
Chapter 17
The 24-dimensional odd unimodular lattices.
R. E. Borcherds.
This chapter completes the classification of the 24-dimensional unimodular lattices by

enumerating the odd lattices. These are (essentially) in one-to-one correspondence with
neighboring pairs of Niemeier lattices.

The even unimodular lattices in 24 dimensions were classified by Niemeier [Nie2] and
the results are given in the previous chapter, together with the enumeration of the even
and odd unimodular lattices in dimensions less than 24. There are twenty-four Niemeier
lattices, and in the present chapter they will be referred to by their components D24,
D16E8, with the Leech lattice being denoted by Λ24, and also by the Greek letters α, β, . . .
(see Table 16.1).

The odd unimodular lattices in 24 and 25 dimensions were classified in [Bor1]. In
this chapter we list the odd 24-dimensional lattices. Only those with minimal norm at
least 2 are given, i.e., those that are strictly 24-dimensional, since the others can easily be
obtained from lower dimensional lattices (see the summary in Table 2.2 of chapter 2).

There is a table of all the 665 25-dimensional unimodular lattices and the 121 even
25-dimensional lattices of determinant 2 on my home page

(currently http://www.dpmms.cam.ac.uk/home/emu/reb/.my-home-page.html).
Two lattices are called neighbors if their intersection has index 2 in each of them

([Kne4], [Ven2]).
We now give a brief description of the algorithm used in [Bor1] to enumerate the

25-dimensional unimodular lattices.
The first step is to observe that there is a one-to-one correspondence between 25

dimensional unimodular lattices (up to isomorphism) and orbits of norm −4 vectors in the
even Lorentzian lattice II25,1 given as follows: the lattice Λ corresponds to the norm −4
vector v if and only if the sublattice of even vectors of Λ is isomorphic to the lattice v⊥. So
we can classify 25 dimensional unimodular lattices if we can classify negative norm vectors
in II25,1.

We can classify orbits of vectors of norm −2n ≤ 0 in II25,1 by induction on n as
follows. First of all the primitive norm 0 vectors correspond to the Niemeier lattices as in
section 1 of chapter 26. So there are exactly 24 orbits of primitive norm 0 vectors, and
any norm 0 vector can be obtained from a primitive one by multiplying by some constant.

Suppose we have classified all orbits of vectors of norms −2m with 0 ≥ −2m > −2n,
and that we have a vector v of norm −2n. We fix a fundamental Weyl chamber for the
reflection group of II25,1 as in chapter 26. We look at the root system of the lattice v⊥,
and find that one of the following 3 things can happen:

1. There is a norm 0 vector z with (z, v) = −1. It turns out to be trivial to classify
such norm −2n vectors v: there is one orbit corresponding to each orbit of norm 0
vectors. They correspond to lattices v⊥ which are the sum of a Niemeier lattice and
a one dimensional lattice generated by a vector of norm 2n.

2. There is no norm 0 vector z with (z, v) = 1 and the root system of v⊥ is nonempty.
In this case we choose a component of the root system of v⊥ and let r be its highest
root. Then the vector u = v + r has norm −2(n − 1), and the assumption about no
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norm 0 vectors z with (z, v) = 1 easily implies that u is still in the Weyl chamber of
II25,1. Hence we have reduced v to some known vector u of norm −2(n−1), and with
a little effort it is possible to reverse this process and construct v from u.

3. Finally suppose that there are no roots in v⊥. As v is in the Weyl chamber this
implies that (v, r) ≤ −1 for all simple roots r. By theorem 1 of chapter 27 there is a
norm 0 (Weyl) vector w25 with the property that (w25, r) = −1 for all simple roots
r. Therefore the vector u = v − w25 has the property (u, r) ≤ 0 for all simple roots
r. So u is in the Weyl chamber, and has norm −2n − (u, w25) which is larger than
−2n unless v is a multiple of w25. So we can reconstruct v from the known vector u
as v = u + w25.
In every case we can reconstruct v from known vectors, so we get an algorithm for

classifying the norm −2n vectors in II25,1. (This algorithm breaks down in higher dimen-
sional Lorentzian lattices for two reasons: it is too difficult to classify the norm 0 vectors,
and there is usually no analogue of the Weyl vector w25.)

We now apply the algorithm above to find the 121 orbits of norm −2 vectors from the
(known) norm 0 vectors, and then apply it again to find the 665 orbits of norm −4 vectors
from the vectors of norm 0 and −2.

The neighbors of a strictly 24 dimensional odd unimodular lattice can be found as
follows. If a norm −4 vector v ∈ II25,1 corresponds to the sum of a strictly 24 dimensional
odd unimodular lattice Λ and a 1-dimensional lattice, then there are exactly two norm-0
vectors of II25,1 having inner product −2 with v, and these norm 0 vectors correspond to
the two even neighbors of Λ.

The enumeration of the odd 24-dimensional lattices. Figure 17.1 shows the
neighborhood graph for the Niemeier lattices, which has a node for each lattice. If A and
B are neighboring Niemeier lattices, there are three integral lattices containing A ∩ B,
namely A, B, and an odd unimodular lattice C (cf. [Kne4]). An edge is drawn between
nodes A and B in Fig. 17.1 for each strictly 24-dimensional unimodular lattice arising in
this way. Thus there is a one-to-one correspondence between the strictly 24-dimensional
odd unimodular lattices and the edges of our neighborhood graph. The 156 lattices are
shown in Table 17.1. Figure 17.1 also shows the corresponding graphs for dimensions 8
and 16.

For each lattice Λ in the table we give its components (in the notation of the previous
chapter) and its even neighbors (represented by 2 Greek letters as in Table 16.1). The
final column gives the orders g1.g2 of the groups G1(Λ), G2(Λ) defined as follows. We may
write Aut(Λ) = G0(Λ).G1(Λ).G2(Λ) where G0 is the reflection group. The group G1 is the
subgroup of Aut(Λ) of elements fixing a fundamental chamber of the Weyl group and not
interchanging the 2 neighbors. The group G2(Λ) has order 1 or 2 and interchanges the two
neighbors of Λ if it has order 2. (It turns out that G2(Λ) has order 2 if and only if the two
components of Λ are isomorphic.) The components are written as a union of orbits under
G1(Λ), with parentheses around two orbits if they fuse under G2(Λ).

The first lattice in the table is the odd Leech lattice O24, which is the only one with
no norm 2 vectors. The number of norm 2 vectors is given by the formula

8h(A) + 8h(B)− 16
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where h(A) and h(B) are the Coxeter numbers of the even neighbors of the lattice. These
Coxeter numbers satisfy the inequality h(B) ≤ 2h(A)−2 and the lattices for which equality
holds are indicated by a thick line in figure 17.1. The Weyl vector ρ(Λ) of the lattice Λ
has norm given by the formula ρ(Λ)2 = h(A)h(B).
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