact support and satisfies

∫
J(x, n)dx = 0, for every n.

In fact we only need to consider J(x, n) = J̄(x)11(n = m̄) with
∫
J̄(x)dx = 0. Evidently

for such a function J , we have
∫
J(x, n)dx = 0 for every n. Note that J̃ of (4.7) is not

of compact support. However, for some positive l, we have that J̃(x,m, y, n) = 0, if
either m,n ≥ l or |xi|, |xj| ≥ l. Because of the Vε term in the definition of Y 3

ε , we may
replace J̃ with

Ĵ(xi,mi, xj,mj) = J̃(xi,mi, xj,mj)K(xi − xj),
for a smooth symmetric function K(a) of compact support which is 1 whenever |a| ≤ 1.
The advantage of Ĵ to J̃ is that the former is of compact support in the spatial variables.
Note however, the term Vε only implies that |xi−xj| ≤ c0εr(mi,mj) for a constant c0.
Hence such a replacement is valid only if c0εr(mi,mj) ≤ 1. This causes an error that
can be readily handled with the aid of our hypothesis (3.9). (See the first step of the
proof of Theorem 8.1 in Section 8.)

Recall that uε(x;m,n) solves

(d(m) + d(n))∆uε(x;m,n) = α(m,n)[Vε(x;m,n)uε(x;m,n) + V ε(x;m,n)]

where V ε(x;m,n) = ε−2V (x/ε;m,n), and Vε(x;m,n) = K−1
ε ε−2V (x/ε;m,n). Given

such a function uε, we define

(5.1) G(ω; z) = G(ω) = K−3/2
ε

∑
i,j

ûε(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj),

where ûε(a;m,n) = uε(a+ z;m,n)− uε(a;m,n). We have

G(ω(t)) = G(ω(0)) +

∫ t

0

AG(ω(s))ds+Mt
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where Mt is a martingale. We write

(5.2) AG = A0G+AcG+AfG =: H1 +H2 +H3.

We now study various terms which appeared on the right-hand side. We write Ĵx and
Ĵy for the derivatives of Ĵ with respect to its first and second spatial arguments. We
then write

H1 = H11 +H12 +H13,

with

H11(ω) = K−3/2
ε

∑
i,j

ûε(xi − xj;mi,mj)[(d(mi)∆xi
+ d(mj)∆xj

)Ĵ(xi,mi, xj,mj)]

H12(ω) = K−3/2
ε

∑
i,j

d(mi)û
ε
x(xi − xj;mi,mj) · Ĵx(xi,mi, xj,mj)

−K−3/2
ε

∑
i,j

d(mj)û
ε
x(xi − xj;mi,mj) · Ĵy(xi,mi, xj,mj)

=: H121(ω)−H122(ω),

H13(ω) = K−3/2
ε

∑
i,j

(d(mi) + d(mj))∆û
ε(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj)

=: Hz
13(ω)−H0

131(ω)−H0
132(ω)

where

Hz
13(ω) = K−3/2

ε

∑
i,j

α(mi,mj)W
ε(xi − xj + z;mi,mj)Ĵ(xi,mi, xj,mj)

with W ε(a;m,n) = uε(a;m,n)Vε(a;m,n) + V ε(a;m,n), and

H0
131(ω) = K−3/2

ε

∑
i,j

α(mi,mj)u
ε(xi − xj;mi,mj)Vε(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj),

H0
132(ω) = K−3/2

ε

∑
i,j

α(mi,mj)V
ε(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj).

We also write
H2 = H21 +H22, H21 = Hz

21 −H0
21,

with Hz
21(ω) given by

− 1

2
K−3/2
ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)[
uε(xi − xj + z;mi,mj)Ĵ(xi,mi, xj,mj) + uε(xj − xi + z;mi,mj)Ĵ(xj,mj, xi,mi)

]
= −K−3/2

ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)u
ε(xi − xj + z;mi,mj)Ĵ(xi,mi, xj,mj),
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Moreover,

H22(ω) =
1

2

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)K
−3/2
ε∑

k

{ mi

mi +mj

[ûε(xi − xk;mi +mj,mk)Ĵ(xi,mi +mj, xk,mk)

+ ûε(xk − xi,mk,mi +mj)Ĵ(xk,mk, xi,mi +mj)]

+
mi

mi +mj

[ûε(xj − xk;mi +mj,mk)Ĵ(xj,mi +mj, xk,mk)

+ ûε(xk − xj;mk,mi +mj)Ĵ(xk,mk, xj,mi +mj)]

− [ûε(xi − xk;mi,mn)Ĵ(xi,mi, xk,mk)

+ ûε(xk − xi;mk,mi)Ĵ(xk,mk, xi,mi)]

− [ûε(xj − xk;mj,mk)Ĵ(xj,mj, xk,mk)

+ ûε(xk − xj;mk,mj)Ĵ(xk,mk, xj,mj)]
}
.

The expression H22 arises from the changes in the function G when a coagulation
occurs due to the influence of the appearance and disappearance of particles on other
particles that are not directly involved. The expression H21 represents those terms in
G that are absent after a coagulation. Note that for our formula for H12, we used the
fact that K is symmetric and since V is symmetric, the function uε is also symmetric.

As for the fragmentation part of dynamics, we have

H3 = H31 +H32 +H33,

where H31 = H311 +H312, with

H311(ω) =
1

2

∫
K−3/2
ε

∑
i,j

mi−1∑
m=1

β(m,mi −m)V ε(xi − y;m,mi −m)[
ûε(xi − xj;m,mj)Ĵ(xi,m, xj,mj)− ûε(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj)

]
dy,

H312(ω) =
1

2

∫
K−3/2
ε

∑
i,j

mj−1∑
m=1

β(m,mj −m)V ε(xj − y;m,mj −m)[
ûε(xi − xj;mi,m)Ĵ(xi,mi, xj,m)− ûε(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj)

]
dy.
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We carry out dy integration and use symmetry to obtain that H31 = 2H311, where

H311(ω) =
1

2

∫
K−3/2
ε

∑
i,j

mi−1∑
m=1

β(m,mi −m)[
ûε(xi − xj;m,mj)Ĵ(xi,m, xj,mj)− ûε(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj)

]
.

Also, H32 = H321 +H322, with

H321(ω) =
1

2

∫
K−3/2
ε

∑
i,j

mi−1∑
m=1

β(m,mi −m)V ε(xi − y;m,mi −m)

ûε(y − xj;m,mj)Ĵ(y,m, xj,mj)dy,

H322(ω) =
1

2

∫
K−3/2
ε

∑
i,j

mj−1∑
m=1

β(m,mj −m)V ε(xj − y;m,mj −m)

ûε(xi − y;mi,m)Ĵ(xi,mi, y,m)dy,

and H33 = Hz
33 −H0

33, with

Hz
33(ω) =

∫
K−3/2
ε

∑
i

mi−1∑
m=1

β(m,mi −m)V ε(xi − y;m,mi −m)

uε(xi − y + z;m,mi −m)Ĵ(xi,m, y,mi −m) dy.

Note that H0
131 +H0

21 = 0. We may rewrite (5.2) as

(5.3) AG+ [H0
132 −Hz

13 +H0
33] = (H11 +H12) +Hz

21 + (H22 +H31 +H32) +Hz
33.

We are now ready to state the main result of this section.

Theorem 5.1 Let Ĵ be as above and assume that
√
ε < |z| < 1. Then

Eeq
ε

∣∣∣∣∫ t

0

AG(ω(s))ds+

∫ t

0

[H0
132(ω(s))−Hz

13(ω(s)) +H0
33(ω(s))]ds

∣∣∣∣
≤ C0t

[
K1/2
ε |z|| log |z||+K−1/2

ε | log |z||
]
.(5.4)

We establish Theorem 5.1 by examining various terms that appeared on the right-hand
side of (5.3). Indeed we show

(5.5) Eeq
ε |G(ω(t))||G(ω(0))| ≤ C ′0K

1/2
ε |z|,
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(5.6) Eeq
ε |H11(ω(s))| ≤ C ′0K

1/2
ε |z|,

(5.7) Eeq
ε |H12(ω(s))| ≤ C ′0K

1/2
ε |z|| log |z||,

(5.8) Eeq
ε |H22(ω(s))| ≤ C ′0K

1/2
ε |z|,

(5.9) Eeq
ε |H31(ω(s))| ≤ C ′0K

1/2
ε |z|,

(5.10) Eeq
ε |H32(ω(s))| ≤ C ′0K

1/2
ε |z|,

(5.11) Eeq
ε |Hz

21(ω(s))| ≤ C ′0K
−1/2
ε |log |z|| ,

(5.12) Eeq
ε |Hz

33(ω(s))| ≤ C ′0K
−1/2
ε |log |z|| .

Theorem 5.1 is an immediate consequence of (5.5-11). The bound (5.5) will be used
for the proof of Theorem 3.1.

As we mentioned in Section 4, our method of proof can be used to establish a law of
large number (LLN) for the expression

∫ t
0
K

1/2
ε Y 3

ε (s)ds with Y 3
ε as in (4.4). This can

be achieved as in [HR2] by using the regularity of the coagulation term and this time
z can be chosen to be any small vector. Moreover for J̃ , we may choose any smooth
function of compact support. Note that since we are at equilibrium, the proof of LLN
is much easier than what we have in [HR2] because all the correlation bounds needed

for the proof are trivially true. This would allow us to find the limit of
∫ t

0
K

1/2
ε Y 3

ε (s)ds
as ε→ 0. Since this limit is not random, the limit can be calculated by passing to the
limit in Eeq

ε

∫ t
0
K

1/2
ε Y 3

ε (s)ds = tEeq
ε K

1/2
ε Y 3

ε (0). In summary,

Lemma 5.1 Let K(x,m, y, n) by any smooth function of compact support. Then

(5.13) lim
ε→0

Eeq
ε

∣∣∣∣∫ t

0

Zε(ω(s))ds− tZ̄
∣∣∣∣ = 0,

where

Zε(ω) = K−2
ε

∑
i,j

α(mi,mj)V
ε(xi − xj;mi,mj)K(xi,mi, xj,mj),

Z̄ =
∑
m,n

λmλnα(m,n)

∫
K(x,m, x, n)dx.
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Lemma 5.1 will be needed in Section 8. In Section 8 we also need another LLN which
can be established with a similar argument. This time our Zε(ω) is given by

(5.14) K−2
ε

∑
i,j

d(mi)
(
K−1
ε |∇uε(xi − xj;mi,mj)|2

)
J̃(xi,mi, xi,mj)

211(|xi − xj| ≤ 1).

As we will see in Lemma 6.1 of Section 6, the function

W ε(a;m,n) = K−1
ε |∇uε(a;m,n)|211(|a| ≤ 1),

is almost as singular as V ε(a;m,n) because W ε(a;m,n) = O(ε−2K−1
ε ) when |a| ≤ ε.

However
∫
W εda stays bounded as ε → 0. We will calculate γ = limε→0

∫
W εda in

Section 8 (see the final step of the proof of (8.4).) We have,

Lemma 5.2 Let Zε be as in (5.14). Then (5.13) is true for

Z̄ =
∑
m,n

λmλnd(m)γ(m,n)

∫
J̃(x,m, x, n)2dx.

This lemma can be proved in a similar way. This time we start with a function
wε(x;m,n) that now solves

(d(m) + d(n))∆wε(x;m,n) = α(m,n)Vε(x;m,n)wε(x;m,n) + d(m)W ε(x;m,n),

and define

(5.15) G(ω) = K−2
ε

∑
i,j

ŵε(xi − xj;mi,mj)J̃(xi,mi, xi,mj)
2,

where ŵε(a;m,n) = wε(a + z;m,n) − wε(a;m,n). Again, using the same method of
proof as [HR2] we can show that the limit in (5.13) exists and then by taking the
expectation of Zε, we identify the limit.

6 Proof of Theorem 5.1

In this section, we establish (5.5)– (5.12). As a preliminary step, we state a lemma
about the regularity of the function uε. Recall that uε satisfies (4.11) or equivalently

(d(m) + d(n))∆xu
ε(x;m,n) = α(m,n)V ε(x;m,n)

[
| log ε|−1uε(x;m,n) + 1

]
,

26



In fact log ε ≤ uε and uε is given by

1

2π
α′(m,n)

∫
log |x− y|V ε(y;m,n)

[
| log ε|−1uε(y;m,n) + 1

]
dy,

where α′(m,n) = α(m,n)/(d(m) + d(n)).

To ease the notation, we do not display the dependence of α′(m,n) and r(m,n) on m
and n.

Lemma 6.1 There exist positive constants C1 and C2 such that for all x,

|uε(x;m,n)| ≤ C1α
′min

{
1 +

∣∣∣∣log
|x|
r

∣∣∣∣ , | log ε|
}
,(6.1)

|∇uε(x;m,n)| ≤ C1α
′min

{
|x|−1, (rε)−1

}
,(6.2)

and for |x| ≥ 2|z|+ C2rε,

(6.3) |∇uε(x+ z;m,n)−∇uε(x;m,n)| ≤ C1α
′|x|−2|z|.

Also, ∫
|a|≤l
|∇uε(a;m,n)|da ≤ C1α

′l,(6.4) ∫
|a|≤l
|ûε(a;m,n)|da ≤ C1α

′(l + |z|)|z|,(6.5) ∫
|a|≤l
|∇ûε(a;m,n)|da ≤ C1α

′ {|z| [| log(|z|+ rε)|+ 1 + log+ l
]

+ rε
}
,(6.6) ∫

|a|≤l
uε(a;m,n)2da ≤ C1α

′2

[
r2ε2| log ε|2 + l2

(
log+ l

r

)2

+ 1

]
,(6.7) ∫

|a|≤l
|∇uε(a;m,n)|2da ≤ C1α

′2
[
1 + log+ l

rε
+ r2

]
,(6.8)

Proof. The proofs of (6.1), (6.2) and (6.3) are omitted and can be found in Section
2.2 of [HR2]. Note however that in [HR2] we are assuming that χ = 0 and that
we were dealing with V ε(x) = ε−2V (x/ε) instead of (εr)−2V (x/(rε)). Since we have
uε(x;m,n) = vε(x/r) for r = r(m,n) and vε solving

(d(n) + d(m))∆vε(x) = α(m,n)V ε(x)
[
| log ε|−1vε(x) + 1

]
,

we can readily use the results of [HR2] to obtain (6.1), (6.2) and (6.3).

27



As for (6.4), we apply (6.2) to assert∫
|a|≤l
|∇uε(a;m,n)|da ≤ c1α

′
∫
|a|≤l

min
{
|a|−1, (rε)−1

}
da ≤ c2α

′l.

As for (6.5), we simply write,∫
|a|≤l
|ûε(a;m,n)|da =

∫
|a|≤l

∣∣∣∣∫ 1

0

∇uε(a+ tz;m,n) · zdt
∣∣∣∣ da

≤ |z|
∫
|a|≤l+|z|

|∇uε(a;m,n)|da,

and apply (6.4).

As for (6.6), we use (6.3) and (6.4) to write∫
|∇ûε(a;m,n)|da ≤

∫
|a|≤2|z|+C2rε

|∇ûε(a;m,n)|da

+ C1

∫
2|z|+C2rε≤|a|≤l

α′|a|−2|z|da

≤ c2α
′ [(|z|+ rε) + |z|| log(|z|+ rε)|+ |z|| log l|] .

For the proof of (6.7), let us write A(l;m,n) for the left-hand side of (6.7). We use
(6.1) to assert that if l ≤ εr, then

A(l;m,n) ≤ c2l
2α′2| log ε|2 ≤ c2α

′2r2ε2| log ε|2,

and if εr < l, then A(l;m,n) is bounded above by

c3α
′2
[
r2ε2| log ε|2 +

∫
11(|a| ∈ (εr, l))

∣∣∣∣log
|a|
r

∣∣∣∣ da]
≤ c4α

′2

[
r2ε2| log ε|2 + l2

∣∣∣∣log
l

r

∣∣∣∣2 + 1

]
,

completing the proof of (6.7). In the same fashion, we can readily establish (6.8).

�

Proof of (5.5), (5.6) and (5.7). We omit the proof of (5.6) because its proof is very
similar to the proof of (5.5).
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Evidently

Eeq
ε |G(ω(0))| ≤ c1K

1/2
ε

∫
|a|≤1

∑
m,n

λmλn|ûε(a;m,n)|da

≤ c2K
1/2
ε |z|

∑
m,n

α′(m,n)λmλn ≤ c3K
1/2
ε |z|,

where we used (6.5) and (3.10) for the the second and third inequalities respectively.
This proves (5.5).

We now turn to the proof of (5.7). We certainly have

Eeq
ε |H12(ω(0))| ≤c1K

1/2
ε

∫
|a|≤1

∑
m,n

λmλn|∇ûε(a;m,n)|da

≤ c2K
1/2
ε

∑
m,n

α′(m,n) (r(m,n)ε+ |z| log(|z|+ r(m,n)ε))λmλn

≤ c3K
1/2
ε |z|| log |z||,

by (6.6) of Lemmas 6.2. We now use (3.10) to deduce (5.7). �

Proof of (5.8). Evidently the expression Eeq
ε |H22(ω(0))| is bounded by

c1K
1/2
ε

∫ ∫
|a|≤1

∑
m,n,p

α(m,n)V ε(b;m,n) (|ûε(a;m, p)|+ |ûε(a;m+ n, p)|)λmλnλpdadb

≤ c2K
1/2
ε |z|

∑
m,n,p

α(m,n)(α′(n, p) + α′(m+ n, p))λmλnλp ≤ c3K
1/2
ε |z|,

where we used (6.5) and (3.10) for the the second and third inequalities respectively.
This proves (5.8). �

Proof of (5.9) and (5.10). We start with the proof (5.9). We have H311 = H3111 −
H3112, where

H3112(ω) =
1

2

∫
K−3/2
ε

∑
i,j

mi−1∑
m=1

β′(mi)û
ε(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj),

with

β′(mi) =

mi−1∑
m=1

β(m,mi −m).

29



Repeating the proof of (5.5) yields that Eeq
ε |H3112(ω(0))| ≤ c1K

1/2
ε |z|. The term H3111

is treated in the same fashion:

Eeq
ε |H3111(ω(0))| ≤ c2K

1/2
ε |z|

∑
n,p

n−1∑
m=1

β(m,n−m)(a(p) + a(m))λpλn ≤ c3K
1/2
ε |z|.

This completes the proof of (5.9).

We now turn to the proof of (5.10). The terms H321 and H322 are similar and both can
be treated as (5.9). We only treat the latter. We certainly have that Eeq

ε |H321(ω(0))|
is bounded by

c1

∫
K1/2
ε

∑
n,p

n−1∑
m=1

β(m,n−m)

∫
V ε(a− y;m,n−m)|ûε(y − b;m, p)|

11(|y − b| ≤ 1, |y|, |b| ≤ l)dadbdy

= c1

∫
K1/2
ε

∑
n,p

n−1∑
m=1

β(m,n−m)

∫
|ûε(y − b;m, p)|11(|y − b| ≤ 1, |y| ≤ l)dbdy

≤ c2K
1/2
ε |z|

∑
n,p

n−1∑
m=1

β(m,n−m)(a(p) + a(m))λpλn ≤ c3K
1/2
ε |z|,

completing proof of (5.10). �

Proof of (5.11) and (5.12). We certainly have that the term Eeq
ε |Hz

21(ω)| is bounded
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above by

c1Eeq
ε K

−3/2
ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)|uε(xi − xj + z;mi,mj)|11(|xi| ≤ l)

≤ c2K
−1/2
ε

∑
m,n

α(m,n)α′(m,n)

∣∣∣∣log
c2|z|
r(m,n)

∣∣∣∣ 11(εr(m,n) ≤ |z|)λmλn

+ c2K
1/2
ε

∑
m,n

α(m,n)α′(m,n)λmλn11(εr(m,n) > |z|)

≤ c3K
−1/2
ε | log |z||+ c3K

−1/2
ε

∑
m,n

α(m,n)α′(m,n) log r(m,n) λmλn

+ c3K
1/2
ε

∑
n

a(n)2λn11(εr(n) > |z|)

≤ c3K
−1/2
ε | log |z||+ c4K

−1/2
ε

∑
n

a(n)2 log n λn + c4K
1/2
ε

∑
n

a(n)211(εr(n) > |z|)λn

≤ c3K
−1/2
ε | log |z||+ c5K

1/2
ε

(
log
|z|
ε

)−1∑
n

a(n)2 log n λn

≤ c3K
−1/2
ε | log |z||+ c5K

−1
ε ,

where we used Lemma 6.1 for the first inequality. This completes the proof of (5.11).

Similarly the term Eeq
ε |Hz

33(ω)| is bounded above by

c1Eeq
ε

∫
K−3/2
ε

∑
i

mi−1∑
m=1

β(m,mi −m)V ε(xi − y;m,mi −m)

|uε(xi − y + z;m,mi −m)|11(|xi| ≤ l)dy

≤ c2K
−1/2
ε

∑
n

n−1∑
m=1

β(m,n−m)α′(m,n−m)∣∣∣∣log
c2|z|

r(m,n−m)

∣∣∣∣ 11(εr(m,n−m) ≤ |z|)λn

+ c2K
1/2
ε

∑
n

n−1∑
m=1

β(m,n−m)α′(m,n−m)11(εr(m,n−m) > |z|)λn

≤ c3K
−1/2
ε | log |z||+ c3K

−1
ε .

This completes the proof of (5.12). �
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7 Regularity of the Coagulation Term, Part II

As we explained in Section 4, one of the main step of the proof of Theorem 3.1 is the
replacement of the expression V ε(·) in the collision term H0

132 with a more manageable
expression W ε(·+z) for small z. Ultimately we average out W ε(·+z) over z and apply
a CLT. For this to succeed, we need to make sure that we can afford a small z which
is as big as | log ε|−a for some a < 1/2. In Section 5, we used the auxiliary function G
in order to relate H132 to Hz

13 provided that |z| is of order δ(ε) = | log ε|−θ for θ > 1/2.
In this section, we would like to fill the gap by showing that in fact z can be chosen so
that |z| is as large as δ′(ε) = | log log ε|−θ′

provided that θ′ ∈ (0, 1/2). To achieve this,
we fix a θ ∈ (0, 1/2) and set H̄13(ω) to be equal∫

Hz
13(ω)ζδ(ε)(z)dz = K−3/2

ε

∑
i,j

α(mi,mj)W̄
ε(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj),

where W̄ ε(a;m,n) =
∫
W (a + z;m,n)ζδ(ε)(z)dz and W ε was defined by (4.13). First

observe that there exists a constant c1 such that the function W̄ ε has a support that
is contained in a ball of center 0 and radius δ(ε;m,n) = c1δ(ε) + r(m,n)ε. For our
purposes, it is more convenient to assume that r(m,n)ε ≤ δ(ε) so that for a constant
c2, the support W̄ ε is contained in a ball of center 0 and radius c2δ(ε), with c2 = c1 +1,
and that |W̄ ε| ≤ c2δ(ε)

−2. Such a restriction causes a small error. Indeed, if we set

(7.1) H̄ ′13(ω) := K−3/2
ε

∑
i,j

α(mi,mj)W̄
ε(xi − xj;mi,mj)J̄(xi,mi, xj,mj),

with
J̄(xi,mi, xj,mj) = J̃(xi,mi, xj,mj)11(r(m,n)ε ≤ δ(ε)),

then

Eeq
ε |H̄ ′13(ω)− H̄13(ω)| ≤ c1K

1/2
ε

∑
m,n

α(m,n)λmλn11(r(m,n)ε > δ(ε))

≤ c2K
1/2
ε

∑
n

a(n)λn11(2r(n)ε > δ(ε)),(7.2)

which goes to 0 by to our assumption (3.9).

Define vε by

(7.3) vε(x;m,n) =
1

2π

∫
log |x− y|W̄ ε(y;m,n)dy.
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We then set

(7.4) G′(ω; z) = G′(ω) = K−3/2
ε

∑
i,j

q̂ε(xi − xj;mi,mj)J̄(xi,mi, xj,mj),

where q̂ε(a;m,n) = vε(a+ z;m,n)K(a+ z)− vε(a;m,n)K(a). We have

G′(ω(t)) = G′(ω(0)) +

∫ t

0

AG′(ω(s))ds+M ′
t

where M ′
t is a martingale. Note that G′ is very similar to G of Section 5; û is replaced

with q̂ and J̄ is replaced with J̃ . The latter difference has to do with the fact that now
the function K appears in the definition of q̂ and we no longer need to multiply J̃ with
a cut-off function. We write

(7.5) AG′ = A0G
′ +AcG′ +AfG′ =: H ′1 +H ′2 +H ′3.

We now study various terms which appeared on the right-hand side. We write

H ′1 = H ′11 +H ′12 +H ′13,

We do not repeat the definition of various H ′-expressions which are all correspond
to H-expressions of Section 5. However, since vε satisfies (7.3), we have a different
decomposition for H ′13. The decomposition

∆q̂ε(a;m,n) = ∆vε(a+ z;m,n)K(a+ z)−∆vε(a;m,n)K(a)

+∇vε(a+ z;m,n) · ∇K(a+ z)−∇vε(a;m,n) · ∇K(a)

+ vε(a+ z;m,n)∆K(a+ z)− vε(a;m,n)∆K(a)

=: qε1(a;m,n) + qε2(a;m,n) + qε3(a;m,n),

results in a decomposition

H ′13 = H ′131 +H ′132 +H ′133,

where
H ′13r = K−3/2

ε

∑
i,j

q̂εr(xi − xj;mi,mj)J̃(xi,mi, xj,mj).

We may rewrite (7.5) as∫ t

0

H ′131(ω(s))ds = G(ω(t))−G(ω(0))−M ′
t

−
∫ t

0

(H ′11 +H ′12 +H ′132 +H ′133 +H ′2 +H ′3)(ω(s))ds.(7.6)

We are now ready to state the main result of this section.
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Theorem 7.1 Assume that δ(ε) < |z| < 1. Then

Eeq
ε

∣∣∣∣∫ t

0

H ′131(ω(s))ds

∣∣∣∣ ≤ C0(t+ 1)
[
|z|+K−1/2

ε

]
| log δ(ε)|1/2.

Remark 7.1. With the aid of this theorem, we can readily improve the z-average
from |z| = O(δ(ε)) to |z| = O(δ′(ε)). Indeed H ′131 is given by

K−3/2
ε

∑
i,j

W̄ ε(xi − xj + z;mi,mj)K(xi − xj + z)J̄(xi,mi, xj,mj)− H̄ ′13,

and by (7.2), the term H̄ ′13 can be replaced with H̄13, for an error that goes to 0 as
ε → 0. From this and Theorem 7.1 we deduce that H̄13 =

∫
Hz

13(ω)ζδ(ε)(z)dz can be
replaced with

K−3/2
ε

∑
i,j

W̄ ε(xi − xj + z;mi,mj)K(xi − xj + z)J̃(xi,mi, xj,mj),

so long as |z| = δ′(ε).

We establish Theorem 7.1 by examining various terms that appeared on the right-hand
side of (7.6). Indeed we show

(7.7) Eeq
ε |G′(ω(t))| ≤ C ′0

(
K−1/2
ε + |z|

)
,

(7.8) Eeq
ε |(H ′11 +H ′133)(ω(s))| ≤ C ′0

(
K−1/2
ε + |z|

)
,

(7.9) Eeq
ε |(H ′12 +H ′132)(ω(s))| ≤ C ′0K

1/2
ε |z|| log |z||,

(7.10) Eeq
ε |H ′22(ω(s))| ≤ C ′0|z|| log δ(ε)|1/2,

(7.11) Eeq
ε |(H ′31 +H ′32)(ω(s))| ≤ C ′0

(
K−1/2
ε + |z|

)
,

(7.12) Eeq
ε |(H ′21 +H ′33)(ω(s))| ≤ C ′0K

−1/2
ε |log δ(ε)| ,

(7.13) Eeq
ε [M ′

t ]
2 ≤ C ′0t

(
K−1
ε δ(ε) + |z|2(log |z|)2

)
.

To prepare for the proof of Theorem 7.1, we start with an elementary lemma.
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Lemma 7.1 Assume that
∫
G(x, y,m, n)dxdy = 0, for every m,n ∈ N. Then

∫
Y 2dνλλλ =

Z1 + Z2 + Z3, where

Z1 = N(N − 1)(N − 2)

∫ ∑
n1,n2,n3

G(y1, y2, n1, n2)G(y1, y3, n1, n3)λn1λn2λn3dy1dy2dy3,

Z2 = N(N − 1)(N − 2)

∫ ∑
n1,n2,n3

G(y1, y2, n1, n2)G(y3, y2, n3, n1)λn1λn2λn3dy1dy2dy3,

Z3 = N(N − 1)

∫ ∑
n1,n2

G(y1, y2, n1, n2)2dy1dy2λn1λn2 .

The straightforward proof of Lemma 7.1 is omitted. See also Lemma 3.3 of [R1] where
a similar lemma is proved. As our next lemma we state some bounds on the function
vε. The proof of this lemma is omitted because it is identical to the proof of Lemma 6.1.

Lemma 7.2 There exist positive constants C1 and C2 such that for all x,

|vε(x;m,n)| ≤ C1α
′min {1 + |log |x|| , | log δ(ε)|} ,(7.14)

|∇vε(x;m,n)| ≤ C1α
′min

{
|x|−1, δ(ε)−1

}
,(7.15)

and for |x| ≥ 2|z|+ C2δ(ε),

(7.16) |∇vε(x+ z;m,n)−∇vε(x;m,n)| ≤ C1γ(ε;m,n)α′|x|−2|z|.

Also, ∫
|∇qε(a;m,n)|da ≤ C1α

′,(7.17) ∫
|q̂ε(a;m,n)|da ≤ C1α

′|z|,(7.18) ∫
|∇q̂ε(a;m,n)|dx ≤ C1α

′ {|z|[| log(|z|+ δ(ε))|+ 1] + δ(ε)} ,(7.19) ∫
qε(a;m,n)2da ≤ C1α

′2,(7.20) ∫
|∇qε(a;m,n)|2da ≤ C1α

′| log δ(ε)|,(7.21)

Proof of (7.7) and (7.8). We only prove (7.7) because (7.8) can be proved by a
verbatim argument. To apply Lemma 7.1, we need to check that for every n1 and n2,

(7.22)

∫
q̂ε(y1 − y2;n1, n2)J̃(y1, n1, y2, n2)dy1dy2 = 0.
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We certainly have∫
q̂ε(y1 − y2;n1, n2)J(y1, n1)dy1dy2 =

∫
J(y, n1)dy

∫
q̂ε(a;n1, n2)da = 0.

The same is true if we replace J(y1, n1) with J(y1, n1 + n2). This completes the proof
of (7.22). In view of Lemma 7.1,

Eeq
ε G

′2(ω(0)) =

∫
G′2(ω)νλλλ(dω) = R1 +R2 +R3,

with

R1 = Kε(Kε − 1)(Kε − 2)K−3
ε

∫ ∑
n1,n2,n3

q̂ε(y1 − y2;n1, n2)q̂ε(y1 − y3;n1, n3)

J̄(y1, n1, y2, n2)J̄(y1, n1, y3, n3)λn1λn2λn3dy1dy2dy3

R3 = Kε(Kε − 1)K−3
ε

∫ ∑
n1,n2

q̂ε(y1 − y2;n1, n2)2J̄2(y1, n1, y2, n2)λn1λn2dy1dy2

and R2 is given by an expression similar to R1.

We start with bounding R3. We certainly have

R3 ≤ c1K
−1
ε

∫ ∑
n1,n2

λn1λn2

[
qε(a;n1, n2)2 + qε(a+ z;n1, n2)2

]
da.

By Lemmas 7.2,

(7.23) R3 ≤ c2K
−1
ε

∑
n1,n2

α′(n1, n2)2λn1λn2 ≤ c3K
−1
ε

∑
n

a(n)2λn ≤ c4K
−1
ε .

We now turn to R1. First observe that R1 ≤ R′1, where

R′1 = c1

∑
n1,n2,n3

λn1λn2λn3

∫
|q̂ε(a;n1, n2)|da

∫
|q̂ε(a;n1, n3)|da.

By Lemma 7.2 we deduce

(7.24) R11 ≤ c1|z|2
∑
n

a(n)2λn ≤ c2|z|2.

From this and (7.23) we deduce (7.7). �
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Proof of (7.9). Since H ′12 is very similar to H ′132, we only establish (7.9) for H ′12. In
view of Lemma 7.1,

Eeq
ε H

′2
12(ω(0)) = R1 +R2 +R3,

with

R1 = Kε(Kε − 1)(Kε − 2)K−3
ε

∫ ∑
n1,n2,n3

∇q̂ε(y1 − y2;n1, n2) · ∇q̂ε(y1 − y3;n1, n3)

J̄(y1, n1, y2, n2)J̄(y1, n1, y3, n3)λn1λn2λn3dy1dy2dy3

R3 = Kε(Kε − 1)K−3
ε

∫ ∑
n1,n2

|∇q̂ε(y1 − y2;n1, n2)|2J̄2(y1, n1, y2, n2)λn1λn2dy1dy2

and R2 is given by an expression similar to R1.

We start with bounding R3. We certainly have

R3 ≤ c1K
−1
ε

∫ ∑
n1,n2

λn1λn2

[
|∇qε(a;n1, n2)|2 + |∇qε(a+ z;n1, n2)|2

]
da.

By Lemmas 7.2,

R3 ≤ c2| log δ(ε)|K−1
ε

∑
n1,n2

α′(n1, n2)2λn1λn2

≤ c3K
−1
ε | log δ(ε)|

∑
n

a(n)2λn ≤ c4K
−1
ε | log δ(ε)|.(7.25)

We now turn to R1. First observe that R1 ≤ R′1, where

R′1 = c1

∑
n1,n2,n3

λn1λn2λn3

∫
|q̂ε(a;n1, n2)|da

∫
|q̂ε(a;n1, n3)|da.

By Lemma 7.2 we deduce

(7.26) R1 ≤ c1|z|2
∑

n1,n2,n3

α′(n1, n2)α′(n1, n3)λn1λn2λn3 ≤ c2|z|2.

From this and (7.25) we deduce (7.9). �

Proof of (7.11). As in the proof of (5.8) and (5.9), we have that H ′31 = 2H ′311,
H ′311 = H ′3111 −H ′3112, where

H ′3112(ω) =
1

2
K−3/2
ε

∑
i,j

β′(mi)q̂
ε(xi − xj;mi,mj)J̃(xi,mi, xj,mj).
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Repeating the proof of (7.9) yields

Eε
eq [H ′3112(ω(s))]

2 ≤ c3(|z|2 +K−1
ε ).

The term H ′3111 is handled in just the same way we handle H ′32 below.

We now turn to H ′32. The terms H ′321 and H ′322 are similar and both can be treated as
(7.11). We only treat the latter. We apply Lemma 7.1 for G(xi, xj,mi,mj) given by

1

2

∫ mj−1∑
m=1

β(m,mj −m)V ε(xj − y;m,mj −m)q̂ε(xi − y;mi,m)J̄(xi,mi, y,m)dy.

As a result,
Eeq
ε [H322(ω(0))]2 = R1 +R2 +R3,

with R1, R2, and R3 corresponding to Z1, Z2, and Z3 in Lemma 7.1.

We first treat R3. For this term we need to bound |G(xi, xj,mi,mj)|. In this case we
simply move the absolute value inside the summation and replace |q̂ε(a;mi,m)| with
a constant multiple of |qε(a;mi,m)|+ |qε(a+ z;mi,m)|. We then apply Lemma 6.1 to
assert

|G(xi, xj,mi,mj)| ≤ S(xi − xj,mi,mj) + S(xi − xj + z,mi,mj),

with S(a, p, n) given by

c2

∫ n−1∑
0

β(m,n−m)V ε(y;m,n−m)α′(p,m) min {| log δ(ε)|, | log |a+ y||} 11(|a| ≤ 2)dy.

We have that there exists constants c3 and c4 such that

S(a, p, n) ≤

{
c3

∑n−1
0 β(m,n−m)α′(p,m)(| log |a||+ 1), if |a| ≥ c4(r(n)ε+ δ(ε)),

c3

∑n−1
0 β(m,n−m)α′(p,m)| log δ(ε)|, otherwise.

From this we can readily deduce that R3 ≤ c5K
−1
ε , as in the proof of (7.11). (Note that∑n−1

0 β(m,n−m)α′(p,m) ≤ (a(n) + a(p))β′(n) because by our choice, the function a
is non-decreasing.)

We now turn to R1 and R2. We certainly have that |G(xi, xj,mi,mj)| is bounded above
by

|z|
∫ 1

0

∫ mj−1∑
m=1

β(m,mj−m)V ε(xj−y;m,mj−m)|∇qε(xi−y+tz;mi,m)J̄(xi,mi, y,m)|dydt.
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We then apply Lemma 7.2 to assert

|G(xi, xj,mi,mj)| ≤ |z|
∫ 1

0

L(xi − xj + tz,mi,mj)dt,

with L(a, p, n) given by

c5

∫ n−1∑
0

β(m,n−m)V ε(y;m,n−m)α′(p,m)

min
{
δ(ε)−1, |a+ y|−1

}
11(|a| ≤ 2)dy.

Again we can readily show

L(a, n) ≤

{
c3

∑n−1
0 α′(m,n)β(m,n−m)|a|−1, if |a| ≥ c4(r(n)ε+ δ(ε)),

c3

∑n−1
0 α′(m,n)β(m,n−m)δ(ε)−1, otherwise.

Repeating the proof of (7.7) yields that R1 + R2 ≤ c7|z|2, completing the proof of
(7.11). �

Proof of (7.12). We only establish (7.12) for H ′21 because H ′33 can be treated by an
identical argument. Choose c1 so that V (a) = 0 if |a| > c1. We certainly have that the
expression Eeq

ε |Hz
21(ω)| is bounded above by

Eeq
ε K

−3/2
ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)|q̂ε(xi − xj + z;mi,mj)|

≤ c1| log δ(ε)|K−1/2
ε

∑
m,n

α(m,n)α′(m,n)λmλn

≤ c2| log δ(ε)|K−1/2
ε ,

where we used Lemma 6.1 for the first inequality. This completes the proof of (7.12).
�

Proof of (7.10). We note that H ′22 is a sum of eight terms H ′22i, i = 1, . . . , 8, and
we establish (7.10) by showing the analogous bound for each H ′22i. Since all the eight
terms can be treated in the same way, we only treat the sixth term which is given by

H ′226(ω) =
1

2
K−3/2
ε

∑
i,j,k

α(mi,mj)Vε(xi−xj;mi,mj)q
ε(xk−xi;mk,mi)J̄(xk,mk, xi,mi).

We note that J̄ is a sum of 4 terms which yields a decomposition

(7.27) H ′226 = H ′2261 +H ′2262 −H ′2263 −H ′2264.
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Again all the 4 terms can be treated in the same way, so we only treat H ′2264 which is
given by

1

2
K−3/2
ε

∑
i,j,k

α(mi,mj)Vε(xi − xj;mi,mj)q̃
ε(xk − xi;mk,mi)J(xi,mi),

where q̃(a;mk,mi) = q̂(a;mk,mi)11(r(mi,mk)ε ≤ δ(ε)). We use the elementary in-
equality |a| ≤ δ + δ−1a2 to assert

(7.28) |H ′2264| ≤ H ′22641 +H ′22642,

where H ′22641 and H ′22642 are respectively given by

δ

2
K−1
ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)|J(xi,mi)|

δ−1

2
K−1
ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)|J(xi,mi)|

[
K−1/2
ε

∑
k

q̃ε(xk − xi;mk,mi)

]2

.

Evidently, Eε
eqH

′
22641 ≤ c1δ, for some constant c1. Moreover, by squaring the expression

in the brackets, we learn that H ′22642 = H ′226421 +H ′226422, where

H ′226421 =δ−1K−2
ε

∑
i,j,k

α(mi,mj)Vε(xi − xj;mi,mj)|J(xi,mi)| q̃ε(xk − xi;mk,mi)
2,

H ′226422 =δ−1K−2
ε

∑
i,j, k 6=l

α(mi,mj)Vε(xi − xj;mi,mj)|J(xi,mi)|

q̃ε(xk − xi;mk,mi)q̃
ε(xl − xi;ml,mi).

Becasue of our choice of q̃, we have that
∫
q̃(a;m,n)da = 0. As a consequence,

(7.29) Eε
eqH

′
226422 = 0.

We certainly have that Eε
eqH

′
226421 is bounded above by

c2δ
−1Kε

∑
n1,n2,n3

α(n1, n2)λn1λn2λn3

∫
Vε(a;n1, n2)da

∫
q̂ε(b;n3, n1)2db

= c2δ
−1

∑
n1,n2,n3

α(n1, n2)λn1λn2λn3

∫
q̂ε(b;n3, n1)2db.

On the other hand, by Lemma 7.2,∫
q̂ε(b;n3, n1)2db ≤ |z|2

∫
∇qε(b;n3, n1)|2db ≤ c3α

′(n3, n1)2| log δ(ε)||z|2.
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As a result, Eε
eqH

′
226421 is bounded above by

c4δ
−1|z|2| log δ(ε)|

∑
n1,n2,n3

α(n1, n2)α′(n3, n1)2λn1λn2λn3 ≤ c5δ
−1|z|2| log δ(ε)|.

In summary, from this (7.28), and (7.29) we deduce

Eε
eq |H ′2264| ≤ c1δ + c5δ

−1|z|2| log δ(ε)|.

By choosing δ = |z|| log δ(ε)|1/2 we deduce (7.10). �

Proof of (7.13). As it is well-known,

Eeq
ε [M ′

t ]
2 = Eeq

ε

∫ t

0

(AG′ − 2G′AG′)(ω(s))ds = t(Z1 + Z2 + Z3),

where

Z1 = 2Eeq
ε (A0G

′ − 2G′A0G
′)(ω),

Z2 = Eeq
ε (AcG′ − 2G′AcG′)(ω),

Z3 = Eeq
ε (AfG′ − 2G′AfG′)(ω).

We start with bounding Z1:

Z1 = K−3
ε Eeq

ε

∑
i

d(mi)|∇xi
G′(ω)|2 ≤ Z11 + Z12 + Z13 + Z14,

where

Z11 =4K−3
ε Eeq

ε

∑
i

d(mi)

∣∣∣∣∣∑
j

∇q̂ε(xi − xj;mi,mj)J̄(xi,mi, xj,mj)

∣∣∣∣∣
2

Z12 =4K−3
ε Eeq

ε

∑
i

d(mi)

∣∣∣∣∣∑
j

q̂ε(xi − xj,mi,mj)∇xi
J̄(xi,mi, xj,mj)

∣∣∣∣∣
2

.

The term Z13 and Z14 are given by similar expression; xi and xj are swapped inside the
absolute values. We only bound Z11 because Z11 involves ∇q̂ε which is more singular
than q̂ε. The remaining Z1r can be bounded in a similar way. Squaring yields

Z11 ≤ 4K−3
ε Eeq

ε

∑
i

d(mi)
∑
j 6=k

∇q̂ε(xi − xj;mi,mj) · ∇q̂ε(xi − xk;mi,mk)

J̄(xi,mi, xj,mj)J̄(xi,mi, xk,mk)

+ 4K−3
ε Eeq

ε

∑
i

d(mi)
∑
j

|∇q̂ε(xi − xj;mi,mj)|2J̄(xi,mi, xj,mj)
2

=: Z111 + Z112.
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Use Lemma 7.2 to deduce

Z112 ≤ c1K
−1
ε | log δ(ε)|

∑
n1,n2

d(n1)α′(n1, n2)2λn1λn2 ≤ c2K
−1
ε | log δ(ε)|.

We now turn to Z111. By Lemma 7.2,

Z111 ≤ c1

∑
n1,n2,n3

d(n1) [|z|| log |z||+ δ(ε)]2 α′(n1, n2)α′(n1, n3)λn1λn2λn3

≤ c2 [|z|| log |z||+ δ(ε)]2 ≤ 4c2 [|z|| log |z||]2 .

In summary

(7.30) Z1 ≤ c3K
−1
ε | log δ(ε)|+ c3[|z|| log |z||]2.

We now look at Z2. We have

Z2 =
1

2
K−3
ε Eeq

ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)

{∑
k

[
Γi,j(0) +

8∑
p=1

Γi,j,k(p)

]}2

where
∑8

p=1 Γi,j,k(p) represents the eight terms that appeared in the definition of H̄ ′22

and Γi,j(0) = −q̂ε(xi − xj;mi,mj)J̄(xi,mi, xj,mj). An application of the inequality(
8∑
p=0

ap

)2

≤ 9
8∑
p=0

a2
p,

yields that Z2 is bounded by

9

2
K−3
ε Eeq

ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)

Γi,j(0)2 +
8∑
p=1

(∑
k

Γi,j,k(p)

)2
 =:

8∑
p=0

Z2p

with for example,

Z28 ≤
9

2
Eeq
ε K

−3
ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)[∑
k

q̂ε(xk − xj;mk,mj)J̄(xk,mk, xj,mj)

]2

.
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We only treat Z20 and Z28 as the other terms Z2r for r = 1, . . . , 7 can be treated as
Z28. We have Z28 = Z281 + Z282 where

Z281 =
9

2
Eeq
ε K−3

ε

∑
i,j

Vε(xi − xj;mi,mj)α(mi,mj)∑
k 6=l

q̂ε(xk − xj;mk,mj)q̂
ε(xl − xj;ml,mj)J̄(xk,mk, xj,mj)J̄(xl,ml, xj,mj),

Z282 =
9

2
Eeq
ε K−3

ε

∑
i,j

Vε(xi − xj;mi,mj)α(mi,mj)∑
k

q̂ε(xk − xj;mk,mj)
2J̄(xk,mk, xj,mj)

2.

We start with the former

Z281 ≤ c1

∑
n1,n2,n3,n4

α(n1, n2)λn1λn2λn3λn4

∫
|q̂ε(a;n3, n2)|da

∫
|q̂ε(a;n4, n2)|da ≤ c2|z|2.

As for Z282 we have

Z282 ≤ c1K
−1
ε

∑
n1,n2,n3

α(n1, n2)

∫
q̂ε(a;n3, n2)2daλn1λn2λn3 ≤ c2K

−1
ε .

Finally

Z280 ≤ c1K
−2
ε

∑
n1,n2

α(n1, n2)λn1λn2

∫
q̂ε(a;n1, n2)2da ≤ c2K

−2
ε .

In summary,

(7.31) Z2 ≤ c1

(
K−1
ε + |z|2

)
.

We now turn to Z3. We have

Z3 =
1

2
Eeq
ε K

−3
ε

∑
i

mi−1∑
m=1

β(m,mi −m)

∫
V ε(xi − y;mi −m,m)[

Γi(y,m) +
4∑
p=1

Γi(p; y,m)

]2

dy

where for example

Γi(y,m) = q̂ε(xi − y;m,mi −m)J̄(xi,m,mi −m, y),

Γi(3; y,m) =
∑
j

q̄ε(y − xj;m,mj)J̄(y,m, xj,mj).
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Again Z3 ≤ 5
∑4

0 Z3r with for example

Z33 =
5

2
Eeq
ε K

−3
ε

∑
i

mi−1∑
m=1

β(m,mi −m)

∫
V ε(xi − y;mi −m,m)Γi(3; y,m)2dy.

We can now repeat the line of argument we had for Z2 by squaring out Γi and use
Lemma 7.2 to get

(7.32) Z3 ≤ c1

(
K−1
ε + |z|2

)
.

From (7.30), (7.31) and (7.32) we deduce (7.13). �

8 Kinetic Limit

In this section we establish the main claim of Theorem 3.1. We now state the martin-
gale formulation of the Ornstein–Uhlenbeck diffusion which uniquely determines the
solution of the equation (3.13).

Definition 8.1. We say ξ is a solution of (3.13) if for any smooth function J of
compact support with

∫
J = 0, the following processes are martingales:

MJ(t) = M(t) = ξ(t, J)− ξ(0, J)−
∫ t

0

Γξ(s, J)ds,

NJ(t) = N(t) = M(t)2 − tA(J).

Here J = (Jn : n ∈ N) with Jn : Rd → R and
∫
Jn(x)dx = 0, Γ = Γ0 + Γc + Γf , and

ξ(t, J) =
∑
n

ξn(t, Jn),

Γ0ξ(t, J) =
∑
n

d(n)ξn(t,∆xJn)

Γcξ(t, J) =
∑
m,n

α̂(m,n)λnξn(t, Jn+m − Jn − Jm)

Γf (ξ, J) =
∑
m,n

β̂(m,n)ξn(t, Jn + Jm − Jn+m),

A(J) = 2

∫ ∑
n

d(n)λn|∇xJn|2dx+
1

2

∫ ∑
m,n

α̂(m,n)λnλm(Jn+m − Jn − Jm)2dx

+
1

2

∫ ∑
m,n

β̂(m,n)λn+m(Jn+m − Jn − Jm)2dx.
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We note that the last two terms in the definition of A(J) are equal by the detailed
balance assumption.

Ideally, we would like to show that the family Pε is tight as ε→ 0 and that any limit
point solves (3.13). Unfortunately we have not been able to establish the tightness and
the difficulty comes from two error terms which go to 0 as ε → 0 for each t. More
precisely, let us define ξ′(t, J) = ξ(t, J) + ξ′′(t, J), where

ξ(t, J) = K1/2
ε

∑
i

J(xi(t),mi(t)),

and ξ′′(t, J) = 1
2
Ḡε(ω(t)), with

(8.1) Ḡε(ω) =

∫
G(ω; z)ζδ(ε)(z)dz +

∫∫
G′(ω; z2 − z1)ζδ

′(ε)(z2)ζδ
′(ε)(z1)dz1dz2.

Here G and G′ are as in (5.1) and (7.3), and ζδ(a) = δ−2ζ(a/δ) with ζ a smooth
non-negative symmetric function of compact support satisfying

∫
ζ(a)da = 1. We take

a countable dense subset D0 of smooth functions of compact support and write H =
L1([0, T ]; R)D0 . The transformation ω(·) 7→ (ξ′(·, J) : J ∈ D0) induces a probability
measure P̂ε on H. Let us write P for the distribution of a process ξ which solves (3.13)
and is subject to the following initial condition: ξ(0, J) is a Gaussian random variable
with variance ∫

ξ(0, J)2P(dξ) =
∑
n

λn

∫
J2(x, n)dx.

Note that ξ(·, J) is stationary under P . Note also that P can be regarded as a proba-
bility measure on H. It turns out that the tightness of the sequence P̂ε can be shown
by standard arguments.

Theorem 8.1 The sequence P̂ε converges to P as ε→ 0. Moreover,

(8.2) lim
ε

Eeq
ε ξ
′′(t, J) = 0,

for every t.

We note that (8.2) is an immediate consequence of (5.5) and (7.7). The proof of he
convergence of P̂ε is naturally divided into two steps. The first step is devoted to the
proof of the tightness of the family P̂ε. This step will be carried out in Section 9. For
the second step, we show that any limit point solves (3.13). This is a rather straight
forward consequence of Theorem 8.2 below. This theorem is also the main ingredient
for the proof of Theorem 3.1. We note that by a celebrated result of Holley and Stroock
[HS], (3.13) has a unique solution in the sense of Definition 8.1.
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Theorem 8.2 There exist martingales Mε and Nε, and processes Err1,ε and Err2,ε

such that

ξ′(t, J)− ξ′(0, J)−
∫ t

0

Γξ′(s, J)ds =Mε(t) + Err1,ε(t),(8.3)

Mε(t)
2 − tA(J) =Nε(t) + Err2,ε,(8.4)

where A(J) was defined in Definition 8.1, and

lim
ε→0

Eeq
ε

∣∣Err1,ε(t)
∣∣ = lim

ε→0
Eeq
ε

∣∣Err2,ε(t)
∣∣ = 0.

The proof of Theorem 8.2 is naturally divided into two parts.

Proof of (8.3). Step 1: Let us write X̄ε(ω) = Xε(ω) + 1
2
Ḡε(ω) where Xε(ω) and

Ḡε(ω) were defined by (4.1) and (8.1) respectively. As it is a well-known fact for
Markov processes, the following process is a martingale:

M̄ε(t) := X̄ε(ω(t))− X̄ε(ω(0))−
∫ t

0

AX̄ε(ω(s))ds.

Note that by definition, X̄ε(ω(t)) = ξ′(t, J).

Let us study the term AX̄ε. We certainly have

AX̄ε = A0Xε +AcXε +AfXε +
1

2
AḠε.

Note that the term AXε involves J̃ whereas AḠε involves Ĵ . We replace J̃ of AXε

with Ĵ . This causes an error Err0 which is small because Eeq
ε |Err0 | is bounded above

by

c1K
1/2
ε

∑
n,m

α(m,n)11(c0εr(m,n) ≥ 1)λmλn ≤ c2K
1/2
ε

∑
n

a(n)11(2c0εr(n) ≥ 1)λn.

As a result, we may use (3.9) to deduce

lim
ε→0

Eeq
ε |Err0 | = 0.

As a consequence of Theorems 5.1 and 7.1 (see Remark 7.1), we have∫ t

0

(
AcXε +

1

2
AḠε

)
(ω(s))ds =

∫ t

0

Qε(ω(s))ds−
∫ t

0

H0
33(ω(s))ds+

∫ t

0

Err1 ds,
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where Qε(ω) equals

1

2

∫
K−3/2
ε

∑
i,j

α(mi,mj)W̄
ε(xi−xj+z2−z1;mi,mj)Ĵ(xi,mi, xj,mj)ζ

δ(z1)ζδ(z2)dz1dz2,

and

(8.5) Eeq
ε |Err1 | ≤ c1

[
K1/2
ε δ(ε) +K−1/2

ε

]
| log δ(ε)|+ c1

[
δ′(ε) +K−1/2

ε

]
| log δ(ε)|1/2,

which goes to 0 in small ε limit.

Step 2: Recall that the summation is over distinct i and j by our overall convention.
However, one can readily check that if we allow i = j in the summation, then the
discrepancy is of order O(K

−1/2
ε ). Also, if we replace Ĵ with J̃ , the error is of order

O(τ(ε)). The sum of these two errors is denoted by Err2, and we have

(8.6) Eeq
ε |Err2 | ≤ c1(K−1/2

ε + τ(ε)),

which goes to 0 in small ε limit. Because of the form of J̃ , we may write

Qε(ω) = Q1
ε +Q2

ε −Q3
ε −Q4

ε + Err2,

where for example Q4
ε(ω), given by

1

2

∑
i,j

∫
K−3/2
ε α(mi,mj)W̄

ε(xi−xj + z2− z1;mi,mj)J(xj,mj)ζ
δ′(ε)(z1)ζδ

′(ε)(z2)dz1dz2,

with the summation over all i and j. We make a change of variables xi − z1 = a1,
xj − z2 = a2 to write that Q4

ε(ω) equals to

1

2

∑
i,j

K−3/2
ε

∫
α(mi,mj)W̄

ε(a1 − a2;mi,mj)J(xj,mj)ζ
δ′(ε)(xi − a1)ζδ

′(ε)(xj − a2)da1da2

= K1/2
ε

∑
m,n

∫
α(m,n)W̄ ε(a1 − a2;m,n)f ε(a1,m;ω)f ε(a2, n;ω; J)da1da2

where

f ε(a,m;ω) = K−1
ε

∑
i

ζδ
′(ε)(xi − a)11(mi = m),

f ε(a,m;ω; J) = K−1
ε

∑
i

ζδ
′(ε)(xi − a)J(xi,m)11(mi = m).
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We then have that Q4
ε(ω) = Q41

ε (ω) +Q42
ε (ω) + Err3, where

Q41
ε (ω) =

1

2

∫
K1/2
ε

∑
m,n

α(m,n)W̄ ε(a1 − a2,m, n)λmf
ε(a2, n;ω; J)da1da2,

Q42
ε (ω) =

1

2

∫
K1/2
ε

∑
m,n

α(m,n)W̄ ε(a1 − a2;m,n)λnf
ε(a1,m;ω)J̄ε(a2, n)da1da2,

where J̄ε(a, n) =
∫
ζδ

′(ε)(x− a)J(x, n)dx and Err3 is given by

1

2

∫
K1/2
ε

∑
m,n

α(m,n)W̄ ε(a1 − a2;m,n)

(f ε(a1,m;ω)− λm)(f ε(a2, n;ω; J)− λnJ̄ε(a2,m))da1da2

=
1

2

∫
K−3/2
ε

∑
i,j

α(mi,mj)W̄
ε(a1 − a2;mi,mj)

(ζδ
′(ε)(xi − a1)− λmi

)(ζδ
′(ε)(xj − a2)J(xj,mj)− λmj

J̄ε(a2,mj))da1da2.

Here we have used the assumption
∫
J = 0. We wish to show that Err3 is small. We

first observe that we can write Err3 = Err31 + Err32, where Err31 is what we obtain
by restricting the summation to indices i 6= j, and Err32 corresponds to the case i = j.
It is not hard to show that Err32 is of order O(K

−1/2
ε ). On the other hand,

(8.7) Eeq
ε Err2

31 ≤ c1K
−1
ε δ′(ε)−2.

To see this, observe that Err2
31 equals to

1

2

∫
da1da2db1db2 K

−3
ε

∑
i,j,p,q

α(mi,mj)α(mp,mq)

W̄ ε(a1 − a2;mi,mj)W̄
ε(b1 − b2;mp,mq)(ζ

δ′(ε)(xi − a1)− λmi
)(ζδ

′(ε)(xp − b1)− λmp)

(ζδ
′(ε)(xj − a2)J(xj,mj)− λmj

J̄ε(a2,mj))(ζ
δ′(ε)(xq − b2)J(xq,mq)− λmq J̄

ε(b2,mq))

=: E1 + E2 + E3

where Es represents the above summation with (i, j, p, q) ∈ I(s) with I(1) correspond-
ing to the cases i 6= p, q or p 6= i, j or j 6= p, q or q 6= i, j, I(2) corresponds to the case
i = p and q = j, and I(3) corresponding to the case i = q and p = j. ( Recall that the
summation in our expression for Err2

31 is over i 6= j and q 6= p.) We can readily check

(8.8) Eeq
ε E1 = 0.
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On the other hand Eeq
ε E2 equals

1

2
K−1
ε

∑
m,n

∫
W̄ ε(a1 − a2;m,n)W̄ ε(b1 − b2;m,n)α(m,n)2(λmγ

δ′(ε)(a1 − b1)− λ2
m)

(λnζ
δ′(ε)(y − a2)ζδ

′(ε)(y − b2)J2(y, n)− λ2
nJ̄

ε(a2, n)J̄ε(b2, n))dyda1da2db1db2

=
1

2
(E21 + E22 + E23 + E24),

where γδ
′(ε)(a) = δ′(ε)−2γ(a/δ′(ε)), for γ(a) =

∫
ζ(a+b)ζ(b)db, and E2r for r = 1, . . . , 4,

are given by

E21 = K−1
ε

∑
m,n

λmλn

∫
W̄ ε(a1 − a2;m,n)W̄ ε(b1 − b2;m,n)α(m,n)2γδ

′(ε)(a1 − b1)

ζδ
′(ε)(y − a2)ζδ

′(ε)(y − b2)J2(y, n)dyda1da2db1db2,

E22 = K−1
ε

∑
m,n

λ2
mλn

∫
W̄ ε(a1 − a2;m,n)W̄ ε(b1 − b2;m,n)α(m,n)2

ζδ
′(ε)(y − a2)ζδ

′(ε)(y − b2)J2(y, n)dyda1da2db1db2,

E23 = K−1
ε

∑
m,n

λmλ
2
n

∫
W̄ ε(a1 − a2;m,n)W̄ ε(b1 − b2;m,n)α(m,n)2γδ

′(ε)(a1 − b1)

J̄ε(a2, n)J̄ε(b2, n)dyda1da2db1db2,

E24 = K−1
ε

∑
m,n

λ2
mλ

2
n

∫
W̄ ε(a1 − a2;m,n)W̄ ε(b1 − b2;m,n)α(m,n)2

J̄ε(a2, n)J̄ε(b2, n)dyda1da2db1db2.

We can readily see
|E22|+ |E23|+ |E24| ≤ c1K

−1
ε ,

for a constant c1. As for E21 we have,

E21 ≤ c2K
−1
ε δ′(ε)

−2
∑
m,n

λmλn

∫
W̄ ε(a1 − a2;m,n)W̄ ε(b1 − b2;m,n)α(m,n)2γδ

′(ε)(a1 − b1)

ζδ
′(ε)(y − a2)J2(y, n)dyda1da2db1db2

≤ c3K
−1
ε δ′(ε)

−2
.

Hence Eeq
ε E2 ≤ c4K

−1
ε δ′(ε)−2. Similarly Eeq

ε E3 ≤ c2K
−1/2
ε δ′(ε)−2 for a constant c5. This

and (8.8) yield (8.7).
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Step 3: Note that α̂ = α limε→0

∫
W ε (this was proved in [HR1] as Theorem 3.2), and∫

W̄ ε =
∫
W ε. Hence

Q41
ε (ω) =

1

2

∫
K1/2
ε

∑
m,n

α̂(m,n)λmf
ε(a2, n;ω, J)da2 + Err4(8.9)

=
1

2
K−1/2
ε

∑
j

∑
m,n

α̂(m,n)λmJ(xj, n)11(mj = n) + Err41,

where Err4 is the error we get by replacing
∫
W̄ ε =

∫
W ε with its limit as ε → 0.

Since

Eeq
ε

[
K−1/2
ε

∑
j

∑
m,n

α̂(m,n)λmJ(xj, n)11(mj = n)

]
≤ c1,

for a constant c1 independent of ε, we deduce

(8.10) lim
ε→0

Eeq
ε |Err41|2 = 0.

Moreover, since J̄ε(a, n) = λnJ(a, n) +O(δ′(ε)), we have that Q42
ε (ω) equals to

1

2

∫
K1/2
ε

∑
m,n

α(m,n)W̄ ε(a1 − a2;m,n)J(a2,m)f δ(a1, n;ω)da1da2 +O(δ)

=
1

2

∫
K1/2
ε

∑
m,n

α̂(m,n)λnJ(a1, n)f δ(a1,m;ω)da1 + Err42(8.11)

=
1

2

∫
K−1/2
ε

∑
i

∑
m,n

α̂(m,n)λnJ(xi, n)11(mi = m) + Err42

with

(8.12) lim
ε→0

Eeq
ε |Err42|2 = 0.

The terms Qj
ε for j = 1, 2, 3 can be treated likewise. From (8.6), (8.7), (8.9), (8.10),

(8.11), (8.12) and (8.2) we deduce

(8.13)

∫ t

0

Qδ
ε(ω(s))ds =

∫ t

0

Γcξ(s, J)ds+

∫ t

0

Err5 ds,

with

(8.14) lim
ε→0

Eeq
ε |Err5| = 0.
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Step 4: We now study the term H0
33. Recall

H0
33(ω) =

1

2
K−3/2
ε

∑
i

mi−1∑
m=1

β(m,mi −m)∫
V ε(xi − y;m,mi −m)uε(xi − y;m,mi −m)Ĵ(xi,m, y,mi −m)dy.

As we discussed in Step 1, we have replaced Ĵ with J̃ for an error which vanishes in
small ε limit. Moreover

J̃(xi,m, y,mi −m) = J̃(xi,m, xi,mi −m) +O(r(m,mi −m)ε),

whenever V ε(xi − y;m,mi −m) 6= 0. Hence −H0
33(ω) +AfXε equals

−1

2
K−1/2
ε

∑
i

mi−1∑
m=1

β(m,mi −m)

∫
W ε(xi − y;m,mi −m)J̃(xi,m, xi,mi −m)dy + Err6

=
−1

2
K−1/2
ε

∑
i

mi−1∑
m=1

β̂(m,mi −m)J̃(xi,m, xi,mi −m) + Err7

= Γf (ξ, J) + Err7,

with

(8.15) lim
ε→0

Eeq
ε |Err7| = 0.

This is proved as in the previous step. For example, we have used

Eeq
ε

[
K−1/2
ε

∑
i

mi−1∑
m=1

β(m,mi −m)

∫
W ε(xi − y;m,mi −m)

∇Ĵ(xi,m, xi + θ(y − xi),mi −m) · (y − xi)dθ dy
]2

= O(ε2),

where ∇ denotes the derivative with respect to the second spatial variable.

Final Step: From (8.4-6) and (8.13-15) we deduce that the martingale M̄ε(t) satisfies

M̄ε(t) = ξ′(t, J)− ξ′(0, J)−
∫ t

0

Γξ(s, J)ds+

∫ t

0

Err8(ω(s))ds

= ξ′(t, J)− ξ′(0, J)−
∫ t

0

Γξ′(s, J)ds+

∫ t

0

Err9(ω(s))ds

lim
ε→0

Eeq
ε |Err8(ω(0))| = lim

ε→0
Eeq
ε |Err9(ω(0))| = 0.(8.16)
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Proof of (8.4). Step 1: Define Ĝε(ω) =
∫
G(ω; z)ζδ(ε)(z)dz and let us write X̂ε(ω) =

Xε(ω) + 1
2
Ĝε(ω). Set,

M̂ε(t) := X̂ε(ω(t))− X̂ε(ω(0))−
∫ t

0

AX̂ε(ω(s))ds.

Note that M̂ε(t) = M̄ε(t) +M ′
t , where M ′

t was defined in Section 7. By (7.13),

(8.17) lim
ε→0

Eeq
ε

[
M̄ε(t)− M̂ε(t)

]2

= 0.

As it is a well-known fact for Markov processes, the following process is also a martin-
gale:

N̂ε(t) = M̂ε(t)
2 −

∫ t

0

(A(X̂ε)
2 − 2X̂εAX̂ε)(ω(s))ds.

We certainly have

(8.18) A := A(X̂ε)
2 − 2X̂εAX̂ε = A0 + Ac + Af ,

with
A0 = 2K−1

ε

∑
i

d(mi) |∇xJ(xi,mi) +Bi(ω)|2 ,

where

Bi(ω) =
1

2
K−1
ε ∇xi

∑
j

ūε(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj),

+
1

2
K−1
ε ∇xi

∑
j

ūε(xj − xi;mj,mi)Ĵ(xj,mj, xi,mi),

with ūε = ũε − uε, where ũε(a;m,n) =
∫
uε(a + z;m,n)ζδ(ε)(z)dz. The exact form of

Ac and Af will be given in Steps 2 and 4 respectively. We have Bi = Bi1 +Bi2, where
Bi1(ω) and Bi2(ω) are given by

1

2
K−1
ε

∑
j

(
ūεx(xi − xj;mi,mj)Ĵ(xj,mj, xi,mi)− ūεx(xj − xi;mj,mi)Ĵ(xi,mi, xj,mj)

)
,

1

2
K−1
ε

∑
j

(
ūε(xi − xj;mi,mj)Ĵx(xi,mi, xj,mj)− ūε(xj − xi;mj,mi)Ĵy(xj,mj, xi,mi)

)
,

respectively. We have
A0 = 2A00 + 2A01 + 2A02,
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with

A00 = K−1
ε

∑
i

d(mi)|∇xJ(xi,mi)|2,

A01 = 2K−1
ε

∑
i

d(mi)(Bi1(ω) +Bi2(ω)) · ∇xJ(xi,mi)

A02 = K−1
ε

∑
i

d(mi) (Bi1(ω) +Bi2(ω))2 .

We first show that the term A01 is small. Note that |A01| ≤ A011 + A012, for

A01r = c1K
−1
ε

∑
i

d(mi)|Bir(ω)|,

with c1 = 2‖∇J‖∞. By Lemma 6.1,

Eε
eqA011 ≤ c2

∑
m,n

λmλn

∫
|∇ūε(a;m,n)|da ≤ c3δ(ε) log δ(ε),

Eε
eqA012 ≤ c2

∑
m,n

λmλn

∫
|a|≤1

|ūε(a;m,n)|da ≤ c3δ(ε),

as in the proof of (5.5) and (5.7). As a result,

(8.19) |A01| ≤ 2c3δ(ε) log δ(ε).

We now turn to A02. We may write A02 = A021 + A022 + A023, with

A021 = K−1
ε

∑
i

d(mi)B
2
i1,

A022 = K−1
ε

∑
i

d(mi)B
2
i2,

A023 = 2K−1
ε

∑
i

d(mi)Bi1Bi2.

We now use Lemma 6.2 to show that A022 and A023 are small. Indeed after squaring,

Eε
eqA022 ≤ c4Eε

eqK
−3
ε

∑
i,j,k

d(mi)|ūε(xi − xj;mi,mj)| |ūε(xi − xk;mi,mk)|

= A0221 + A0222,
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where A0221 and A0222 correspond to the cases k 6= j and k = j respectively. By
Lemma 6.2 and (3.10),

Eε
eqA0221 ≤ c5

∑
m,n,p

λmλnλp

∫
|a|≤1

|ūε(a;m,n)|da
∫
|a|≤1

|ūε(a;m, p)|da ≤ c6δ(ε)
2,

Eε
eqA0222 ≤ c5K

−1
ε

∑
m,n

λmλn

∫
|a|≤1

|ūε(a;m,n)|2da ≤ c6K
−1
ε .

In the same fashion,

Eε
eqA023 ≤ c7Eε

eqK
−3
ε

∑
i,j,k

d(mi)|ūε(xi − xj;mi,mj)| |∇ūε(xi − xk;mi,mk)|

= A0231 + A0232,

where A0231 and A0232 correspond to the cases k 6= j and k = j respectively. By
Lemma 6.2 and (3.10),

Eε
eqA0231 ≤ c8

∑
m,n,p

λmλnλp

∫
|a|≤1

|ūε(a;m,n)|da
∫
|a|≤1

|∇ūε(a;m, p)|da ≤ c9δ(ε)
2| log δ(ε)|,

Eε
eqA0232 ≤ c10K

−1
ε

∑
m,n

λmλn

∫
|a|≤1

|ūε(a;m,n)||∇ūε(a;m,n)|da

≤ c10K
−1
ε

∑
m,n

λmλn

(∫
|a|≤1

|ūε(a;m,n)|2da
)1/2(∫

|a|≤1

|∇ūε(a;m,n)|2da
)1/2

≤ c11K
−1
ε δ(ε)K1/2

ε K1/2
ε = c11δ(ε).

As a result,

(8.20) |A022 + A023| ≤ c12

(
δ(ε) +K−1

ε

)
.

We now concentrate on A021. First observe that since V and ζ are symmetric, we learn
that ūε is symmetric. From this and symmetry of J̃ and K we learn

Bi1 = K−1
ε

∑
j

ūεx(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj).

After squaring, we obtain A021 = A0211 + A0212 where

A0211 = 2K−3
ε

∑
i,j,k

d(mi)ū
ε
x(xi − xj;mi,mj) · ūεx(xi − xk;mi,mk)

Ĵ(xi,mi, xj,mj)Ĵ(xi,mi, xk,mk),

A0212 = K−3
ε

∑
i,j

d(mi)|ūεx(xi − xj;mi,mj)|2Ĵ(xi,mi, xj,mj)
2,
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where j 6= k in A0211. Using Lemma 6.1 we deduce

Eε
eq|A0211| ≤ c1

∑
m,n,p

λmλnλp

∫
|a|≤1

|∇ūε(a;m,n)|da
∫
|a|≤1

|∇ūε(a;m, p)|da ≤ c2δ(ε)
2(log δ(ε))2.

As for A0212, we first write, A0212 = A02121 + A02122 + A02123, where

A02121 = K−3
ε

∑
i,j

d(mi)|uεx(xi − xj;mi,mj)|2Ĵ(xi,mi, xj,mj)
2,

A02122 = K−3
ε

∑
i,j

d(mi)|ũεx(xi − xj;mi,mj)|2Ĵ(xi,mi, xj,mj)
2,

A02123 = −2K−3
ε

∑
i,j

d(mi) (ũεx · uεx) (xi − xj;mi,mj)Ĵ(xi,mi, xj,mj)
2, .

We now argue that A02122 and A02123 are small. To see this, first observe that by
Lemma 6.2,

|∇ũε(a;m,n)| =
∣∣∣∣∫∫ ∇uε(a+ z;m,n)ζδ(ε)(z)dz

∣∣∣∣
≤ c3δ(ε)

−2

∫
|z|≤c3δ(ε)

|∇uε(a+ z;m,n)|dz

≤ c4δ(ε)
−2α′(m,n)

∫
|z|≤c3δ(ε)

|a+ z|−1dz

≤ c5α
′(m,n) min

{
|a|−1, δ(ε)−1

}
.

As a result, ∫
|a|≤1

|∇ũε(a;m,n)|2da ≤ c6α
′(m,n)2| log δ(ε)|,∫

|a|≤1

|∇ũε(a;m,n) · ∇uε(a;m,n)|da ≤ c6α
′(m,n)2| log δ(ε)|1/2| log ε|1/2.

From this we learn

(8.21) |A02122| ≤ c7α
′(m,n)2 | log δ(ε)|

| log ε|
, |A02123| ≤ c7α

′(m,n)2 | log δ(ε)|1/2

| log ε|1/2
.

From (8.18)-(8.21) we deduce that A0 = 2A00 + 2A02121 + Err1, with

(8.22) Eeq
ε |Err1 | ≤ c

(
δ(ε)| log δ(ε)|+ | log ε|−1/2| log δ(ε)|1/2

)
.
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Furthermore, if we pick a small δ > 0 and write A02121 = A021211 + A021212, with

A021211 = K−3
ε

∑
i,j

d(mi)|uεx(xi − xj;mi,mj)|2Ĵ(xi,mi, xj,mj)
211(|xi − xj| ≤ δ),

A021212 = K−3
ε

∑
i,j

d(mi)|uεx(xi − xj;mi,mj)|2Ĵ(xi,mi, xj,mj)
211(|xi − xj| > δ),

then we have that Eeq
ε |A021212| ≤ K−1

ε δ−2, and A021211 = A0212111 + A0212112, where in
the first term we replace xj argument of Ĵ with xi, and the second term is the error
caused by such a replacement. More precisely,

A0212111 = K−3
ε

∑
i,j

d(mi)|uεx(xi − xj;mi,mj)|2J̃(xi,mi, xi,mj)
211(|xi − xj| ≤ δ),

Eeq
ε |A0212112| ≤ K−1

ε δc1

∑
m,n

λmλn

∫
|a|≤δ
|∇uε(a;m,n)|2da ≤ c2δ,

where we used the smoothness of J for the first inequality and (6.8) for the second
inequality. Now that we have replaced xj with xi in Ĵ , we can drop the condition
|xi − xj| ≤ δ. Indeed A0212111 = A02121111 + A02121112, with

A02121111 = K−3
ε

∑
i,j

d(mi)|∇uε(xi − xj;mi,mj)|2J̃(xi,mi, xi,mj)
211(|xi − xj| ≤ 1),

Eeq
ε |A02121112| ≤ c3K

−1δ−2.

We now choose δ = | log ε|−1/3. In summary, A02121 = A02121111 + Err2, where

(8.23) Eeq
ε |Err2| ≤ c4| log ε|−1/3.

On the other hand, by Lemma 5.1,

lim
ε→0

Eeq
ε

∣∣∣∣∫ t

0

2A00(ω(s))ds− tA0(J)

∣∣∣∣ = 0,(8.24)

lim
ε→0

Eeq
ε

∣∣∣∣∫ t

0

2A02121111(ω(s))ds− tA′0(J)

∣∣∣∣ = 0,

where

A0(J) = 2
∑
n

d(n)λn

∫
|∇Jn|2 dx(8.25)

A′0(J) =
∑
m,n

λmλnd(m)γ(m,n)

∫
|Jm+n − Jn − Jm|2 dx,
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with

γ(m,n) = lim
ε→0
| log ε|−1

∫
|a|≤1

|∇uε(a;m,n)|2da.

Step 2: We now study Ac. Recall that ūε = ũε − uε. We have

Ac(ω) =
1

2
K−1
ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)

{
S(i, j, ω) +

8∑
r=0

Rr(i, j, ω)

}2

where

S(i, j, ω) = J̃(xi,mi, xj,mj) + Ĵ(xi,mi, xj,mj)K
−1
ε uε(xi − xj;mi,mj)

R0(i, j, ω) = −K−1
ε Ĵ(xi,mi, xj,mj)ũ

ε(xi − xj;mi,mj)

R1(i, j, ω) = K−1
ε

∑
k

mi

mi +mj

ūε(xi − xk;mi +mj,mk)Ĵ(xi,mi +mj, xk,mk),

R2(i, j, ω) = K−1
ε

∑
k

mi

mi +mj

ūε(xk − xi;mk,mi +mj)Ĵ(xk,mk, xi,mi +mj),

R3(i, j, ω) = K−1
ε

∑
k

mj

mi +mj

ūε(xj − xk;mi +mj,mk)Ĵ(xj,mi +mj, xk,mk),

R4(i, j, ω) = K−1
ε

∑
k

mj

mi +mj

ūε(xk − xj;mk,mi +mj)Ĵ(xk,mk, xj,mi +mj),

R5(i, j, ω) = −K−1
ε

∑
k

ūε(xi − xk;mi,mk)Ĵ(xi,mi, xk,mk),

R6(i, j, ω) = −K−1
ε

∑
k

ūε(xk − xi;mk,mi)Ĵ(xk,mk, xi,mi),

R7(i, j, ω) = −K−1
ε

∑
k

ūε(xj − xk;mj,mk)Ĵ(xj,mj, xk,mk),

R8(i, j, ω) = −K−1
ε

∑
k

ūε(xk − xj;mk,mj)Ĵ(xk,mk, xj,mj),

where the summation is over k with k 6= i, j. Let us write T (i, j, ω) =
∑8

r=0 Rr(i, j, ω).
We then write

(8.26) Ac(ω) = Ac0(ω) + Ac1(ω) + Ac2(ω)
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with

Ac0(ω) =
1

2
K−1
ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)S(i, j, ω)2,

Ac1(ω) = K−1
ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)S(i, j, ω)T (i, j, ω),

Ac2(ω) =
1

2
K−1
ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)T (i, j, ω)2.

Our goal is showing that both Ac1 and Ac2 are small. We start with the latter. We use

the inequality
(∑8

0Rr

)2 ≤ 9
∑8

0R
2
r , to assert that Ac2 ≤ 9

∑8
0Ac2r. We only bound

Ac20 and Ac25 as the remaining Ac2r are similar to Ac25.

To bound Ac25, we simply square out the summation in k to obtain

Ac25 =
1

2
K−3
ε

∑
i,j,k,l

α(mi,mj)Vε(xi − xj;mi,mj)ū
ε(xi − xk;mi,mk)ū

ε(xi − xl;mi,ml)

Ĵ(xi,mi, xk,mk)Ĵ(xi,mi, xl,ml) =: Ac251 + Ac252,

where Ac251 and Ac252 represent the cases k 6= l and k = l respectively. We then have

Eeq
ε Ac251 ≤ c1

∑
m,n,p,q

α(m,n)λmλnλpλq

∫
|a|≤1

|ūε(a;m, p)|da
∫
|a|≤1

|ūε(a;m, q)|da

≤ c2δ(ε)
2

by (6.5). In the same fashion, we may use (6.7) to show that Eeq
ε Ac252 ≤ c2K

−1
ε .

Treating other Ac2r, r = 1, . . . , 8 in the same way yields

(8.27) Eeq
ε

8∑
r=1

Ac2r ≤ c3

(
δ(ε)2 +K−1

ε

)
.

As for Ac20 we have that Eeq
ε Ac20 is bounded by

1

2
Eeq
ε K

−3
ε

∑
i,j

α(mi,mj)Vε(xi − xj;mi,mj)ũ
ε(xi − xj;mi,mj)

2Ĵ(xi,mi, xj,mj)
2

≤ c4K
−1
ε

∑
m,n

α(m,n)λmλn

∫
Vε(a;m,n)ũε(a;m,n)2da.

If we restrict the summation to those m and n such that r(m,n)ε ≥ δ(ε), then we
simply use ũε ≤ c1K

ε to show that the sum is bounded by a constant multiple of τ(ε),
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which is small by our assumption (3.9). On the other hand, when Vε(a;m,n) 6= 0 and
r(m,n)ε ≤ δ(ε),

|ũε(a;m,n)| =
∣∣∣∣∫∫ uε(a+ z;m,n)ζδ(ε)(z)dz

∣∣∣∣
≤ c5δ(ε)

−2

∫
|z|≤c5δ(ε)

|uε(a+ z;m,n)|dz(8.28)

≤ c6δ(ε)
−2α′(m,n)

∫
|z|≤c5δ(ε)+c6εr(m,n)

| log |z||dz

≤ c7α
′(m,n)| log δ(ε)|.

Hence

(8.29) Eeq
ε Ac20 ≤ c8| log ε|−2| log δ(ε)|2 + c8τ(ε).

From this and (8.27) we deduce

(8.30) Eeq
ε Ac2 ≤ c9

(
δ(ε)2 + | log ε|−1 + | log ε|−2| log δ(ε)|2 + τ(ε)

)
.

Step 3: We now turn to Ac1. By Lemma 6.2, the expression K−1
ε uε(a;m,n) is uni-

formly bounded whenever Vε(a;m,n) 6= 0. Hence

|Ac1| ≤ A′c1 = c1K
−2
ε

∑
i,j,k

α(mi,mj)Vε(xi − xj;mi,mj)|T (i, j, ω)|.

Again using the decomposition of T , we write A′c1 =
∑8

r=0Ac1r, with for example

Ac15(ω) = c1K
−2
ε

∑
i,j,k

α(mi,mj)Vε(xi−xj;mi,mj) |ūε(xi − xk;mi,mk)|
∣∣∣Ĵ(xi,mi, xk,mk)

∣∣∣ .
By (6.5),

(8.31) Eeq
ε Ac15 ≤ c2

∑
m,n,p

α(m,n)λmλnλp

∫
|a|≤1

|ūε(a;m, p)|da ≤ c2δ(ε).

Similarly

Ac10(ω) = c1K
−2
ε

∑
i,j

α(mi,mj)Vε(xi−xj;mi,mj) |ũε(xi − xj;mi,mj)|
∣∣∣Ĵ(xi, xj,mi,mj)

∣∣∣ ,
which yields

Eeq
ε Ac10(ω) ≤ c3

∑
m,n

α(m,n)λmλn

∫
|a|≤1

Vε(a;m,n)|ũε(a;m,n)|da.
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Again using (8.28) we obtain

Eeq
ε Ac10(ω) ≤ c4| log ε|−1| log δ(ε)|+ c4τ(ε),

in the same way we obtained (8.28). From this and (8.30) we deduce

Eeq
ε Ac1 ≤ c5

(
δ(ε) + | log ε|−1| log δ(ε)|+ τ(ε)

)
.

From this, (8.26) and (8.30) we deduce∫ t

0

Ac(ω(s))ds =

∫ t

0

Ac0(ω(s))ds+ Err2,

with

(8.32) Eeq
ε |Err2 | ≤ c

(
δ(ε) + | log ε|−1 + | log ε|−1| log δ + τ(ε)|

)
.

On the other hand, by Law of Large Numbers,

(8.33) lim
ε→0

Eeq
ε

∣∣∣∣∫ t

0

Ac0(ω(s))ds− tAc(J)

∣∣∣∣ = 0

where

Ac(J) =
1

2

∫ ∑
m,n

α̃(m,n)λnλm(Jn+m − Jn − Jm)2dx

and
α̃(m,n) = α(m,n)η(m,n)2 = α̂(m,n)η(m,n),

where η = α̂/α. Here we have used limεK
−1
ε uε = η− 1 uniformly in the support of Vε.

(See Theorem 3.2 of [HR].)

Step 4: We now concentrate on Af . We have

Af (ω) =
1

2
K−1
ε

∑
i

mi−1∑
m=1

β(m,mi −m)

∫
V ε(xi − y;mi −m,m)[

S(i; y,m;ω) +
4∑
r=0

Rr(i; y,m;ω)

]2

dy
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where

S(i; y,m;ω) = J(xi,m) + J(y,mi −m)− J(xi,mi)

−K−1
ε uε(xi − y;m,mi −m)Ĵ(xi,m, y,mi −m),

R0(i; y,m;ω) = K−1
ε ũε(xi − y;m,mi −m)Ĵ(xi,m, y,mi −m),

R1(i; y,m;ω) = K−1
ε

∑
j

[ūε(xi − xj;m,mj)Ĵ(xi,m, xj,mj)

− ūε(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj)],

R2(i; y,m;ω) = K−1
ε

∑
j

[ūε(xi − xj;mi,m)Ĵ(xi,mi, xj,m)

− ūε(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj)],

R3(i; y,m;ω) = K−1
ε

∑
j

ūε(y − xj;m,mj)Ĵ(y,m, xj,mj),

R4(i; y,m;ω) = K−1
ε

∑
j

ūε(xj − y;mj,m)Ĵ(xj,mj, y,m).

Let us write T =
∑4

0Rr, and

(8.34) Af = Af0 + Af1 + Af2,

with

Af0 =
1

2
K−1
ε

∑
i

mi−1∑
m=1

β(m,mi −m)

∫
V ε(xi − y;mi −m,m)S(i; y,m;ω)2dy,

Af1 = K−1
ε

∑
i

mi−1∑
m=1

β(m,mi −m)

∫
V ε(xi − y;mi −m,m)(ST )(i; y,m;ω)dy,

Af2 =
1

2
K−1
ε

∑
i

mi−1∑
m=1

β(m,mi −m)

∫
V ε(xi − y;mi −m,m)T (i; y,m;ω)2dy.

We have that Af2 ≤ 5
2

∑4
0Af2r with

Af2r(ω) = K−1
ε

∑
i

mi−1∑
m=1

β(m,mi −m)

∫
V ε(xi − y;mi −m,m)Rr(i; y,m;ω)2dy.
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We then use (8.27) to learn that Af20(ω) is bounded above by

c1K
−3
ε

∑
i

mi−1∑
m=1

β(m,mi −m)

∫
V ε(xi − y;mi −m,m)ũε(xi − y;m,mi −m)2dy

≤ c2K
−3
ε | log δ(ε)|2

∑
i

mi−1∑
m=1

β(m,mi −m)α′(m,mi −m)2.

We then use (3.10) to deduce

(8.35) Eeq
ε Af20(ω) ≤ c3| log ε|−2| log δ(ε)|2.

On the other hand,

Af21(ω) = K−1
ε

∑
i

mi−1∑
m=1

β(m,mi −m)R1(i; y,m;ω)2,

is bounded above by Af211 + Af212, with

Af211 = 2K−3
ε

∑
i

mi−1∑
m=1

β(m,mi −m)

[∑
j

|ūε(xi − xj;m,mj)Ĵ(xi,m, xj,mj)|

]2

Af212 = 2K−3
ε

∑
i

mi−1∑
m=1

β(m,mi −m)

[∑
j

|ūε(xi − xj;mi,mj)Ĵ(xi,mi, xj,mj)|

]2

.

By squaring out the expression inside brackets, we can readily see

Af211 + Af212 ≤ c1

(
δ(ε)2 +K−1

ε

)
.

by Lemma 6.1. The term Af22 is treated likewise. Hence,

(8.36) Eeq
ε (Af21(ω) + Af22(ω)) ≤ c2

(
δ(ε)2 +K−1

ε

)
.

We now study Af23:

Af23(ω) = K−3
ε

∑
i,j,k

mi−1∑
m=1

β(m,mi −m)

∫
V ε(xi − y;mi −m,m)

ūε(y − xj;m,mj)Ĵ(y,m, xj,mj)ū
ε(y − xk;m,mk)Ĵ(y,m, xk,mk)dy

= Af231 + Af232,
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with Af231 and Af232 corresponding to the cases k 6= j and k = j. With the aid of
(6.5) and (6.8) , we can readily deduce

Eeq
ε Af231 ≤ c3δ(ε)

2, Eeq
ε Af232 ≤ c3| log ε|−1.

The term Af24 is treated likewise. In summary

Eε
eqAf2(ω) ≤ c4

(
δ(ε)2 + | log ε|−1

)
.

We can readily bound Af1 as in the previous step:

Eε
eqAf1(ω) ≤ c5

(
δ(ε) + | log ε|−1| log d(ε) + τ(ε)|

)
.

From all this we conclude∫ t

0

Af (ω(s))ds =

∫ t

0

Af0(ω(s))ds+ Err3

with Err3 satisfying (8.32). On the other hand

S(i; y,m;ω) = −J(xi,m, xi,mi−m)(1+K−1
ε uε(xi−y;m,mi−m))+O(εr(m,mi−m))

whenever V ε(y − xi;m,mi −m) 6= 0. From this and a law of large numbers, we can
readily deduce

(8.37) lim
ε→0

Eeq
ε

∣∣∣∣∫ t

0

Af0(ω(s))ds− tAf (J)

∣∣∣∣ = 0,

where

Af (J) =
1

2

∫ ∑
m,n

β̃(m,n)λn+m(Jn+m − Jn − Jm)2dx

where
β̃(m,n) = β(m,n)η(m,n)2 = β̂(m,n)η(m,n).

Final Step: From (8.22), (8.23), (8.24), (8.32), (8.35) and (8.37) we learn that the
process

M̄ε(t)
2 − tA′(J),

is a sum of a martingale and a small error, where

A′(J) = 2

∫ ∑
n

λnd(n)|∇xJn|2dx+

∫ ∑
n,m

λnλmd(n)γ(n,m)(Jn+m − Jn − Jm)2dx

+
1

2

∫ ∑
m,n

α̃(m,n)λnλm(Jn+m − Jn − Jm)2dx

+
1

2

∫ ∑
m,n

β̃(m,n)λn+m(Jn+m − Jn − Jm)2dx.
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It remains to show that A(J) = A′(J). Since

λmλnα̃(m,n) = β̃(m,n)λn+m, λmλnα̂(m,n) = β̂(m,n)λn+m,

it suffices to show

(d(m) + d(n))γ(m,n) = lim
ε→0

(d(m) + d(n))K−1
ε

∫
|a|≤1

|∇uε(a;m,n)|2da(8.38)

= α̂(m,n)− α̃(m,n) = α(m,n)(η(m,n)− η(m,n)2).

We have

(d(m)+d(n))K−1
ε

∫
|a|≤1

|∇uε(a;m,n)|2da

= −(d(m) + d(n))K−1
ε

∫
|a|≤1

uε(a;m,n)∆uε(a;m,n)da+O(K−1
ε )

= −α(m,n)

∫
|a|≤1

V ε(a;m,n)K−1
ε uε(a;m,n)

(
1 +K−1

ε uε(a;m,n)
)
da+O(K−1

ε ),

where we integrated by parts and used (4.11). This and limεK
−1
ε uε = η − 1 (Theo-

rem 3.2 of [HR1]) imply (8.38). �

9 Proofs of Theorems 8.1 and 3.1

In this section, we complete the proof of Theorems 8.1 and 3.1. We first show that the
process ξ′(t, J) is tight. More precisely,

Theorem 9.1 For every smooth function J of compact support and positive T , there
exists a constant c(J, T ) such that

(9.1) lim sup
ε→0

Eeq
ε

∫ T

0

sup
0≤h≤δ

|ξ′(t+ h, J)− ξ′(t, J)|dt ≤ c(J, T )δ1/2.

Proof. Recall that by (8.16),

(9.2) ξ′(t, J)− ξ′(s, J) =

∫ t

s

Γξ(θ, J)dθ + M̄ε(t)− M̄ε(s)−
∫ t

s

Err8(ω(θ)) dθ,

where,

(9.3) lim sup
ε→0

Eeq
ε sup

0≤t≤T

∣∣∣∣∫ t

0

Err8(ω(θ))dθ

∣∣∣∣ ≤ T lim sup
ε→0

Eeq
ε |Err8(ω(0))| = 0.
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On the other hand, since

sup
ε

Eeq
ε Γξ(θ, J)2 = sup

ε
Eeq
ε Γξ(0, J)2 <∞,

we can readily deduce

(9.4) Eeq
ε sup

0≤s≤t≤s+δ≤T

∣∣∣∣∫ t

s

Γξ(θ, J)dθ

∣∣∣∣ ≤ (T + δ)1/2

[
Eeq
ε

∫ t

s

Γξ(θ, J)2dθ

]1/2

≤ c1δ
1/2.

See Section 5 and (5.7) of [R] for more details.

It remains to establish the tightness of the martingale M̄ε. For this, it suffices to show

(9.5) lim
ε→0

sup
0≤t≤T

sup
0<h<δ

Eeq
ε [M̄ε(t+ h)− M̄ε(t)]

2 ≤ c0(T )δ.

This is an immediate consequence of Doob’s inequality and (8.5). From (9.2), (9.3)
and (9.5) we deduce (9.1). �

We are now ready to complete the proof of Theorems 3.1 and 8.1. Take a countable
set {tn : n ∈ N} that contains 0 and is dense in some fixed interval [0, T ]. Write P̃ε for
the law of

((ξ′(·, J) : J ∈ D0), (ξ′(tn, J) : J ∈ D0, n ∈ N)) ∈ H × RD0×N,

with respect to the probability measure Peqε . Using Theorem 9.1, we can readily show
that the sequence P̃ε is tight. Let P̃ by a limit point of the sequence P̃ε. Using
Theorem 8.2, it is not hard to show that for every J ∈ D0, the sequences

(MJ(tn) := ξ′(tn, J)− ξ′(0, J)−
∫ tn

0

Γξ′(s, J)ds : n ∈ N),

(NJ(tn) := MJ(tn)2 − tnA(J) : n ∈ N),

are martingales with respect to the probability measure P̃ . We now extend MJ and
NJ to the whole interval [0, T ]. More precisely, for t /∈ {tn : n ∈ N}, define

MJ(t) := lim
tn→t−

MJ(tn), NJ(t) := lim
tn→t−

NJ(tn),

which exist almost surely by Martingale Upcrossing Theorem. Here by limtn→t−, we
mean the limit with respect a subsequence of {tn} which increases to t from the left.
As a result, ξ̄(t, J) := limtn→t− ξ(tn, J) also exists almost surely with respect to P̃ . The
process ξ̄(t, J) is a solution to (3.13) in the sense of Definition 8.1. This completes the
proof of Theorem 3.1 because the set {tn : n ∈ N} can be chosen to include any given
finite collection of points.
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To complete the proof of Theorem 8.1, it suffices to show that ξ′(t, J) = ξ̄(t, J) almost
everywhere. For this, let us assume that the set {tn : n ∈ N} includes the points in
the set {i/L : i ∈ N} ∩ [0, T ] for every poitive integer L. Write TL(t) for [tL]/L, where
[tL] denotes the integer part of tL. From (9.1) we can readily deduce∫ ∫ T

0

|ξ′(t, J)− ξ′(TL(t), J)|dtdP̃ ≤ c(J, T )L−1/2.

Since limL→∞ ξ
′(TL(t)) = ξ̄(t, J) by definition, we deduce that ξ′(t, J) = ξ̄(t, J) for

almost all t and almost surely. �
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