The Cellular Structure of the Leech Lattice.

R. E. Borcherds, J. H. Conway and L. Queen

(This is chapter 25 of "Sphere packings, lattices, and groups", edited by Conway and Sloane.)

We complete the classification of the holes in the Leech lattice, and of the associated Delaunay cells, by showing that there are precisely 284 types of shallow hole.

1. Introduction.

In Chapter 23 of [C-S] it was shown that there are 23 types of deep hole in the Leech lattice Λ_{24} , and that these holes are in one-to-one correspondence with the Niemeier lattices. The existence of this correspondence, and the recently discovered correspondence between the conjugacy classes in the Monster group and certain modular functions [C-N] suggested that it might be worth enumerating the shallow holes in the Leech lattice and completing the classification of its Delaunay cells, in case any "deep structure" became apparent. Although this has not yet happened, the complete list of deep and shallow holes has already found several uses, and it seems worth while to put it on record. The main result is the following.

Theorem 1. There are 307 types of hole in the Leech lattice, consisting of 23 types of deep hole and 284 types of shallow hole. They are listed in Table 1.

The neighborhood graph of the deep holes may be seen in Chapter 17 of [C-S].

2. Names for the holes.

We use the notation of Chapter 23 of [C-S], and describe sets of Leech lattice points by graphs, with a node for each lattice point, and where two nodes x and y are

```
not joined if N(x - y) = 4,
joined by a single edge if N(x - y) = 6,
joined by two edges if N(x - y) = 8.
```

Larger numbers of joins will not arise here.

It was shown in Chapter 23 of [C-S] that the vertices of a deep hole in Λ_{24} are described by a graph that is a disjoint union of extended Coxeter-Dynkin diagrams having total subscript (or dimension) 24 and constant Coxeter number h. (The Coxeter numbers are shown in Table 2 below.) There are just 23 possible combinations, which can be seen in the first 23 lines of Table 1. Using the same graphical notation we prove the following result.

Lemma 2. The vertices of a shallow hole in the Leech lattice are sets of 25 points of Λ_{24} for which the corresponding graph is a union of spherical Coxeter-Dynkin diagrams.

Proof. Theorems 5 and 6 of Chapter 23 of [C-S] show that the graph is a union of spherical Coxeter-Dynkin diagrams, and by dimension considerations the hole must contain at least 25 vertices. But the fundamental roots corresponding to such a diagram (whether or not it is connected) are linearly independent in the vector space they lie in, and so are

affinely independent. This shows that the graph cannot contain more than 25 nodes. It is just as easy to verify that any such set of 25 points is the vertex set of a shallow hole. The argument is similar to Theorem 7 of Chapter 23 of [C-S], which is the corresponding result for deep holes. Thus all the shallow holes in the Leech lattice are simplices.

3. The volume formula.

Let P_1, P_2, \ldots, P_N be a system of representatives for all the holes in Λ_{24} under the full automorphism group ∞ of Λ_{24} . Let $vol(P_i)$ denote the volume of P_i and $g(P_i)$ the order of its automorphism group (i.e. the subgroup of ∞ fixing P_i). Then we have the volume formula:

volume of a fundamental domain of $\Lambda_{24} = \sum_{i=1}^{N} vol(P_i) \times \text{no. of images of } P_i \text{ under } \cdot 0$ $= \sum_{i=1}^{N} \frac{|\cdot 0|}{g(P_i)} vol(P_i) ,$

where $|\cdot 0|$ denotes the order of $\cdot 0$.

The volume of a hole P can be expressed in terms of familiar concepts in the Lie theory (cf. [B]). For a deep hole,

$$vol(P) = \frac{1}{24!} h\sqrt{d} ,$$

and for a shallow hole

$$vol(P) = \frac{1}{24!} \sqrt{sd} ,$$

where h is the Coxeter number, d is the determinant of the Cartan matrix of the spherical Coxeter-Dynkin diagram, and s is the norm of the Weyl vector. For a connected component the values of these quantities are shown in Table 2 (note that s=h(h+1)n/12). For a disconnected graph, h and d are the products of the values of the components, while s is the sum. One can also show that the radius of a shallow hole is $\sqrt{2-\frac{1}{s}}$.

Table 2

4. The enumeration of the shallow holes.

We shall only give a brief description of how the shallow holes were enumerated and Theorem 1 proved. Two methods of classification were used.

Method 1. This method was used to find all the shallow holes that contain a particular spherical Coxeter-Dynkin diagram X as a component, by finding all occurrences of X as a set of points in the Leech lattice. This method was only used when X has at least

seven points, for otherwise the classification becomes too complicated. We drew the graph of all points in Λ_{24} not joined to any point of X, and then deleted enough points from this graph to make the union of X with the remaining graph be a collection of spherical diagrams with a total of 25 points. The group orders of such holes, found by inspection, are usually 1 or 2.

As an example we consider the diagram $X = a_{15}$. We find from Figure 23.9 of [C-S] that there are just nine types of ordered a_{15} diagrams in the Leech lattice. When we identify reversals these reduce to five distinct types, which are drawn in Figures 1(a)-(e) as heavy lines. (The background of these figures is taken from Figure 27.3 of [C-S], and shows all edges between pairs of the 35 points nearest to the center of a deep hole of type A_{24} . This is a convenient portion of the Leech lattice to work with, and in particular contains all the points of Λ_{24} not joined to the a_{15} diagrams.)

In four of figures (a)-(e) we find that in the subgraph not joined to the a_{15} diagram (indicated by shaded nodes and broken lines) it is impossible to find a union of disjoint spherical Coxeter-Dynkin diagrams with a total of 10(=25-15) nodes, and so the corresponding type of a_{15} diagram cannot be part of a shallow hole. However, for the fifth type (figure (e)), the disjoined subgraph contains 11 points, and by omitting each point in turn we can break it into Coxeter-Dynkin diagrams, as shown in the figure. Three of the eleven possibilities fail (those marked with an x), since they leave a graph containing an extended diagram. The remaining eight succeed.

Thus there are eight types of shallow hole with a component of type a_{15} in their diagram: $a_{15}e_8a_1^2$, $a_{15}e_7a_3$, $a_{15}e_6d_4$, $a_{15}d_5^2$, $a_{15}d_6a_4$, $a_{15}d_7a_2a_1$, $a_{15}d_9a_1$, and $a_{15}d_{10}$.

Method 2. We take a given deep hole and find all shallow holes having a face in common with it. The environs of a deep hole are described in sufficient detail in chapter 24 of [C-S] to make this quite easy. The group orders of these holes can be found by considering the subgroup of those automorphisms of the corresponding deep hole that fix the face in question and then making due allowance for the fact that the shallow hole may touch several deep holes in the same manner.

The complete enumeration was carried out by combining the two methods and using the volume formula as a check. A second check was supplied by the fact that the quantity sd for each hole must be a perfect square (since the volume of a hole is a rational number). Most of the enumeration was performed twice: first by L.Q. and J.H.C., then independently by R.E.B who completed the list. The group orders were computed by both teams.

Remarks. (1) It turns out that (in contrast to the deep holes) the diagram of a shallow hole does not determine it uniquely. There are two holes of each of the types a_17a_8 , $a_{17}d_7a_1$, $a_{11}d_7a_3a_2^2$ and $a_9^2a_4a_3$.

- (2) There is a unique hole of type $a_1^{24}a_1$. This has the shape of a regular simplex with 25 vertices, although its group is not transitive on the vertices. The group is the Mathieu group M_{24} acting with orbits of size 24 and 1. This hole has the smallest radius, namely $\sqrt{2-\frac{2}{25}}$, while the shallow hole of largest radius is d_{25} , with radius $\sqrt{2-\frac{1}{4900}}$. The deep holes have radius $\sqrt{2}$.
- (3) If the closed polytopes corresponding to the deep holes of type D_4^6 are deleted from \mathbf{R}^{24} , the resulting space is disconnected.

Acknowledgment. We should like to thank R. A. Parker for several helpful discus-

sions.

Table 1.

A list of all 307 holes in the Leech lattice. The first 23 entries are the deep holes. The entries give the name of a hole P_i , the order $g(P_i)$ of its automorphism group, its scaled volume

$$svol(P_i) = vol(P_i) \cdot \frac{24!}{|\cdot 0|},$$

the norm $s(P_i)$ of its Weyl vector, and the determinant $d(P_i)$ of the Cartan matrix. The volume formula then becomes

$$\sum_{i} \frac{svol(P_i)}{g(P_i)} = \frac{24!}{|\cdot 0|} = 74613.$$

The name of a hole indicates the orbits of its automorphism group on the components of the diagram. Thus the hole $a_7^2 a_3^2 a_3 a_1^2$ has two equivalent components of type a_7 , two of type a_1 , and three of type a_3 , only two of which are equivalent under the automorphism group.

Table 1(a).

name	g	svol	s	d
D_{24}	2	92		4
A_{24}	10	125		25
$A_{1}7E_{7}$	12	1944		36
$D_{16}E_{8}$	2	1800		4
$A_{15}D_{9}$	16	2048		64
D_{12}^{2}	8	1936		16
A_{12}^{2}	52	2197		169
$A_{11}D_{7}E_{6}$	24	20736		144
$D_{10}E_7^2$	8	23328		16
$A_9^2 D_6$	80	20000		400
E_8^3	6	27000		1
D_8^3	48	21952		64
A_8^{3}	324	19683		729
$A_7^2D_5^2$	256	131072		1024
E_6^4	432	186624		81
D_6^4	384	160000		256
A_6^4	1176	117649		2401
$A_5^{4}D_4$	3456	559872		5184
D_4^6	138240	2985984		4096
$A_4^{ ilde{6}}$	30000	1953125		15625
$A_3^{\hat{8}}$	688128	16777216		4^{8}
$A_2^{ec{1}2}$	138568320	387420489		3^{12}
$A_9^2D_6$ E_8^3 D_8^3 A_8^3 $A_7^2D_5^2$ E_6^4 D_6^4 $A_5^4D_4$ D_4^6 A_4^6 A	1002795171840	68719476736		2^{24}
d_{25}	1	140	9800/2	4

a_{25}	1	195	2925/2	26
$d_{24}a_1$	1	186	8649/2	8
$a_{24}a_{1}$	2	255	2601/2	50
$a_{23}a_{2}$	2	288	2304/2	72
$d_{22}a_2a_1$	1	282	6627/2	24
$d_{21}a_4$	1	240	5760/2	20
$a_{21}a_{3}a_{1}$	1	396	1782/2	176
$d_{20}d_{5}$	1	200	5000/2	16
$a_{20}a_{5}$	1	315	1575/2	126
$d_{19}e_{6}$	1	162	4374/2	12
$a_{19}d_{6}$	1	240	1440/2	80
$a_{19}a_4a_1^2$	2	520	1352/2	400
$d_{18}e_{7}$	1	126	3969/2	8
$a_{18}e_{7}$	1	171	1539/2	38
$a_{18}a_{6}a_{1}$	1	399	1197/2	266
$d_{17}e_8$	1	92	4232/2	4
$a_{17}e_{8}$	2	141	2209/2	18
$a_{17}a_{8}$	2	297	1089/2	162
$a_{17}a_{8}$	2	297	1089/2	162
$a_{17}e_{7}a_{1}$	2	222	1369/2	72
$a_{17}d_7a_1$	$\overline{1}$	288	1152/2	144
$a_{17}d_7a_1$	$\overline{2}$	288	1152/2	$\overline{144}$
$a_{17}d_6a_2$	$\overline{2}$	342	1083/2	216
$a_{17}a_{6}a_{2}$	$\overline{2}$	441	1029/2	378
$a_{17}a_{5}a_{3}$	$\stackrel{-}{2}$	468	1014/2	432
$a_{17}a_{4}a_{3}a_{1}$	$\frac{1}{2}$	600	1000/2	720
$d_{16}d_{9}$	$\overline{1}$	152	2888/2	16
$d_{16}a_{9}$	1	230	2645/2	40
$d_{16}e_{8}a_{1}$	1	122	3721/2	8
$d_{16}a_{8}a_{1}$	1	306	2601/2	72
$d_{16}e_{7}a_{2}$	1	186	2883/2	24
$d_{16}e_{6}a_{3}$	1	252	2646/2	48
$d_{16}a_{6}a_{2}a_{1}$	1	462	2541/2	168
$d_{16}d_{5}a_{4}$	1	320	2560/2	80
$d_{16}a_{5}a_{4} \\ d_{16}a_{5}a_{4}$	1	390	2535/2	120
$a_{16}a_{3}a_{4}$	1	204	1224/2	68
$a_{16}a_{9}$ $a_{16}e_{8}a_{1}$	1	187	2057/2	34
$a_{15}d_{10}$	$\overset{1}{2}$	200	1250/2	64
$a_{15}d_{9}a_{1}$	$\frac{2}{2}$	264	1089/2	128
$a_{15}a_{9}a_{1} \\ a_{15}e_{8}a_{1}^{2}$	$\overset{2}{2}$	$\frac{204}{248}$	1922/2	64
$a_{15}e_{8}a_{1}$ $a_{15}e_{7}a_{3}$	$\frac{2}{2}$	$\frac{248}{264}$	1089/2	128
$a_{15}e_{7}a_{3} \\ a_{15}d_{7}a_{2}a_{1}$	$\frac{2}{2}$	408	867/2	384
	$\frac{2}{2}$	288	864/2	192
$a_{15}e_6d_4$	$\frac{2}{2}$	$\frac{200}{360}$	804/2 $810/2$	$\frac{192}{320}$
$a_{15}d_6a_4$	4	300	010/2	3∠0

7 7	2	920	000/0	250
$a_{15}d_5d_5$	2	320	800/2	256
$d_{14}d_{10}a_1$	1	188	2209/2	32
$d_{14}a_{10}a_1$	1	286	1859/2	88
$d_{14}a_{9}a_{1}a_{1}$	1	380	1805/2	160
$d_{14}e_8a_2a_1$	1	186	2883/2	24
$d_{14}e_7a_3a_1$	1	256	2048/2	64
$d_{14}a_7a_2a_1a_1$	1	576	1728/2	384
$d_{14}e_6a_4a_1$	1	330	1815/2	120
$d_{14}a_6a_4a_1$	1	490	1715/2	280
$d_{14}d_5a_5a_1$	1	408	1734/2	192
$a_{14}a_{9}a_{2}$	2	405	729/2	450
$a_{14}e_{8}a_{2}a_{1}$	1	285	1805/2	90
$a_{14}d_7a_2a_2$	1	450	750/2	540
$a_{14}a_{6}a_{3}a_{2}$	1	630	630/2	1260
$a_{14}a_4^2a_2a_1$	2	825	605/2	2250
$d_{13}d_{12}$	1	136	2312/2	16
$d_{13}a_{12}$	1	208	1664/2	52
$d_{13}a_{11}a_1$	1	276	1587/2	96
$d_{13}a_{9}a_{2}a_{1}$	1	420	1470/2	240
$d_{13}e_{8}a_{4}$	1	160	2560/2	20
$d_{13}a_{8}a_{4}$	1	360	1440/2	180
$d_{13}e_{7}a_{5}$	1	204	1734/2	48
$d_{13}a_7d_5$	1	304	1444/2	128
$d_{13}e_{6}a_{6}$	1	252	1512/2	84
$a_{13}a_{12}$	1	273	819/2	182
$a_{13}d_{10}a_{2}$	1	294	1029/2	168
$a_{13}a_{9}a_{3}$	1	420	630/2	560
$a_{13}e_{8}a_{4}$	1	245	1715/2	70
$a_{13}e_{8}a_{2}a_{1}a_{1}$	1	378	1701/2	168
$a_{13}e_{7}a_{4}a_{1}$	1	350	875/2	280
$a_{13}d_{7}a_{5}$	1	336	672/2	336
$a_{13}a_{7}a_{4}a_{1}$	1	560	560/2	1120
$a_{13}e_{6}d_{5}a_{1}$	1	336	672/2	336
$a_{13}a_{6}a_{6}$	1	441	567/2	686
$d_{12}^2 a_1$	2	180	2025/2	32
$d_{12}^{12}d_{10}a_{2}a_{1}$	1	276	1587/2	96
$d_{12}d_{9}a_{4}$	1	240	1440/2	80
$d_{12}e_8d_5$	1	136	2312/2	16
$d_{12}d_{8}d_{5}$	1	208	1352/2	64
$d_{12}e_7d_6$	1	156	1521/2	32
$d_{12}d_{7}e_{6}$	1	180	1350/2	48
$a_{12}^2 a_1 = 0$	$\overline{4}$	351	729/2	338
$a_{12}e_{8}d_{5}$	1	208	1664/2	52
$a_{12}e_{8}a_{4}a_{1}$	1	$\frac{200}{325}$	1625/2	130
~12°0°4°1	-	323	10-0/2	100

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a_{12}e_{7}a_{6}$	1	273	819/2	182
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	174		36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	276		96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	576		432
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	228		144
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	204		96
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	456		576
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	300		288
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	420		672
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	468		864
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	2	648		1728
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	=	2	648		1728
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	1	576		1536
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	360		432
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	384		576
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	468		864
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a_{11}e_{6}d_{4}a_{4}$	2	420		720
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	504		1152
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$a_{11}a_6d_4a_2^2$	2	756	378/2	3024
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a_{11}d_5a_5a_3a_1$	2	672		2304
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	900	375/2	4320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			576	384/2	1728
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	384	1152/2	256
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	330	825/2	264
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	312	1014/2	192
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d_{10}a_9d_6$	1	260	845/2	160
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$a_{10}a_{9}a_{3}a_{2}a_{1}$	1	600	750/2	960
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d_{10}e_{8}e_{7}$	1	94	2209/2	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{10}d_8d_6a_1$	1	248		128
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	198		72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{10}a_8a_5a_2$	1	486	729/2	648
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$d_{10}e_7^2a_1$	2	148	1369/2	32
$d_{10}e_7a_6a_2$ 1 294 1029/2 168 $d_{10}e_7a_5a_3$ 1 312 1014/2 192	$d_{10}e_7d_7a_1$	1	192		64
$d_{10}e_7a_5a_3$ 1 312 1014/2 192	$d_{10}e_7d_6a_2$	1	228		96
· · · · · · · · · · · · · · · · · · ·	$d_{10}e_7a_6a_2$	1	294	1029/2	168
$d_{10}e_7a_4a_3a_1$ 1 400 1000/2 320	$d_{10}e_7a_5a_3$	1	312		192
	$d_{10}e_7a_4a_3a_1$	1	400	1000/2	320

$d_{10}a_7d_6a_2$	1	384	768/2	384
$d_{10}a_7a_6a_2 \\ d_{10}a_7a_3^2a_1^2$	$\frac{1}{2}$	832		2048
	$\frac{2}{2}$		676/2	256
$d_{10}d_6^2a_3$		320	800/2	
$d_{10}d_{6}a_{5}a_{4}$	1	420	735/2	480
$d_{10}d_6a_5a_3a_1$	1	528	726/2	768
$d_{10}a_{6}a_{5}a_{3}a_{1}$	1	672	672/2	1344
$d_{10}a_5^3$	2	540	675/2	864
$a_{10}a_{9}d_{6}$	1	330	495/2	440
$a_{10}e_{8}e_{7}$	1	143	1859/2	22
$a_{10}e_{8}e_{6}a_{1}$	1	231	1617/2	66
$a_{10}e_8a_4a_2a_1$	1	495	1485/2	330
$a_{10}e_7a_7a_1$	1	352	704/2	352
$a_{10}d_7a_6a_2$	1	462	462/2	924
$d_9^2 a_7$	2	240	900/2	128
$d_9 a_9 a_6 a_1$	1	420	630/2	560
$d_9e_8^2$	2	76	2888/2	4
$d_9 d_8^2$	2	176	968/2	64
$d_9a_8^{\overline{2}}$	2	324	648/2	324
$d_9 a_7^2 a_1^2$	4	544	578/2	1024
$a_9 a_9 e_7$	2	270	729/2	200
$a_9^2 d_7$	4	320	512/2	400
$a_9^{3}d_6a_1$	4	420	441/2	800
$a_9^2 d_5 a_1^2$	4	560	392/2	1600
$a_9^2 d_4 a_2 a_1$	4	660	363/2	2400
$a_9^2 a_4 a_3$	$\overline{4}$	600	360/2	2000
$a_9^2 a_4 a_3$	$\overline{2}$	600	360/2	2000
$a_9e_8^2$	$\frac{1}{2}$	115	2645/2	10
$a_9e_8e_7a_1$	1	190	1805/2	40
$a_9e_8d_5a_2a_1$	1	420	1470/2	240
$a_9e_8a_4^2$	$\frac{1}{2}$	425	1445/2	250
$a_9d_8e_7a_1$	1	$\frac{420}{260}$	845/2	160
$a_9a_8^2$	$\overset{1}{2}$	405	405/2	810
a_9a_8 $a_9e_7d_7a_2$	1	300	$\frac{400}{2}$	240
	1	420	630/2	560
$a_9e_7a_6a_3$	$\frac{1}{2}$			
$a_9e_7a_4^2a_1$		550 640	605/2	1000
$a_9a_7d_5a_3a_1$	1	640	$\frac{320}{2}$	2560
$a_9d_5a_4^2a_2a_1$	2	900	$\frac{270}{2}$	6000
$a_{9}a_{4}^{2}a_{4}^{2}$	4	875	245/2	6250
$e_8^3 a_1$	6	61	3721/2	2
$e_8^2 a_8 a_1$	$\frac{2}{2}$	153	2601/2	18
$e_8^2 e_7 a_2$	2	93	2883/2	6
$e_8^2 e_6 a_3$	2	126	2646/2	12
$e_8^2 a_6 a_2 a_1$	2	231	2541/2	42
$e_8^2 d_5 a_4$	2	160	2560/2	20

$e_8^2 a_5 a_4$	2	195	2535/2	30
$e_8 a_8 d_5 a_4$	1	360	1440/2	180
$e_8 a_8 e_6 a_2 a_1$	1	351	1521/2	162
$e_8e_7^2a_3$	2	128	2048/2	16
$e_8e_7a_7a_2a_1$	1	288	1728/2	96
$e_8e_7e_6a_4$	1	165	1815/2	30
$e_8e_7a_6a_4$	1	245	1715/2	70
$e_{8}e_{7}d_{5}a_{5}$	1	204	1734/2	48
$e_8a_7e_6a_4$	1	300	1500/2	120
$e_8 a_7 d_5^2$	2	304	1444/2	128
$e_{8}e_{6}^{2}a_{5}$	2	207	1587/2	54
$e_{8}e_{6}a_{6}d_{5}$	1	252	1512/2	84
$d_8^3 a_1$	6	232	841/2	128
$d_8^2 e_7 a_1 a_1$	2	248	961/2	128
$d_{8}^{2}e_{6}a_{3}$	2	264	726/2	192
$d_8^2 d_6 a_2 a_1$	2	360	675/2	384
$d_8^2 d_5 d_4$	2	288	648/2	256
$d_8^2 d_5 a_4$	$\overline{2}$	320	640/2	320
$d_8 e_7^2 a_2 a_1$	2	228	1083/2	96
$d_8e_7d_6a_3a_1$	1	320	800/2	256
$d_8e_7a_7a_2a_1$	1	384	768/2	$\frac{1}{384}$
$d_8e_7a_5a_4a_1$	1	420	735/2	480
$d_8e_7a_5a_3a_1a_1$	1	528	726/2	768
$d_8a_7e_6a_4$	1	360	540/2	480
$d_8 a_7 d_5^2$	$\overset{-}{2}$	352	484/2	512
$d_8e_6a_5^2a_1$	$\overset{-}{2}$	468	507/2	864
$d_8 d_6^2 d_4 a_1$	2	368	529/2	512
$d_8d_6^2a_3a_1^2$	2	512	512/2	1024
$d_8d_6d_5a_5a_1$	1	432	486/2	768
$a_8^3 a_1$	12	513	361/2	1458
$a_8 a_7 d_5^2$	2	432	324/2	1152
$a_8e_6^2a_2^2a_1$	2	567	441/2	1458
$a_8e_6d_5a_4a_2$	1	540	360/2	1620
$e_7^3 d_4$	6	140	1225/2	32
$e_{7}^{2}d_{7}a_{4}$	2	200	1000/2	80
$e_{7}^{2}e_{6}d_{5}$	2	156	1014/2	48
$e_7^2 d_6 d_5$	2	176	968/2	64
$e_7d_7a_7a_3a_1$	1	416	676/2	512
$e_7d_7d_6a_5$	1	264	726/2	192
$e_7 d_7 a_6 a_5$	1	336	672/2	336
$e_7 a_7^2 a_3 a_1$	2	544	578/2	1024
$e_7a_7a_6a_4a_1$	1	560	560/2	1120
$e_7a_7a_5a_4a_1a_1$	1	720	540/2	1920
$e_{7}e_{6}^{3}$	6	153	867/2	54
· ·			,	

$e_7 d_6^3$	3	216	729/2	128
$e_{7}a_{6}^{3}$	3	441	567/2	686
$e_7 a_5^3 a_1^3$	6	936	507/2	3456
$d_7 a_7^2 a_3 a_1$	4	608	361/2	2048
$d_7 a_7 a_6 a_3 a_2$	1	672	336/2	2688
$d_7 a_7 a_3^2 a_3 a_2$	2	960	300/2	6144
$d_7 d_6^3$	6	256	512/2	256
$d_7 a_6^3$	3	490	350/2	1372
$d_7a_3^6$	24	1408	242/2	16384
$a_7^3 a_1^4$	24	1024	256/2	8192
$a_{7}^{2}e_{6}d_{5}$	2	384	384/2	768
$a_7^2 d_6 d_5$	4	416	338/2	1024
$a_7^2 d_5^2 a_1$	8	544	289/2	2048
$a_7^2 d_5 a_4 a_1^2$	4	800	250/2	5120
$a_7^2d_5a_3a_2a_1$	4	864	243/2	6144
$a_7^2 a_5 a_3 a_1^2 a_1$	4	1152	216/2	12288
$a_7^2 a_3^2 a_3 a_1^2$	8	1280	200/2	16384
$a_7 e_6^2 a_5 a_1$	2	432	432/2	864
$a_7 d_6^2 a_3^2$	4	576	324/2	2048
$a_7 a_6^3$	3	588	252/2	2744
$a_7 a_5^{\bar{3}} a_1^3$	6	1152	192/2	13824
$a_7a_3^{ar 6}$	24	1536	144/2	32768
$e_{6}^{4}a_{1}$	48	225	625/2	162
$e_6^{\dot{3}}a_6a_1$	6	315	525/2	378
$e_6^3 a_5 a_2$	12	351	507/2	486
$e_6^3 a_3 a_2^2$	12	486	486/2	972
$e_6^2 a_5^2 a_3$	8	504	392/2	1296
$e_6^2 a_5 a_4 a_2^2$	4	675	375/2	2430
$e_6^2 a_5 a_2^4$	8	891	363/2	4374
$e_6 d_5 a_5^2 a_2^2$	4	756	294/2	3888
$e_6 a_5^3 d_4$	12	612	289/2	2592
$d_{6}^{4}a_{1}$	24	336	441/2	512
$d_{6}^{3}d_{5}a_{1}^{2}$	6	448	392/2	1024
$d_{6}^{3}d_{4}a_{2}a_{1}$	6	528	363/2	1536
$d_{6}^{3}a_{4}a_{3}$	6	480	360/2	1280
$d_{6}^{3}d_{4}a_{1}^{3}$	6	608	361/2	2048
$d_6^2 a_5 d_4 a_3 a_1$	2	672	294/2	3072
$d_6^2 d_4^2 a_3 a_1^2$	4	768	288/2	4096
$d_6 a_5^3 d_4$	6	648	243/2	3456
$d_6 d_4^4 a_1^3$	24	960	225/2	8192
$a_6^4 a_1$	24	735	225/2	4802
$a_6 a_5^3 d_4$	6	756	189/2	6048
$d_5 a_5^4$	16	720	200/2	5184
$d_5d_4^5$	120	640	200/2	4096

$d_5 a_4^5$	20	1000	160/2	12500
$a_5^4 d_4 a_1$	48	936	169/2	10368
$a_5^4 a_2 a_1^3$	48	1512	147/2	31104
$a_5 a_4^5$	20	1125	135/2	18750
$a_5 a_2^{10}$	720	3645	75/2	354294
$d_4^6 a_1$	2160	832	169/2	8192
$d_4^5 a_2 a_1^3$	360	1344	147/2	24576
$d_4^4 a_3 a_1^6$	144	2048	128/2	65536
$d_4^4 a_1^9$	432	2816	121/2	131072
$d_4 a_3^7$	336	1792	98/2	65536
$d_4a_1^{21}$	120960	14336	49/2	8388608
$a_4^6 a_1$	240	1375	121/2	31250
$a_4 a_3^7$	168	1920	90/2	81920
$a_3^8 a_1$	2688	2304	81/2	131072
$a_3 a_2^{11}$	7920	4374	54/2	708588
$a_3 a_1^{22}$	887040	16384	32/2	16777216
$a_2^{12}a_1$	190080	5103	49/2	1062882
$a_2 a_1^{23}$	10200960	18432	27/2	25165824
$a_1^{24}a_1$	244823040	20480	25/2	33554432

Figure 1. The enumeration of shallow holes whose diagram contains a component a_{15} . For types (a)-(d) the set of points disjoined from a_{15} has no 10-point subgraph of mutually disjoined spherical diagrams, so only case (e) leads to holes.

(This figure is not yet included as I can't be bothered to draw it in TEX.)

References.

- [B] Bourbaki, Nicolas Groupes et algèbres de Lie. Chapitres 4, 5 et 6. Masson, Paris, 1981. ISBN: 2-225-76076-4
- [C-N] Conway, J. H.; Norton, S. P. Monstrous moonshine. Bull. London Math. Soc. 11 (1979), no. 3, 308–339.
- [C-S] Conway, J. H.; Sloane, N. J. A. Sphere packings, lattices and groups Grundlehren der Mathematischen Wissenschaften, 290. Springer-Verlag, New York, 1999. ISBN: 0-387-98585-9