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The denominator function of a generalized Kac-Moody algebra is often an automorphic
form for the group Os+2,2(R) which can be written as an infinite product. We study such
forms and construct some infinite families of them. This has applications to the theory
of generalized Kac-Moody algebras, unimodular lattices, and reflection groups. We also
use these forms to write several well known modular forms, such as the elliptic modular
function j and the Eisenstein series E4 and E6, as infinite products.
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1. Introduction.

The main result of this paper is a method for constructing automorphic forms on
Os+2,2(R)+ as infinite products. For example, a special case of theorem 10.1 states that
if 24|s and we define c(n) by η(τ)−s = q−s/24

∏
n>0(1 − qn)−s =

∑
n c(n)qn and ρ is a

certain vector then

Φ(v) = e−2πi(ρ,v)
∏
r>0

(1− e−2πi(r,v))c(−(r,r)/2)
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is an automorphic form for the discrete subgroup OIIs+2,2(Z)+ of OIIs+2,2(R)+ (or rather,
its analytic continuation is an automorphic form, as the infinite product does not converge
everywhere). We first describe some applications of this method, and then describe the
proof.

The simplest application is a product formula for the elliptic modular function j(τ).
More precisely,

j(τ) = q−1
∏
n>0

(1− qn)3a(n2)

where the a(n)’s are the coefficients of a certain nearly holomorphic (“holomorphic except
for poles at cusps”) modular form 3q−3 + 744q + · · · of weight 1/2 (see example 2 of
section 14 for a precise description of the a(n)’s). There are similar product formulas
for many other modular forms and functions, for example the Eisenstein series E4, E6,
E8, E10 and E14 and the modular function j(τ) − 1728. The usual product formula
∆(τ) = q

∏
n>0(1 − qn)24 is the simplest case of these product formulas. More generally,

theorem 14.1 gives an isomorphism between a certain additive group of nearly holomorphic
modular forms of weight 1/2 and a multiplicative group of meromorphic modular forms all
of whose zeros and poles are either cusps or imaginary quadratic irrationals. In particular,
as an immediate corollary of theorem 14.1, we find a product formula for the classical
modular polynomial ∏

[σ]

(j(τ)− j(σ)) = q−H(−D)
∏
n>0

(1− qn)c0(n
2)

where σ runs through a complete set of representatives modulo SL2(Z) for the imaginary
quadratic numbers which are roots of an equation of the form aσ2 + bσ+ c = 0 (a, b, c ∈ Z)
of some fixed discriminant b2−4ac = D < 0 (except that when σ is a conjugate of one of the
elliptic fixed points i or (1+i

√
3)/2 we have to replace the corresponding factor j(τ)−1728

or j(τ) by (j(τ)−1728)1/2 or j(τ)1/3). The exponents c0(n2) are coefficients of the unique
nearly holomorphic weight 1/2 modular form for Γ0(4) whose power series

∑
n∈Z c0(n)qn is

of the form qD +O(q) and whose coefficients c0(n) vanish unless n ≡ 0, 1 mod 4 (Kohnen’s
“plus space” condition). The product on the left, as a function of j(τ), is just the classical
modular polynomial for discriminant D, whose degree is the Hurwitz class number H(−D).

This formula can be compared with the Gross-Zagier formula ([G-Z], formula 1.2 and
theorem 1.3) ∏

[τ1],[τ2]

(j(τ1)− j(τ2))4/w1w2 = ±
∏

x∈Z,n,n′>0,x2+4nn′=d1d2

nε(n′)

where the first product is over representatives of equivalence classes of imaginary quadratic
irrationals of discriminants d1, d2, w1 and w2 are the number of roots of 1 in the orders of
discriminants d1, d2, and ε(n′) = ±1 is defined in [G-Z]. It is also related to the denominator
formula

j(σ)− j(τ) = p−1
∏

m>0,n∈Z

(1− pmqn)c(mn)
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of the monster Lie algebra (where p = e2πiσ, q = e2πiτ , and j(τ) − 744 =
∑

n c(n)qn =
q−1 + 196884q + · · ·). These 3 product formulas for

∏
(j(σ) − j(τ)) cover the cases when

both, one, or neither of σ and τ run over representatives of imaginary quadratic numbers of
fixed discriminant, while the others can be arbitrary complex numbers with large imaginary
part. In spite of the similarity of the left hand sides, there does not seem to be any obvious
way to deduce any of these 3 formulas from the others.

There are several strange results about Niemeier lattices (even 24-dimensional uni-
modular lattices) and the Leech lattice, which were proved by Niemeier, Venkov, and
Conway [C-S]. For example, every Niemeier lattice either has no roots or the root system
has rank 24, the number of roots is divisible by 24, and the Leech lattice is the Dynkin
diagram of II25,1. We will find generalizations of these results for all 24n-dimensional even
unimodular lattices K in section 12. For example, K either has no vectors of norm at most
2n (i.e., it is extremal) or the vectors of norm at most 2n span the vector space K ⊗R,
and if θK(τ) is the theta function of K, then the constant term of θ(τ)/∆(τ)n is divisible
by 24. We also use properties of one automorphic form to give a very short proof of the
existence and uniqueness of the Leech lattice.

Many examples of automorphic forms on Os+2,2(R) which are modular products
are the denominator formulas of generalized Kac-Moody algebras. The simplest ex-
ample is the product formula for the denominator function j(σ) − j(τ) of the monster
Lie algebra given above. This function obviously transforms under a group of the form
(SL2(Z)×SL2(Z)).(Z/2Z), which is isomorphic to the congruence subgroup OII2,2(Z)+ of
OII2,2(R). (Strictly speaking, this is an automorphic function rather than an automorphic
form because it has weight 0 and is not holomorphic at the cusps.) A second example is
the denominator formula for the fake monster Lie algebra

Φ(v) =
∑

w∈W

∑
n>0

det(w)τ(n)e−2πin(w(ρ),v) = e−2πi(ρ,v)
∏
r>0

(1− e−2πi(r,v))p24(1−r2/2).

This function is obviously antiinvariant under the group OII25,1(Z)+, but also turns out
to be an automorphic form of weight 12 under the group OII26,2(Z)+. This is equivalent
to saying that Φ satisfies the functional equation

Φ(2v/(v, v)) = −((v, v)/2)12Φ(v).

We can construct many new examples of generalized Kac-Moody algebras from automor-
phic forms on Os+2,2(R), and conversely we can find many examples of such automorphic
forms using generalized Kac-Moody algebras.

There are close connections between automorphic forms on Os+2,2(R) and hyperbolic
reflection groups. For any such automorphic form with a modular product we will define
its “Weyl vectors”. These often turn out to be the Weyl vectors for some hyperbolic
reflection group. One example given in section 16 corresponds to the reflection group of
the even sublattice of I21,1; this is the largest dimension in which the reflection group of a
hyperbolic lattice has finite index in the automorphism group. Similarly all the reflection
groups of the lattices In,1 for n ≤ 19 that were investigated by Vinberg have automorphic
forms associated with them.
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We now discuss how to construct automorphic forms as infinite products. This con-
struction depends on 3 results, given in sections 4, 5, and 6. The first result (theorem
5.1) states that under mild conditions a modular product can be analytically continued as
a meromorphic function to the whole of the Hermitian symmetric space H of Os+2,2(R),
and its poles and zeros can only lie on certain special divisors, called quadratic divisors.
(A modular product is, roughly speaking, an infinite product whose exponents are given
by the coefficients of some nearly holomorphic modular forms; see section 5.) The proof
of this uses the Hardy-Ramanujan-Rademacher asymptotic series for the coefficients of a
nearly holomorphic modular form. The second result (theorem 6.5) is a generalization of
the Macdonald identities from affine root systems to “affine vector systems”. This general-
ization states (roughly) that an infinite product over the vectors of an affine vector system
is a Jacobi form. (For affine root systems the usual Macdonald identities follow easily from
this using the fact that any Jacobi form can be written as a finite sum of products of theta
functions and modular forms.) The third result we use (section 4) is a description of Hecke
operators V` for certain parabolic subgroups (“Jacobi subgroups”) of discrete subgroups
of Os+2,2(R).

If we put these three results together, we sometimes find that an expression of the
form exp(ρ+

∑
`≥0 φ|V`), where φ is a nearly holomorphic Jacobi form, is an automorphic

form on Os+2,2(R). We prove this by showing that it transforms like an automorphic form
under 2 parabolic subgroups J(Z)+ and F (Z)+, and then checking (in theorem 8.1) that
these two subgroups generate a discrete subgroup of Os+2,2(R)+ of finite covolume. The
invariance under the Jacobi group J(Z)+ follows from the results on Hecke operators on
Jacobi forms that we recall in sections 2 to 4, and the invariance under the Fourier group
F (Z)+ follows by calculating the Fourier coefficients explicitly and checking that these are
invariant under F (Z)+.

When the Jacobi form φ is holomorphic, this is similar to a method for construct-
ing automorphic forms on Sp4(R) found by Maass [M], and generalized to Os+2,2(R) by
Gritsenko [G], who showed that

∑
`≥0 φ|V` was an automorphic form. The two main extra

complications we have to deal with when φ is not holomorphic are firstly that this sum no
longer converges everywhere and so has to be analytically continued, and secondly that
the “Weyl vector” ρ has to be chosen correctly.

Notation (in roughly alphabetical order).

+ If G is a subgroup of a real orthogonal group then G+ means the elements of G of
positive spinor norm.

′ If L is a lattice then L′ means the dual of L.
⊥ If u is a vector (or sublattice) of a lattice then u⊥ means the orthogonal complement

of u.
¯ If λ is a vector in a lattice then λ̄ is the orthogonal projection of λ into some sublattice.
α A coordinate of a vector in M .
a An entry of a matrix

(
ab
cd

)
in SL2(Z).

A(v) A Fourier coefficient of an automorphic form on OM (R)+.
β A coordinate of a vector in M .
b An entry of a matrix

(
ab
cd

)
in SL2(Z).

4



Bk A Bernoulli number:
∑

k∈ZBkt
k/k! = t/(et − 1).

γ A coordinate of a vector in M .
Γ0(N) {

(
ab
cd

)
∈ SL2(Z)|c ≡ 0 mod N}

Γ(z) Euler’s gamma function.
c An entry of a matrix

(
ab
cd

)
in SL2(Z).

c(v) The multiplicity of a vector in a vector system, or a Fourier coefficient of a modular
form or Jacobi form, or an exponent of a modular product.

C The complex numbers.
C The positive cone in a Lorentzian lattice.
δ A coordinate of a vector in M .

δm
n 1 if m = n, 0 otherwise.
∆ The delta function, ∆(τ) = q

∏
n>0(1− qn).

d The number of elements of a vector system, an entry of a matrix
(
ab
cd

)
in SL2(Z).

D The discriminant of a quadratic divisor or an imaginary quadratic irrational or an
imaginary quadratic field.

e±z means ez if <(z) < 0, e−z if <(z) > 0.
en The Dynkin diagrams or lattices of e8, e10, and so on.
Ek An Eisenstein series of weight k, equal to 1− (2k/Bk)

∑
n>0 σk−1(n)qn.

ζ e2πiz. ζy = e2πi(y,z).
f A function.
F A Fourier group. See section 2.

F (τ) =
∑

n>0 σ1(2n− 1)q2n−1.
2F1 The hypergeometric function.
g An element of the group G, or a function.
G A group.

GL A general linear group.
GO A general orthogonal group.
η(τ) = q1/24

∏
n>0(1− qn).

h The height of a vector. See section 13.
h(τ) h(τ) = h0(4τ) + h1(4τ) is a modular form of weight 1/2.

H, Hu Hermitian symmetric spaces of On+2,2(R).
H(n) The Hurwitz class number of n. See section 13.

HN,j(n) A generalization of the Hurwitz class number of n. See section 13.
HN,j(τ) A function with coefficients HN,j(n). See section 13.
θ, θK Theta functions of lattices or cosets of lattices. See section 3.

Iν A modified Bessel function.
IIm,n The even unimodular Lorentzian lattice of dimension m+ n and signature m− n.

= The imaginary part of a complex number.
j The elliptic modular function j(τ) = q−1 + 744 + 196884q + · · ·.
J A Jacobi group. See section 2.
J` A double coset of J(Z)+.
κ A vector of K.
k The weight of an automorphic form or Jacobi form.
K An even positive definite lattice of dimension s.
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Kµ A modified Bessel function.
λ An element of K.
Λ The Leech lattice. See [C-S].
` An integer, usually indexing Hecke operators.
L An even Lorentzian lattice of dimension s+ 2, sometimes equal to K ⊕ II1,1.
µ An element of K, or a real number.
m The index of a Jacobi form or vector system. See section 3 or 6.
M An even lattice of dimension s+ 4 and signature s, sometimes equal to L⊕ II1,1.

M [U ] The lattice generated by U and all vectors of M having integral inner product with
everything in U .

ν A real number.
n An integer, often indexing the coefficients of a modular form.
N The level of a modular form.
O An orthogonal group.

O(qn) A sum of terms of order at most qn.
p e2πiσ

pm(n) The number of partitions of n into parts of m colors.
P A principle C∗ bundle over H.

℘(n) ℘(n)(z, τ) = d
dz

n
℘(z, τ), where ℘ is the Weierstrass function. See section 7.

q e2πiτ

Q A quadratic form; Q(v) = (v, v)/2.
Q The rational numbers.
ρ A Weyl vector. See section 6.
R A commutative ring, usually Z, Q, R, or C.
< The real part of a complex number.
r An element of the ring R, or a vector of K.

R The real numbers.
σ A complex number with positive imaginary part.

σk−1(n) =
∑

d|n d
k−1 if n > 0, −Bk/2k if n = 0.

s The signature of a lattice or Jacobi form.
sl2(R) The set of 2 by 2 real matrices of trace 0.

SL A special linear group.
SO A special orthogonal group.
τ A complex number with positive imaginary part, or Ramanujan’s function τ(n).

tu,v, tr Automorphisms of a lattice. See section 2.
T` A Hecke operator.
T`,` A Hecke operator.
u A norm zero vector in a lattice, often contained in U .
U A 2-dimensional null lattice, usually a sublattice of M .
U` A Hecke operator acting on Jacobi forms.

φ,φu Jacobi forms. See sections 2 and 3.
Φ An automorphic form on OM (R)+.
ψ A Jacobi form. See sections 2 and 3.
Ψ A meromorphic modular form with a modular product expansion.
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v A vector in a vector system. See section 6.
V A vector system. See section 6.
V` A Hecke operator acting on Jacobi forms. See section 4.
V`,` A Hecke operator acting on Jacobi forms. See section 4.
W A Weyl chamber. See section 12.
x A real number or an element of K ⊗R, often equal to <(z).
y A real number or an element of K ⊗R, often equal to =(z).
z An element of the complexification of K, or a complex number, often equal to x+ iy.
Z The integers.

Terminology.
Nearly holomorphic. Meromorphic with all poles at the cusps.
Automorphic form. See section 2.
Classical Jacobi form. A function of several variables transforming like a modular
form in one of them and like a theta function in the others. See section 3.
Fourier group. A certain parabolic subgroup of OM . See section 2.
Height. The height of a vector is the minimum inner product with a Weyl vector.
See section 13.
Index. See section 6 for the index of a vector system, and sections 2 and 3 for the
index of a Jacobi form.
Jacobi form. See sections 2,3.
Jacobi group. A parabolic subgroup of OM . See section 2.
Koecher principle. An nearly holomorphic automorphic form on a simple group of
rank greater than 1 is automatically holomorphic at the cusps.
Modular product. An infinite product whose exponents are the coefficients of nearly
holomorphic modular forms. See section 5.
Primitive sublattice. A sublattice Z of M is primitive if Z contains any vector of
M a nonzero multiple of which is in Z.
Rational quadratic divisor. The zero set of a(y, y) + (b, y) + c where a ∈ Z, b ∈
L, c ∈ Z. See section 5.
Signature. The signature of a Jacobi form is the signature of any of the lattices
associated to it, and is one less than the number of variables the Jacobi form depends
on.
Singular weight. Weight s/2 or 0. See section 3.
Spezialschar. (“Special space.”) A space of automorphic forms whose Fourier coef-
ficients satisfy certain relations. See section 9 and [M paper I].
Spinor norm. A homomorphism from a real orthogonal group to R∗/R∗2 taking
reflections of vectors of positive or negative norm to 1 or −1 respectively.
Theta function. A modular form or Jacobi form depending on a lattice. See section
3.
Vector system. A multiset of vectors in a lattice with some of the properties of a
root system. See section 6.
Weyl chamber. A generalization of the Weyl chamber of a root system to vector
systems. See section 6.
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Weyl vector. A generalization of the Weyl vector of a root system to vector systems.
See sections 6, 12.

2. Automorphic forms and Jacobi forms

We summarize some general facts about automorphic forms on Os+2,2(R) and set up
some notation for them. General references for this section are [F] for automorphic forms
and [E-Z] for Jacobi forms. The book [F] covers modular forms on symplectic groups
rather than orthogonal groups, but most of the general results carry over with only minor
changes. Similarly the book [E-Z] covers only Jacobi forms of signature 1, but many of
the results can easily be generalized to Jacobi forms of arbitrary signature.

If M is any even integral lattice (with associated quadratic form Q(v) = (v, v)/2)
we write OM for the algebraic group of rotations of M , so that OM (R) is the group of
rotations of M ⊗R preserving the quadratic form Q of M ⊗R. We write GLM and SLM

for the general and special linear groups of M , SOM for the special orthogonal group of
M , and GOM for the general orthogonal group (or conformal group) consisting of the
linear transformations multiplying the quadratic form by an invertible element. We think
of SOM , OM , GLM , and so on as being algebraic groups defined over Z, so for example
OM (Z) is the group of automorphisms of the lattice M .

There is a “spinor norm” homomorphism from OM (R) to R∗/R∗2, which which has
the property that a reflection of a vector of norm Q(v) has spinor norm Q(v) ∈ R∗/R∗2.
In this paper R∗/R∗2 can usually be identified with the group {1,−1} of order 2, and
the reflection of a vector of positive or negative norm then has spinor norm +1 or −1
respectively. If G is a subgroup of OM (R) we write G+ for the subgroup of G of elements
of spinor norm 1 ∈ R∗/R∗2. The elements of OM (R) with determinant 1 and positive
spinor norm form the connected component SOM (R)+ of the identity. If M is positive
definite the spinor norm on OM (R) is always positive, if M is negative definite it coincides
with the determinant, and if M is indefinite then SOM (R)+ has index 4 in OM (R). If
M is Lorentzian then the rotations of positive spinor norm are exactly those that preserve
rather than interchange the two cones or negative norm vectors of M ⊗R.

The group OM (R)+ is the image of the pin group PinM (R) induced by the natural
homomorphism from PinM to OM , and similarly SOM (R)+ is the image of the spin group
SpinM (R). Notice that the map from PinM to OM is an epimorphism of algebraic groups,
but the map from PinM (R) to OM (R) is not necessarily an epimorphism of groups. It
would really be more natural to use the pin and spin groups throughout this paper rather
than the orthogonal and special orthogonal groups, but this is not (yet) essential and we
will stick to OM and SOM to save having to describe the construction of PinM and SpinM .

From now on we assume that M is a nonsingular even lattice of signature s and
dimension s+ 4. We assume that we have chosen a “spin orientation” on M , by which we
mean a choice of orientation on each 2-dimensional negative definite subspace of M ⊗R
which varies continuously. There are 2 possible spin orientations on M , and they are
interchanged by any rotation of negative spinor norm.

We construct a model for the Hermitian symmetric space of OM (R). We let P be the
vectors z = x + iy ∈ M ⊗C such that z2 = 0, x2 < 0, and (x, y) is a positively oriented
base of the 2-dimensional vector space spanned by x and y. This space P is acted on by
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C∗ in the obvious way, and we define H to be the quotient of P by this C∗ action. Then
P and H both have natural complex structures, H is an Hermitian symmetric space, and
P is a principle C∗ bundle over H. There is a natural compactification of H which is the
closure of H in the projective space of M ⊗C.

The space P is acted on transitively by GOM (R)+, the group of all conformal trans-
formations of M of positive spinor norm. The subspace of P of all vectors x + iy with
x2 = −1 is acted on transitively by OM (R)+ and is a principle S1 bundle over H.

Complex conjugation in M ⊗ C maps P and H to their complex conjugates P̄ and
H̄. If we identify P̄ and H̄ with their complex conjugates using complex conjugation
(which commutes with GOM (R)) then we get an action of GOM (R) on H and P such
that elements of negative spinor norm act as antiholomorphic transformations. This is
similar to the extension of the usual action of GL2(R)+ (the subgroup of elements of
positive determinant) on the upper half plane extended to an action of GL2(R) on the
complex plane with the real line removed. If we identify the upper and lower half planes
using complex conjugation, then we get an action of GL2(R) on the upper half plane, with
the elements of negative determinant acting as antiholomorphic transformations.

The group OM (Z)+ is a discrete subgroup of OM (R)+. We will say that a function
Φ on P is a nearly holomorphic automorphic form of weight k ∈ Z for OM (Z)+ if it has
the following properties.

1 Φ is holomorphic on P .
2 Φ is homogeneous of degree −k, i.e., Φ(vz) = z−kΦ(v) for z ∈ C.
3 Φ is invariant under OM (Z)+, i.e., Φ(γv) = Φ(v) for γ ∈ OM (Z)+. More generally,

we also allow Φ(γv) = det(γ)Φ(v) and call such forms antiinvariant under OM (Z)+.
If Φ is also “holomorphic at the cusps” (see below) then we call Φ a holomorphic

automorphic form, or automorphic form for short. For s ≥ 1 any nearly holomorphic form
is automatically holomorphic by the Koecher boundedness principle, which also holds
for s = 0 provided the lattice M does not have square determinant (by the Koecher
boundedness principle for Hilbert modular forms). (The Koecher boundedness principle
states that any automorphic form on an Hermitian symmetric space associated to a group
of real rank greater than 1 is automatically holomorphic at all cusps if it is holomorphic
on the symmetric space. See the article on pp. 296-300 by Baily in [B-M].)

Homogeneous functions of degree −k on P can be identified with sections of the line
bundle P k over H, so nearly holomorphic automorphic forms of weight k are just invariant
(or antiinvariant) holomorphic sections of P k.

We can restrict Φ to the subspace of P with x2 = y2 = −1 and then lift it to a function
on OM (R)+ (or better, to a function on PinM (R)). The conditions on Φ then say that
this lift is left invariant under OM (Z)+ and transforms under right multiplication by the
elements of a maximal compact subgroup according to some representation (described by
k) of this compact subgroup. Hence our definition is equivalent to a special case of the
usual definition of an automorphic form on a reductive Lie group. We can also define
forms of half integral weight either by using the double cover of the line bundle P instead
of P , or by allowing Φ to be a 2-valued holomorphic function, or by using functions on
the pin group. A form of weight k on the group OM (R)+ becomes a form of weight 2k
on PinM (R). This is because the weight k indexes representations of an S1 subgroup of
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OM (R)+ or PinM (R), and the map between the corresponding S1 subgroups is 2 to 1,
so the integer parameterizing irreducible representations has to be doubled. Forms of half
integral weight on OM correspond to ordinary modular forms of integral weight rather than
half integral weight, because the double cover SpinM → SOM corresponds to the double
cover SL2 → PGL2 rather than the metaplectic double cover of the special linear group.
In particular if M has dimension 3 then automorphic forms on OM (R)+ of weight k can be
identified with ordinary modular forms of weight 2k (rather than k). This annoying factor
of 2 in the weights is unavoidable and is not just caused by a bad choice of conventions: one
construction in this paper starts with an ordinary modular form for SL2(Z) of weight k,
and ends up with an ordinary modular form of weight 2k, and this factor of 2 is essentially
caused by the doubling of weights when lifting forms on OM to forms on PinM .

We now study the parabolic subgroups of OM . The subgroup fixing a nonzero null
sublattice of M is a maximal parabolic subgroup, and this null sublattice can have rank 1
or 2. If it has rank 1 we will call the corresponding parabolic subgroup a Fourier group,
and if it has rank 2 we call the corresponding parabolic subgroup a Jacobi group. The
reason for this terminology is that the “Fourier–Jacobi” expansion of an automorphic form
with respect to a parabolic subgroup is essentially either a Fourier series expansion or an
expansion in terms of Jacobi forms, depending on whether the parabolic subgroup is a
Fourier group or a Jacobi group. What we call the Jacobi group is essentially a central
extension of the Jacobi group in [E-Z, p. 10]; see also [E-Z Theorem 1.4] and [E-Z Theorem
6.1] for other appearances of this central extension.

Suppose that U is a 2-dimensional primitive null sublattice of M , and let J be the
corresponding Jacobi subgroup of GOM . (A sublattice U of M is called primitive if U =
M ∩U ⊗R.) There is an obvious induced action of J on the lattices U and U⊥/U = K, so
we get a homomorphism from J to GOK ×GLU . The connected component of the kernel
of this homomorphism is a Heisenberg group whose structure we will now describe. (This
is the “same” Heisenberg group that turns up regularly in the theory of theta functions.)
If u ∈ U and v ∈ u⊥/u then we define an automorphism tu,v of M by

tu,v(w) = w + (w, u)v − ((w, v) + (w, u)(v, v)/2)u.

For fixed u these form a group of automorphisms of M fixing u and all elements of u⊥/u.
If u, v is a positively oriented basis of U and r ∈ R then we define tr by

tr = tru,v.

This depends on U but not on the choice of positively oriented basis for U , and commutes
with all automorphisms tu,v for u ∈ U , v ∈ U⊥. The automorphisms tu,v for u ∈ U ,
v ∈ U⊥ satisfy the relations

tu1,v1tu2,v2 = tu2,v2tu1,v1tr

where r = (v1, v2) times the determinant of a linear transformation taking a positively
oriented basis of U to u1, u2. They generate a Heisenberg group of dimension 2s+1 whose
center is the group of elements of the form tr.
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If Φ is an automorphic function and J is a Jacobi group we define the Jacobi expansion
of Φ as follows. We let tr for r ∈ R be the elements of the center of the Jacobi group. We
define φm for m ∈ Z by

φm(v) =
∫

r∈R/Z

Φ(tr(v))e2πimrdr.

This is well defined because Φ(tr(v) = Φ(v) for r ∈ Z. The Jacobi expansion of Φ is then

Φ =
∑
m∈Z

φm,

and the functions φm have the following properties.
1 φm is a homogeneous function of weight k.
2 φm is holomorphic on P .
3 φm(tr(v)) = e2πimrφm(v).
4 φm is invariant (or possibly antiinvariant) under the Jacobi group J(Z)+.
5 φm is “holomorphic at the cusps” (at least if Φ is); the meaning of this is described

below in the section on Fourier subgroups.
Functions with these properties are called Jacobi forms of index m and weight k

and signature s. If the lattice M is 5 dimensional (i.e., the signature is 1) then these are
more or less the same as the Jacobi forms of [E-Z] multiplied by an elementary function.
The signature s is the signature of any of the 3 lattices K, L, or M associated with the
Jacobi form. If φm is a Jacobi form we can analytically continue it to the space of all norm
0 vectors v in M ⊗ C such that =((v, u1)/(v, u2)) > 0, where u1 and u2 is any oriented
base of U , by saying that φm(tr(v)) = e2πimrφm(v) must hold for all complex values of r.

Now suppose that u is a primitive norm 0 element ofM , and let F be the corresponding
Fourier group. There is an induced action of F on the lattice L = u⊥/u, which gives a
homomorphism from F to the group GOL. The connected component of the kernel of
this homomorphism is a unipotent abelian group containing the elements tu,v for v ∈ L.
Suppose that Φ is either an automorphic form or a Jacobi form of a 2-dimensional lattice
containing u. Then Φ(tu,v(w)) = Φ(w) for v ∈ L. We define Am for m ∈ L′ by

Am(w) =
∫

v∈L⊗R/L

Φ(tu,v(w))e2πimvdv.

The Fourier expansion of Φ is then

Φ =
∑

m∈L′

Am.

We will see shortly that the Am’s are elementary factors times exponential functions, so
this is essentially just the usual Fourier series expansion of Φ. We say that Φ is holomorphic
at F if the Fourier coefficients Am are 0 unless m lies in the closed positive cone of L. (The
vectors of nonpositive norm in L ⊗ R form two closed cones; the positive one is defined
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to be the one containing a norm 0 vector v such that u, v is a positively oriented basis of
the 2-dimensional space they span in M .) If φ is a Jacobi form corresponding to some
Jacobi group J , then we say that φ is holomorphic (at the cusps) if the Fourier expansion
of φ at every cusp of J is holomorphic, i.e., if the Fourier expansion of φ at every Fourier
subgroup F such that F ∩ J is parabolic is holomorphic. This condition on F just means
that F is the Fourier group of some 1-dimensional lattice contained in the 2-dimensional
null lattice of J .

If F is a Fourier group of a norm zero vector u, we will construct another model Hu of
the Hermitian space H, on which the action of F is easier to visualize. We put L = u⊥/u
so that L is a Lorentzian lattice, and we write L1(R) for the space (vectors of M ⊗ R
which have inner product 1 with u)/Ru, so that L1 is an affine space over L. We define
Hu to be the vectors in x+ iy ∈ L1(C) such that y is in the positive open cone of L⊗R.
If we write P 1 for the vectors of P having inner product 1 with u, then H is naturally
isomorphic to P 1 because each fiber of P over H has a unique element in P 1. Also each
element of P 1 represents an element of Hu. This maps P 1 onto Hu, because given any
point x+ iy ∈M ⊗C representing a point in Hu, we can add a multiple of u to x to make
the norm of x equal to that of y, and can then add a multiple of u to y to make x and y
orthogonal. The point x + iy then lies in P 1. Hence we have constructed isomorphisms
from H to P 1 and from P 1 to Hu, so Hu can be identified with H. We identify functions
of degree −k on P with functions on P 1 by restriction, and we identify functions on P 1

with functions on Hu by using the isomorphism from P 1 to Hu. Hence functions of degree
−k on P (in particular automorphic forms of weight k) can be identified with functions on
Hu.

3. Classical theory

We will show that the definitions in the previous section are equivalent to the usual
definitions of Jacobi forms (at least when M has dimension 5) by working out a simple case
explicitly. We choose K to be an even positive definite lattice and we let L = K ⊕ II1,1,
M = L ⊕ II1,1. We can write vectors of M in the form (κ, α,−δ, γ, β) with κ ∈ K,
α, β, γ, δ ∈ Z, and this vector has norm κ2/2 + αδ − γβ. We put u1 = (0, 0, 1, 0, 0),
u2 = (0, 0, 0, 0, 1). We define J to be the Jacobi group of 〈u1, u2〉, and we let F be
the Fourier group of u = u2. We let Hu be the Hermitian symmetric space defined in
the previous section. We can identify Hu with a subspace of L ⊗ C (because we have a
canonical vector (0, 0, 0, 1, 0) which has inner product −1 with u.)

It is particularly easy to describe functions on H which are invariant under F (Z). If
we consider the associated function Φu on Hu, then we can expand Φu as a Fourier series
(as f is invariant under translation by L), and the Fourier coefficients have to be invariant
under the natural action of F on L′.

As an example we work out the condition on Φu that corresponds to the weight k au-
tomorphic form f being invariant under the transformation taking (v, γ, β) to (v, β, γ)
(v ∈ L ⊗ C). By definition, Φu(v) = f(v, 1, v2/2) and f(v, γ, β) = f(v, β, γ), and
f(v, γ, β) = γ−kΦu(v/γ) (for v2 = 2mn). From this it follows that

Φu(−2v/(v, v)) = ((v, v)/2)kΦu(v).

12



Suppose now that φ is a Jacobi form of index m and weight k. We will show how to
identify φ with a classical Jacobi form. The conditions on φ are

φ(z, α,−δ, γ, β) = rkφ(rz, rα,−rδ, rγ, rβ)

= e−2πimrφ(z, α,−δ + rγ, γ, β − rα)
= φ(z, aα+ bγ,−dδ − cβ, cα+ dγ, aβ + bδ)

= φ(z + αλ, α,−δ + (z, λ) + αλ2/2, γ, β)

= φ(z + γµ, α,−δ, γ, β + (z, µ) + γµ2/2)

for r ∈ R, λ ∈ K, µ ∈ K, z ∈ K ⊗C,
(
ab
cd

)
∈ SL2(Z), α, β, γ, δ ∈ R.

We extend φ so that it is defined for all norm 0 vectors such that =(α/γ) > 0 by
insisting that φ should satisfy φ(z, α,−δ + rγ, γ, β − rα) = e2πimrφ(z, α,−δ, γ, β) for all
complex values of r. If we define φu(z, τ) for τ ∈ C,=(τ) > 0, z ∈ K ⊗C by

φu(z, τ) = φ(z, τ, 0, 1, z2/2)

then we find that φu has the following properties.

φu(z/(cτ + d), (aτ + b)/(cτ + d)) = (cτ + d)ke2πimc(z2/2)/(cτ+d)φu(z, τ)

φu(z + λτ + µ, τ) = e−2πim(zλ+τλ2/2)φu(z, τ) (λ, µ ∈ K).

Conversely, if we are given φu with these properties and we define φ by

φ(z, α,−δ, γ, β) = φu(z/γ, α/γ)γ−ke−2πimδ/γ

then φ transforms like a Jacobi form. If K is a one dimensional lattice spanned by a vector
of norm 2, then the relations for φu are equivalent to the relations in [E-Z, p. 1] defining
classical Jacobi forms (except for a misprint in their equation (1), where the term 2πimcz
should be 2πimcz2). There is an extra factor of 2 in some of the norms in some of our
formulas compared to the ones in [E-Z]; this appears because we normalize K to be an
even lattice generated by an element of norm 2, while in [E-Z] K is a lattice generated by
an element of norm 1.

We now summarize some facts about Jacobi forms, which are straightforward exten-
sions of standard results about Siegel modular forms and Jacobi forms of signature 1. We
say that a Jacobi form of signature s has singular weight if its weight is 0 or s/2. We say
that an automorphic form on O+

M (R) has singular weight if its weight is 0 or s/2. We
define a theta function of weight k = s/2 and index m ∈ Z to be a linear combination of
functions of the form

θK+r(z, τ) =
∑

λ∈K+r

qλ2/2ζmλ

where K is some positive definite rational lattice of dimension s and r ∈ K⊗Q (q = e2πiτ ,
ζλ = e2πi(z,λ)). Any theta function is a holomorphic Jacobi form of singular weight.
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Theorem 3.1. Any (nearly) holomorphic Jacobi form φ of positive index can be written
as a sum of products of theta functions and (nearly) holomorphic modular forms (though
these theta functions and modular forms may have higher level than φ).

For the case of Jacobi forms of signature 1 this is theorem 5.1 of [E-Z]. The proof for
higher signatures is essentially the same.

Corollary 3.2. Any holomorphic Jacobi form of weight 0 is constant, and there are no
nonconstant Jacobi forms of weight less than the singular weight s/2. Any holomorphic
Jacobi form of singular weight s/2 is a sum of theta functions.

Proof. This follows from theorem 3.1 and the fact that any theta function has weight
s/2.

Corollary 3.3. Any holomorphic automorphic form either has weight 0 in which case it
is constant, or has weight at least s/2. If it has singular weight s/2 then all the Fourier
coefficients corresponding to vectors of nonzero norm vanish.

Proof. If f can be written as a sum of Jacobi forms (which is the only case we will
use in this paper and is always true if s ≥ 2) then this follows from the previous corollary.
This is the analogue of the second proof in [F, appendix IV]. In general the corollary can
be proved by using the Laplacian operator, as in the first proof given in [F, appendix IV].

In particular there is a gap between 0 and s/2, such that there are no modular forms
with weights in this gap. This phenomenon does not occur for Siegel modular forms
because it just happens that all half integers less than the largest singular weight are also
singular weights. (In both cases the number of singular weights is equal to the real rank of
the corresponding Lie group.) Similarly the gap between weights 0 and s/2 of holomorphic
Jacobi forms of signature s is not really noticeable in [E-Z] because s/2 is equal to 1/2.

4. Hecke operators for Jacobi groups.

Suppose that M is an even lattice of dimension s + 4 and signature s and that U is
a 2-dimensional primitive null sublattice and J the corresponding Jacobi group. We will
assume that we are in the simplest (“level 1”) case, so we assume that the map from M
to U ′ is onto, and we assume that the discrete group we are working with is the full group
J(Z)+ (rather than some congruence subgroup).

Suppose that Y is a 2-dimensional lattice containing U . We define M [Y ] to be the
lattice generated by Y and the vectors of M that have integral inner product with all
vectors of Y . The fact that M maps onto U ′ implies M can be written as K ⊕ II2,2

where U is contained in II2,2, and this implies that M [Y ] is isomorphic to M under some
isomorphism mapping Y to U . (In the higher level case this is not always true, and we have
to restrict ourselves to lattices Y having this property.) We define J` to be the set of all
isomorphisms of positive spinor norm from some lattice of the form M [Y ] with [Y : U ] = `
to M . This is a union of double cosets of J(Z)+ = J1 because J(Z)+ acts on the set of
lattices Y with [Y : U ] = `. Two elements a and b of J` are in the same right J-coset if
and only if ab−1 is in J1, which happens if and only if a−1 and b−1 both map U to the
same lattice Y . Hence the right cosets of J(Z)+ in J` correspond exactly to the lattices Y
with [Y : U ] = `, and in particular there are only a finite number of such right cosets.
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If φ is a Jacobi form for J(Z)+ we define the Hecke operator V` by

(φ|V`)(v) = (1/`)
∑

g∈J1\J`

φ(gv).

This operator maps Jacobi forms of weight k and index m for J1 to Jacobi forms of weight
k and index m`. (The index gets multiplied by ` because the elements of J` act on Λ2(U)
and hence on the center of the nilradical of J1 as multiplication by `.) We define the
operator V`,` similarly except that we restrict to the coset corresponding to lattices Y such
that Y/U = (Z/`Z)2, so that

(φ|V`,`)(v) = (1/`2)φ(gv)

where g maps (1/`)U to U . The operator V`,` maps Jacobi forms of weight k and index
m to Jacobi forms of weight k and index m`2. The operator `2−kV`,` is denoted by U` in
[E-Z].

We define an action of GL2 on M by(
ab

cd

)
(z, α,−δ, γ, β) = (z, (aα+ bγ)/`,−dδ − cβ, (cα+ dγ)/`, bδ + aβ)

where ` = ad− bc. A set of right coset representatives of J1\J` is then given by the usual
set of matrices

(
ab
0d

)
with 0 ≤ b < d, ad = `. Using this set of representatives we can

calculate the relations between the Hecke operators and the Fourier expansion of f |T` in
the same way as for ordinary modular forms, and we get the following results.

Theorem 4.1.
1 If ` and `′ are coprime then V`V`′ = V``′ .
2 V`,`V`′,`′ = V``′,``′ .
3 If p is prime then VpVpn = Vpn+1 + pVp,pVpn−1 . (More generally, V`V`′ =∑

d|(`,`′) dVd,dV``′/d2 .)
4 The operators of the form V` and V`,` for ` ≥ 1 all commute with each other.

Proof. For signature 1 see [E-Z Theorem 4.2]; the proof in the general case is similar.
(There is a misprint in equation (10) of [E-Z, Theorem 4.2]; the term V` ◦ U`′ should be
V` ◦ V`′ .)

If we choose a norm 0 vector u and let φu be the classical Jacobi form associated to
φ and u as in the previous section then we can calculate the effect of V` on the Fourier
coefficients of φu as follows.

Theorem 4.2. If φu(z, τ) =
∑
c(r, n)qnζr then

φu|V`,` = `k−2
∑
r,n

c(r/`, n)qnζr

and
φu|V` =

∑
r,n

qnζr
∑

a|(r,`,n)

ak−1c(r/a, n`/a2).
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Proof. This is a straightforward calculation using the standard set of coset represen-
tatives. Details for the case of signature 1 are given in the proof of [E-Z, Theorem 4.2],
and the proof in the general case is similar.

5. Analytic continuation.

In this section we prove that certain infinite sums and products on L ⊗ C can be
analytically continued to multivalued functions whose singularities and branch points (and
zeros in the case of products) are known explicitly.

We let L be an (s + 2)-dimensional Lorentzian lattice (of signature s), and we let C
be one of the two cones of negative norm vectors in L⊗R. We choose some vector in −C
that is not orthogonal to any nonzero vector of L, and the expression x > 0 means that x
has positive inner product with this vector.

We define a modular product to be an infinite product of the form

Φ(y) = e−2πi(ρ,y)
∏

x∈L,x>0

(1− e−2πi(x,y))c(x)

where y ∈ L⊗C, =(y) ∈ C, c(x) is the coefficient of q−(x,x)/2 of some nearly holomorphic
modular form fx of weight −s/2, and the modular forms fx1 and fx2 are equal whenever
x1 − x2 lies in NL for some fixed integer N .

We define a rational quadratic divisor to be the set of points y with =(y) ∈ C
such that a(y, y) + (b, y) + c = 0 for some a ∈ Z, b ∈ L, c ∈ Z with (b, b) − 4ac > 0. If
M = L ⊕ II1,1, then the points y is some rational quadratic divisor are just the points
(y, 1, y2/2) ∈ M ⊗C that are orthogonal to the norm b2 − 4ac vector (b,−2a,−c) of M .
Hence rational quadratic divisors correspond to equivalence classes of positive norm vectors
of M , where two vectors are equivalent if they are rational multiples of each other.

For example, if L is a 1-dimensional lattice then a rational quadratic divisor is just
an imaginary quadratic irrational number in the upper half plane.

Theorem 5.1. Any modular product Φ(y) converges to a holomorphic function whenever
=(y) is in C and has sufficiently large norm. This function can be analytically continued
to a multivalued meromorphic function for all y with =(y) ∈ C all of whose singularities
and zeros lie on rational quadratic divisors.

We will see later that along any rational quadratic divisor a(y, y) + (b, y) + c = 0 the
function Φ(y) is locally of the form (a(y, y) + (b, y) + c)s times a holomorphic function for
some complex number s (except of course where the rational quadratic divisor meets other
singularities or zeros of Φ). The complex number s is called the multiplicity of the zero of
Φ along this rational quadratic divisor. The function Φ is holomorphic if and only if the
multiplicity of every rational quadratic divisor is a nonnegative integer.

If we allow the modular forms fr in the definition of a modular product to have
poles in the upper half plane, then their coefficients c(n) increase exponentially fast which
implies that the product defining Φ does not converge anywhere. On the other hand, if
we insist that the modular forms fr should be holomorphic, then their coefficients c(n)
have polynomial growth, which implies that the infinite product for Φ converges whenever
=(y) ∈ C, so that Φ is holomorphic and nonzero in this region. An example of this case is
f(τ) = 12

∑
n∈Z q

n2
and Φ(τ) = q

∏
n>0(1− qn)24.
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Theorem 5.2. Suppose that k is a positive integer and

Φ(y) =
∑

x∈L,x>0

A(x)e−2πi(x,v)

where A(x) =
∑

d|x d
k−1cx(−(x, x)/2d2) and cx(n) is the coefficient of qn of some nearly

holomorphic modular form fx of weight k−s/2, such that fx depends only on x mod N for
some fixed integer N . Then the sum for Φ converges whenever =(y) ∈ C and −(=(y),=(y))
is sufficiently large, and can be analytically continued to a meromorphic function defined
for all y with =(y) ∈ C, all of whose singularities are poles of order k lying on rational
quadratic divisors.

The proof of theorem 5.2 is similar to that of theorem 5.1 and slightly simpler, so we
will omit it. If k = 0 then the sum in theorem 5.2 is, up to some elementary factors, the
logarithm of the product in theorem 5.1, so the main change in the proof is that we do not
first need to take logarithms. Lemmas 5.3 and 5.4 are sufficiently general for the extension
of the proof to theorem 5.2.

The idea of the proof of theorem 5.1 is that log(Φ(y)) is given by a Fourier series
whose coefficients depend on the coefficients of modular forms. The singularities of any
periodic function are closely related to the asymptotic behavior of its Fourier coefficients,
and we know the asymptotic behavior of the coefficients of modular forms because of the
Hardy-Ramanujan-Rademacher series. Hence we can find all the singularities of log(Φ(y)),
which gives us all the singularities and zeros of Φ(y). Before giving the proof of theorem
5.1 we prove two preliminary lemmas.

Lemma 5.3. Suppose that f(τ) =
∑

n∈Z c(n)qn is a nearly holomorphic modular form
which has half integral weight k (which may be positive or negative or zero). Suppose that
its expansion at the cusp a/c (c > 0, ad− bc = 1) is

(cτ + d)−kf((aτ + b)/(cτ + d)) =
∑
n∈Q

ca/c(n)e2πinτ .

Then for any positive number ε we can find a finite sum of terms of the series∑
m>0

∑
c>0

∑
0≤a<c,0≤d<c,c|(ad−1)

2πca/c(−m)e2πi(an−md)/cI1−k(4π
√
mn/c)(m/n)(1−k)/2/c

which differs from c(n) by at most O(eε
√

n). (I1−k(z) is the modified Bessel function of
the first kind; see [E 7.2.2].)

Proof. This is the Hardy-Ramanujan-Rademacher series for the coefficients of nearly
holomorphic modular forms. The case when the form f has negative weight and level 1 is
proved in [R] (and in this case the series converges absolutely to c(n)). The case when f
has level greater than 1 is an easy generalization of the case when f has level 1. If f has
weight 0, then Rademacher showed that the series still converges to c(n) provided they
are added in the right order and n 6= 0, which again implies lemma 5.3. If f has positive
weight then a similar argument shows that the series we get is an asymptotic series for
c(n) with the stated error term. (In this case the series does not usually converge to c(n).)
This proves lemma 5.3.
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Lemma 5.4. If m is positive, k is real and s ≥ −1 then the integral

I = 2π
∫

x∈C

e−2πi(x,y)I1−k(4π
√
m(−x, x)/2)((−x, x)/2)(k−1)/2ds+2x

converges if =(y) ∈ C and −(=(y),=(y)) is sufficiently large, and can be analytically
continued to a multivalued holomorphic function in the region of all y ∈ L ⊗ C with
(y, y) 6= 0 and (y, y) 6= 2m.

In other words, the integral can be extended to a function which is (multivalued)
holomorphic for =(y) ∈ C apart from a singularity along a rational quadratic divisor.

Proof. We first evaluate the integral∫
x∈C

e−2πi(x,y)f(
√

(−x, x))ds+2x

where y ∈ iC, (y, y) is sufficiently large, and f is any continuous function defined for non
negative real numbers which does not increase more than exponentially fast at infinity.

This integral is equal to

2π(s+1)/2

Γ((s+ 1)/2)

∫ ∞

x=0

∫ x

r=0

e−2πx
√

(y,y)f(
√
x2 − r2)rsdrdx.

(The factor in front is the area of a sphere of radius 1 in s + 1-dimensional space.) If we
put t2 = x2 − r2 and then change x to tx, we find that this integral is equal to

2π(s+1)/2

Γ((s+ 1)/2)

∫ ∞

t=0

∫ ∞

x=t

e−2πx
√

(y,y)f(t)(x2 − t2)(s−1)/2tdxdt

=
2π(s+1)/2

Γ((s+ 1)/2)

∫ ∞

t=0

∫ ∞

x=1

e−2πxt
√

(y,y)f(t)(x2 − 1)(s−1)/2ts+1dxdt.

The integral over x can carried out explicitly using Gubler’s formula ([E vol. 2, 7.3.4,
formula 15])

Γ(µ+ 1/2)Kµ(z) = π1/2(z/2)µ

∫ ∞

1

e−zx(x2 − 1)µ−1/2dx

which is valid for <(µ) > −1/2, <(z) > 0, with z = 2πt
√

(y, y), µ = s/2. (Kµ is the
modified Bessel function of the third kind; [E vol. 2, 7.2.2].) We find that∫

x∈C

e−2πi(x,y)f(
√

(−x, x))ds+2x = 2
∫ ∞

t=0

f(t)Ks/2(2πt
√

(y, y))ts/2+1(y, y)−s/4dt.

We now substitute f(t) = I1−k(4πt
√
m/2)tk−1 into this and find that

I = 4π2(1−k)/2

∫ ∞

t=0

I1−k(4πt
√
m/2)Ks/2(2πt

√
(y, y))(y, y)−s/4

ts/2+kdt.
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By [E vol. 2, 7.14.2, formula 35]

2ρ+1αν+1−ρΓ(ν + 1)
∫ ∞

0

Kµ(αt)Iν(βt)t−ρdt

=βνΓ(ν/2− ρ/2 + µ/2 + 1/2)Γ(ν/2− ρ/2− µ/2 + 1/2)×
× 2F1(ν/2− ρ/2 + µ/2 + 1/2, ν/2− ρ/2− µ/2 + 1/2; ν + 1;β2/α2)

whenever α > β, <(ν − ρ+ 1± µ) > 0. (2F1 is the hypergeometric function [E volume 1,
chapter II].) If we set µ = s/2, ν = 1− k, β = 4π

√
m/2, α = 2π

√
(y, y), ρ = −k − s/2 in

this we find that

21−k−s/2(2π
√

(y, y))s/2+2Γ(2− k)
∫ ∞

0

Ks/2(2πt
√

(y, y))I1−k(4πt
√
m/2)tk+s/2dt

=(4π
√
m/2)1−kΓ(1 + s/2)2F1(1 + s/2, 1; 2− k; 2m/(y, y))

so that

2π
∫ ∞

0

Ks/2(2πt
√

(y, y))I1−k(4πt
√
m/2)tk+s/2dt

=m(1−k)/2(y, y)−1−s/42−(k+1)/2
2F1(1 + s/2, 1; 2− k; 2m/(y, y))Γ(1 + s/2)/Γ(2− k)

We find that

I =21−km(1−k)/2(y, y)−1−s/2
2F1(1 + s/2, 1; 2− k; 2m/(y, y))Γ(1 + s/2)/Γ(2− k)

The hypergeometric function 2F1(a, b; c; z) can be analytically continued whenever z is not
0, 1, or ∞, so the function I can be analytically continued whenever (y, y) is not 0 or 2m.
(If k is a positive integer at least 2 then the hypergeometric function has a pole in k, but
this cancels out with the pole of Γ(2 − k), so I is still a well defined analytic function.)
This proves lemma 5.4.

We can now prove theorem 5.1. We can ignore the factor e−2πi(ρ,y), and can assume
that the product is taken only over those values of x in some coset v+NL of NL, so that
c(x) is equal to the coefficient c(−(x, x)/2) of q−(x,x) of some fixed nearly holomorphic
modular form f(τ). If we expand the coefficients using lemma 1 as a finite sum of Bessel
functions plus a remainder term, then the estimate O(eε

√
n) for the remainder shows that

the product using the remainder terms can be made to converge whenever =(y) has norm
at least δ for any given positive δ. It is also easy to check that the infinite product over the
vectors x of negative or zero norm converges whenever =(y) ∈ C, so we can ignore these
terms in the product. (In fact, the same is also true for the terms where r has norm less
than any given constant.) Therefore it is sufficient to prove theorem 5.1 for the infinite
product ∏

x∈L+v,x∈C

(1− e−2πi(x,y))I1−k(4π
√

m(−x,x)/2)((−x,x)/2)(k−1)/2

(after replacing L by NL).
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The logarithm of this is

−
∑

x∈L+v,x∈C

∑
n>0

e−2πin(x,y)I1−k(4π
√
m(−x, x)/2)((−x, x)/2)(k−1)/2/n.

The sum of all terms with n large converges whenever the norm of =(y) is at least δ for
any given positive constant δ, so it is sufficient to prove that the sum of the terms for any
fixed n can be analytically continued with at most logarithmic singularities along rational
quadratic divisors.

If we replace L by nL we find that we have to show that the function∑
x∈L+v,x∈C

e−2πi(x,y)I1−k(4π
√
m(−x, x)/2)((−x, x)/2)(k−1)/2

has only logarithmic singularities along rational quadratic divisors. This is a finite linear
combination of sums of the form∑

x∈L,x∈C

e−2πi(x,y+r)I1−k(4π
√
m(−x, x)/2)((−x, x)/2)(1−k)/2

for some larger lattice L and some rational vectors r ∈ L ⊗ Q. If we apply the Poisson
summation formula to the integral in lemma 5.4 we can evaluate this sum explicitly, and by
lemma 5.4 all its singularities lie on quadratic divisors of the form (y+r+v, y+r+v) = 2m
for some vectors v in the dual of L. (More precisely, the singularities are of the form
form −m(k−1)/2 log(1 − 2m/(y + r + v, y + r + v)).) If we exponentiate this we find that
all singularities and zeros of the product in theorem 1 lie on rational quadratic divisors
because b is rational and r + v ∈ L⊗Q, which proves theorem 5.1.

6. Vector systems and the Macdonald identities.

In this section we show that certain infinite products parameterized by vectors of a
lattice are Jacobi forms. The Macdonald identities for root systems are more or less a
special case of this result.

We first define vector systems in a lattice, which are a generalization of indecomposable
root systems. Suppose that K is a positive definite integral lattice, and that we are given
nonnegative integers c(v) for v ∈ K which are zero for all but a finite number of vectors
of K. We say that the function c is a vector system if it has the following 2 properties.

1. c(v) = c(−v).
2. The function taking λ to

∑
v∈K c(v)(λ, v)2 is constant on the sphere of norm 1 vectors

λ ∈ K ⊗R.
We will write V for the “multiset” of vectors in a vector system, so we think of

V as containing c(v) copies of each vector v ∈ K, and we write
∑

v∈V f(v) instead of∑
v∈K c(v)f(v) (and similarly for products over V ). The second axiom for a vector system

says that the directions of the vectors in it are evenly distributed over the unit sphere in
some weak sense. We say the vector system V is trivial if it only contains vectors of zero
norm. A decomposable root system is not usually a vector system.
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Lemma 6.1. If G is any group acting on the lattice K that acts irreducibly on K⊗R and
contains −1 then any orbit V of G, or any finite union of orbits of G, is a vector system.
In particular if the automorphism group of K acts irreducibly on K ⊗R then the set V
of vectors of any fixed norm is a vector system, and any finite multiset of vectors of V
invariant under the automorphism group of K is a vector system.

Proof. If
∑

v∈V (λ, v)2 were not constant on the unit sphere, then the points at which
it took its maximum value would span a proper subspace of K ⊗R invariant under the G,
contradicting the fact that G acts irreducibly on K ⊗R. This proves lemma 6.1.

We define the index m of a vector system by

m =
∑
v∈V

(v, v)
2 dim(K)

.

Lemma 6.2. If V is a vector system and λ and µ are any vectors of K then∑
v∈V

(v, λ)(v, µ) = 2m(λ, µ)∑
v∈V

v(v, λ) = 2mλ.

Proof. If λ = µ the first line follows from axiom 2 by integrating λ over the unit
sphere. The case for arbitrary λ and µ follows from the case for λ = µ by polarization.
The second identity follows from the first because both sides are vectors having the same
inner product with all vectors µ. This proves lemma 6.2.

Lemma 6.3. The index m of a vector system V is a nonnegative integer, and is 0 if and
only if the vector system is trivial.

Proof. The only nontrivial fact to prove is that m is integral. Suppose that n is the
highest common factor of all the integers (λ, µ) for λ ∈ K, µ ∈ K. The sum on the left of
lemma 6.2 is divisible by 2n2 for any λ, µ ∈ K (the factor of 2 comes from the fact that if
v ∈ V then −v ∈ V ), so if we let λ and µ run through all vectors of K we see from lemma
6.2 that m is divisible by 2n2/2n = n and is therefore integral. This proves lemma 6.3.

The index m is closely related to the dual Coxeter number of a root system, and can
be thought of as measuring the “average amount of norm per dimension” of the vector
system. If the vector system is an indecomposable root system with roots of maximal
length 2, then its index is equal to the dual Coxeter number.

The hyperplanes orthogonal to the vectors of a vector system V divide K ⊗R into
cones that we call the Weyl chambers of the vector system. (Warning: unlike the case
of root systems, the Weyl chambers need not be all the same shape.) If we choose a fixed
Weyl chamber W then we can define the positive and negative vectors of the vector system
by saying that v is positive or negative (v > 0 or v < 0) if v has positive or negative inner
product with some vector in the interior of the Weyl chamber. This does not depend on
which vector in the Weyl chamber we choose, and every vector of the vector system is
either positive or negative.
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We define the Weyl vector ρ = ρW of W by

ρ =
1
2

∑
v∈V,v>0

v.

Lemma 6.4. If λ is in the dual of K, then 2(ρ, λ) ≡ m(λ, λ) mod 2, and in particular
m(λ, λ) is integral. (Notice that the Weyl vectors for different Weyl chambers differ by
elements of K, so that 2(ρ, λ) is well defined mod 2 independently of the choice of Weyl
chamber.)

Proof.
(2ρ, λ) =

∑
v>0

(v, λ)

≡
∑
v>0

(v, λ)2 mod 2

= m(λ, λ),
which proves lemma 6.4.

For example, if K is an even unimodular lattice, then this lemma shows that ρ ∈ K
because it has integral inner product with every element of the dual of K. This does not
imply that the Weyl vector of the root system of K lies in K because the root system of
K is not always a vector system.

Finally we define d to be the number of vectors in V (counted with multiplicities),
and we define the weight k to be half the number of zero vectors in V (so k = c(0)/2).
For example, if V is the weights of some representation of a simple finite dimensional Lie
algebra, then d is the dimension of this representation.

If V is a vector system in K we define the (untwisted) affine vector system of V
to be the multiset of vectors (v, n) ∈ K ⊕ Z with v ∈ V . We say that (v, n) is positive if
either n > 0 or n = 0, v > 0.

We select a Weyl chamber W with its corresponding Weyl vector ρ and positive
vectors, and define

ψ(z, τ) = qd/24ζ−ρ
∏

v∈V,n∈Z,(v,n)>0

(1− qnζv)

where qa = e2πiaτ , ζv = e2πi(z,v). When V is the vector system of a finite dimensional or
affine Kac-Moody algebra this is essentially the denominator of the Weyl-Kac character
formula.

The main aim of this section is to prove the following generalization of the Macdonald
identities for untwisted affine root systems.

Theorem 6.5. The function ψ is a nearly holomorphic Jacobi form of weight k and index
m. More precisely,

ψ(z, τ + 1) = e2πid/24ψ(z, τ)

ψ(z/τ,−1/τ) = (−i)d/2−k(τ/i)ke2πim(z,z)/2τψ(z, τ)

ψ(z + µ, τ) = (−1)2(ρ,µ)ψ(z, τ)

ψ(z + λτ, τ) = (−1)2(ρ,λ)q−m(λ,λ)/2ζ−mλψ(z, τ)
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for any λ, µ ∈ K ′. The function ψ can be written as a finite sum of theta functions times
nearly holomorphic modular forms.

For example, if V is an indecomposable root system of rank n together with c(0)
copies of the zero vector, then the product is just the product occurring in the Macdonald
identity of the untwisted affine root system of V . Moreover this product is a holomorphic
Jacobi form of singular weight, so can be written as a finite sum of theta functions. This
turns out to be a sum over the (finite) Weyl group of theta functions, and this sum can
be written as a sum over the affine Weyl group. Hence we recover the usual Macdonald
identities. I do not know of any cases other than the Macdonald identities where the sum
of theta functions times modular forms has been worked out explicitly.

Proof of theorem 6.5. We start with the two easy transformations. It is obvious that

ψ(z, τ + 1) = e2πid/24ψ(z, τ)

because qd/24 is the only factor which is changed by adding 1 to τ . The only factor of ψ
that changes under adding µ to z is ζ−ρ which gets multiplied by (−1)2(µ,ρ), so

ψ(z + µ) = (−1)2(µ,ρ)ψ(z).

For the transformation of adding λτ to z we first assume that λ is in the Weyl chamber
and calculate as follows.

ψ(z + λτ, τ) =qd/24e−2πi(ρ,z+λτ)
∏
r,n

(1− qn+(λ,v)ζv)

=ψ(z, τ)e−2πi(ρ,λ)τ
∏

v∈V,0<n≤−(λ,v)

(−ζvqn+(λ,v))

=ψ(z, τ)e−2πi(ρ,λ)τ
∏
v<0

(−1)(λ,v)ζ−v(λ,v)q−(λ,v)((λ,v)+1)/2

=ψ(z, τ)
∏
v<0

(−1)(λ,v)ζ−v(λ,v)q−(λ,v)(λ,v)/2

=ψ(z, τ)(−1)2(ρ,λ)ζ−mλq−m(λ,λ)/2

where in the last step we use lemma 6.2 twice. If this is true for two values of λ then it
is also true for their sum and difference. The vectors λ in the Weyl chamber generate the
whole of K ′, so this transformation law holds for all λ ∈ K ′.

Next we consider the function

φ(z, τ) = ψ(z/τ,−1/τ)e−2πimz2/2τ/ψ(z, τ).

This function has no zeros or poles because the zeros of ψ(z, τ) (which are the divisors
of points z with (v, z) in the lattice generated by 1 and τ) are the same as the zeros of
ψ(z/τ,−1/τ) (and have the same multiplicities). The transformations we have just proved
for ψ imply that φ(z, τ) = φ(z + λτ + µ, τ) for all λ, µ ∈ K. Hence for any fixed τ , φ(z, τ)
is a holomorphic abelian function of z and is therefore constant. We will now work out
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φ(z, τ) by taking the limit of φ(z, τ) as z tends to 0. (We cannot set z = 0 because the
numerator and the denominator of φ(z, τ) usually both vanish at z = 0.)

We define ψ0(z, τ) by

ψ0(z, τ) = ψ(z, τ)/
∏
v>0

(1− ζv).

Then ψ0(0, τ) = η(τ)d, so that

ψ0(0,−1/τ) = (τ/i)d/2
ψ0(0, τ).

Also

φ(z, τ) =
ψ0(z/τ,−1/τ)

∏
v>0(1− e2πi(v,z/τ))

ψ0(z, τ)
∏

v>0(1− e2πi(v,z))e2πiz2/2τ

so if we take the limit as z tends to 0 and use the fact that φ(z, τ) does not depend on z
we find that

φ(z, τ) = (τ/i)d/2/
∏
v>0

τ

= ik−d/2(τ/i)k.

From the definition of φ, this is equivalent to the final transformation law for ψ. This
proves theorem 6.5.

The results in this section can easily be extended to cover the analogues of twisted
affine root systems. We will briefly sketch how to do this in the remainder of this section.
A pure affine vector system of level N is defined to be the multiset of vectors of the
form (v,Nn + (v, λ)) ∈ K ⊕ Z as v runs through the vectors of some vector system
and n runs through all integers, and λ is some fixed vector of K ′. We define an affine
vector system of level dividing N to be a union of pure affine vector systems of level
dividing N . For each affine vector system of level dividing N we can define a function
ψ(z, τ) as an infinite product over half the vectors in the affine vector system as above.
The function ψ is then a nearly holomorphic Jacobi form for the congruence subgroup
Γ0(N) = {

(
ab
cd

)
∈ SL2(Z)|c ≡ 0 mod N} of SL2(Z) (and can therefore be written as a sum

of theta functions times nearly holomorphic modular functions). We can prove this in the
same way as above: the product for each pure affine vector system of level N is a Jacobi
form for the conjugate {

(
ab
cd

)
|ad − bc = 1, a, nb, c/n, d ∈ Z} of SL2(Z), so the product for

the union of the pure affine vector systems of level dividing N is a Jacobi form for the
intersection of these conjugates, which contains Γ0(N). For affine root systems we always
have 1 ≤ N ≤ 4.

7. The Weierstrass ℘ function.

In this section we prove some identities involving the Weierstrass ℘ function that we
will use in section 9. The results of this section and section 9 are not used elsewhere in
this paper.
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We recall that the Weierstrass ℘ function is defined for =(τ) > 0, z ∈ C by

℘(z, τ) =
1
z2

+
∑

(m,n) 6=(0,0)

(
1

(z −mτ − n)2
− 1

(mτ + n)2

)
and satisfies the functional equations

℘(z + λτ + µ, τ) = ℘(z, τ)

℘

(
z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)2℘(z, τ).

In other words ℘ is a meromorphic Jacobi form of weight 2 and index 0 and signature 1
(see [E-Z p. 2]).

We also recall the formulas for the Eisenstein series E2

E2(τ) =
3
π2

∑
m

( ′∑
n

1
(mτ + n)2

)
= 1− 24

∑
n>0

σ1(n)qn

where
∑′

n means we omit n = 0 if m = 0. This function satisfies the functional equation
E2((aτ+b)/(cτ+d)) = (cτ+d)2E2(τ)+12c(cτ+d)/2πi for

(
ab
cd

)
∈ SL2(Z). The Eisenstein

series Ek(τ) for k even and k ≥ 4 is equal to 1 − (2k/Bk)
∑

n>0 σk−1(n)qn and satisfies
the functional equation Ek((aτ + b)/(cτ + d)) = (cτ + d)kEk(τ) for

(
ab
cd

)
∈ SL2(Z).

By differentiating the partial fraction decomposition

1
z

+
∑
n 6=0

(
1

z − n
+

1
n

)
= π cot(πz) = −πi− 2πi

∑
n>0

e2πinz

(valid for =(z) > 0) we find that∑
n∈Z

1
(z + n)2

= (2πi)2
∑
n>0

ne±2πinz

(valid for z not real), where e±x means ex if |ex| < 1 and e−x if |ex| > 1. From this we see
that

℘(z, τ) = (2πi)2
∑
m∈Z

∑
n>0

ne±2πin(z+mτ) − π2

3
E2(τ)

whenever =(z +mτ) is nonzero for all integers m.
By differentiating repeatedly with respect to z we find that for positive even integers

k the derivatives ℘(k−2)(z, τ) = d
dz

k−2
℘(z, τ) satisfy

℘(k−2)(z + λτ + µ, τ) = ℘(k−2)(z, τ)

℘(k−2)

(
z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)k℘(k−2)(z, τ)

℘(k−2)(z, τ) = (2πi)k
∑
m∈Z

∑
n>0

nk−1e±2πin(z+mτ) − δ2kE2(τ)π2/3
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(where δn
m is 1 if m = n and 0 otherwise).

Suppose that K is a positive definite even lattice of dimension s and that c(r) is an
integer defined for r ∈ K such that c(r) = c(−r) and c(r) = 0 for all but a finite number
of r ∈ K. Choose a vector ρ not orthogonal to any r with c(r) 6= 0, and say that the pair
(r, n) ∈ K ⊕ Z is positive if n > 0 or n = 0 and (r, ρ) > 0.

Theorem 7.1. Suppose that k is an even positive integer and suppose that if k = 2 then∑
r∈K c(r) = 0. Then the function

ψ(z, τ) = −c(0)Bk/2k +
∑

(r,n)>0

∑
a|(r,n)

ak−1c(r/a)qnζr

can be extended to a meromorphic function defined for =(τ) > 0, z ∈ K⊗C which satisfies
the functional equations

ψ

(
z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)kψ(z, τ)

ψ(z + λτ + µ, τ) = ψ(z, τ)

for λ, µ ∈ K ′,
(
ab
cd

)
∈ SL2(Z). In other words, ψ is a meromorphic Jacobi form of weight

k and index 0.

Proof. The function ψ is equal to

−c(0)
Bk

2k
Ek(τ) + (2πi)−k

∑
r>0

c(r)
(
℘(k−2)((r, z), τ) + δ2kE2(τ)π2/3

)
so theorem 7.1 follows from the functional equations of the derivatives of the Weierstrass
℘ function and the Eisenstein series Ek(τ). (If k = 2 then the assumption

∑
r∈K c(r) = 0

implies that the coefficient of E2(τ) is 0.)

8. Generators for OM (Z)+.

In this section we prove a technical result which says that the orthogonal group
OM (Z)+ is generated by a Fourier and a Jacobi subgroup. We will use this result to
construct automorphic forms for OM (Z)+ by showing that the form transforms correctly
under both the Fourier and the Jacobi groups, and hence under the whole of OM (Z)+.

We let M be the lattice IIs+2,2 (with 8|s). We let u be a primitive norm 0 vector of
M and let U be a 2-dimensional primitive null sublattice containing u. We let F and J be
the Fourier and Jacobi groups of u and U .

The main theorem of this section is

Theorem 8.1. OM (Z)+ is generated by F (Z)+ and J(Z)+.

We first prove two lemmas.
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Lemma 8.2. If L = IIs+1,1, v ∈ L ⊗ R and v /∈ L then there is some λ ∈ L with
1/2 ≤ (v − λ)2 ≤ 3/2.

Proof. Choose a primitive norm 0 vector u1 ∈ L with (u1, v) not an integer, which we
can do because the norm 0 vectors of L generate L. Choose another norm 0 vector u2 ∈ L
with (u1, u2) = −1. We can find an integer m so that 0 < |(v−mu2, u1)| ≤ 1/2. But then
(v−mu2 − nu1)2 = A+Bn for some fixed A and B with 0 < |B| ≤ 1, so we can choose n
so that 1/2 ≤ A+ nB ≤ 3/2. This proves lemma 8.2.

Lemma 8.3. If u is a primitive norm 0 vector in M and G is the group generated by the
reflection of norm 2 vectors r with (r, u) = −1 then G acts transitively on primitive norm
0 vectors of M .

Proof. Suppose u1 is a primitive norm 0 vector of M . If (u1, u) ≥ 0 then it is easy to
find an element g ∈ G such that (g(u1), g) < 0, so we can assume that (u1, u) < 0. We will
prove lemma 8.3 by induction on −(u1, u). If −(u1, u) = 1 then the reflection of the root
u1 − u maps u1 to u. If −(u1, u) > 1 then we choose coordinates M = L ⊕ II1,1 for M
so that u = (0, 0, 1). If u1 = (v,m, n) then v/m is not in L, otherwise m would divide v
and hence n as (v, v) = 2mn, which is impossible as u is primitive and m = −(u1, u) > 1.
Therefore by lemma 8.2 we can choose a vector λ ∈ L with 1/2 ≤ (λ − v/m)2 ≤ 3/2.
Then a simple calculation shows that if g is the reflection of the vector (λ, 1, λ2/2 − 1)
then 0 < m/4 ≤ −(g(u1), u) ≤ 3m/4 < m = −(u1, u), so by induction u1 is conjugate to
u under the group G. This proves lemma 8.3.

Now we prove theorem 8.1. We let G be the group generated by F (Z)+ and J(Z)+.
We choose coordinates M = K ⊕ II1,1 ⊕ II1,1 so that u = (0, 0, 0, 0, 1) and U is the set
of vectors of the form (0, 0, ∗, 0, ∗). The reflection of (0, 1,−1, 0, 0) is in F (Z)+, and is
conjugate under J(Z)+ to the reflection of (0, 0, 0, 1,−1) so that G contains the reflection
of at least one root having inner product −1 with u. However the normal abelian subgroup
of F (Z)+ acts simply transitively on the set of such roots, so G contains the reflections of
all roots r with (r, u) = −1. By lemma 8.3 G therefore acts transitively on the primitive
norm 0 vectors of M . As it contains the stabilizer F (Z)+ of one such vector in OM (Z)+

it must therefore be the whole of OM (Z)+. This proves theorem 8.1.

9. The positive weight case.

In this section we construct some examples of meromorphic automorphic forms whose
poles are known explicitly, which can be used to construct holomorphic automorphic forms
by multiplying them by other automorphic forms with zeros which cancel out the poles.
The results of this section are not used elsewhere in this paper except in a few examples.

We recall that K is an even unimodular lattice of dimension s, and we let θK be the
theta function of K of index 1, defined by

θK(z, τ) =
∑
λ∈K

q(λ,λ)/2ζλ.

This is a holomorphic Jacobi form of index 1 and singular weight s/2.

27



Theorem 9.1. The linear map taking f(τ) to f(τ)θ(z, τ) is an isomorphism from nearly
holomorphic modular forms of weight k for SL2(Z) to nearly holomorphic Jacobi forms
for J(Z)+ of weight k + s/2 and index 1.

We omit the proof of this as it is similar to the proof of theorem 3.5 in [E-Z], but
simpler because the lattice L is even and unimodular so we only need one generator θK

for the space of Jacobi forms of index 1 as a module over the ring of modular forms. This
theorem is also proved in Gritsenko [G].

Lemma 9.2. If f(τ) is a nearly holomorphic modular form for SL2(Z) of weight 2 then
it is the derivative of a modular function, and in particular has zero constant term.

Proof. The total number of zeros of f in a fundamental domain is 1/6 as f has weight
2 (where poles are counted as zeros of negative order), so f must have zeros of order at
least 2 at conjugates of (1 +

√
3i)/2 and a zero at i. Hence f is divisible by j′(τ). But

f/j′(τ) is then a nearly holomorphic modular function and therefore a polynomial in j(τ),
which easily implies that f is the derivative of a polynomial in j(τ). This proves lemma
9.2.

Theorem 9.3. The map taking

φ(z, τ) =
∑
r,n

c(r, n)qnζr

to Φ(z, τ, σ) =
∑

m≥0 p
m(φ|Vm)(z, τ) (where p = e2πiσ, q = e2πiτ , and ζ = e2πiz) takes

nearly holomorphic Jacobi forms φ of level 1 and weight k > 0 to meromorphic automorphic
forms Φ of weight k for OM (Z)+ all of whose singularities are poles of order k along rational
quadratic divisors. The Hecke operator V0 is defined by

(φ|V0)(z, τ) = −c(0, 0)Bk/2k +
∑

(r,n)>0

∑
d|(r,n)

dk−1c(r, 0)qnζr)

which is equal to (−c(0, 0)Bk/2k)Ek(τ) if φ is holomorphic. The map from φ to Φ is an
isomorphism from the space of holomorphic Jacobi forms φ of level 1 and weight k to
the “Spezialschar” of all holomorphic automorphic forms Φ =

∑
r,m,nA(r,m, n)ζrpmqn of

weight k whose coefficients satisfy

A(r,m, n) =
∑

d|(r,m,n)

dk−1A(r/d, 1,mn/d2).

Proof. When φ is holomorphic this is a straightforward generalization of [E-Z, theorem
6.2] due to Gritsenko [G] and the proof in [E-Z] works with minor changes. (See also [M,
paper I].) The first coefficient of the Fourier-Jacobi expansion of any automorphic form is
a Jacobi form of level 1, and the coefficients of any form in the Spezialschar are obviously
determined by those of the first Fourier-Jacobi coefficient, so the main thing to check is
that Φ is an automorphic form. It transforms like an automorphic form under the Jacobi
group because all its coefficients do. It is also invariant under the automorphism of L
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taking (λ,m, n) to (λ, n,m) because the formula for A(λ,m, n) is symmetric in m and
n. However this automorphism together with the Jacobi group generates the whole of
OM (Z)+ by theorem 8.1, so

∑
m≥0 p

m(φ|Vm)(z, τ) is an automorphic form.
When φ has poles at the cusps the proof is similar except that we need the following

extra arguments. Firstly, the series for Φ does not converge everywhere, so we need to use
theorem 5.2 to show that the series for Φ can be analytically continued. Secondly, φ|V0 is
no longer a modular form, so we need to use theorem 7.1 to show that Φ|V0 is a nearly
holomorphic Jacobi form. If k = 2 then the condition

∑
r∈K c(r) = 0 is satisfied by lemma

9.2, because it is the constant coefficient of the nearly holomorphic weight 2 form φ(0, τ).
This proves theorem 9.3.

Example 1. (Gritsenko [G].) If we let f be the constant form 1 of weight 0, we find a
singular automorphic form for OM (Z)+ of weight s/2 whose Fourier coefficients A(λ,m, n)
are given by A(λ,m, n) = σs/2−1(d) if λ2 = 2mn and the highest common factor of λ, m,
and n is d (where σs/2−1(0) is defined to be −Bs/2/s). In particular singular automorphic
forms with nonzero constant terms exist for all the groups OII8n+2,2(Z)+.

When φ is not holomorphic the meromorphic automorphic form Φ will have poles
along rational quadratic divisors. We can remove these poles by multiplying Φ by some of
the functions produced in section 10, where we construct holomorphic automorphic forms
with zeros along any given rational quadratic divisor.

Example 2. Let Φ be the meromorphic automorphic form for OII26,2(Z)+ constructed
from the nearly holomorphic modular form j′ as in theorem 9.3. Then Φ has weight
14 and the singularities of Φ are poles of order 2 along all rational quadratic divisors of
discriminant 2. In section 10 we will find a holomorphic automorphic form Φ1 which has
weight 12 and has a zero of order 1 along every rational quadratic divisor of discriminant
2. Hence ΦΦ2

1 is a holomorphic automorphic form of weight 38 with the same zeros as Φ.

10. The zero weight case

This section is the heart of the paper where we put everything together to construct
some automorphic forms on OM (Z)+ as infinite products. We let L be the even unimodular
Lorentzian lattice IIs+1,1, and we let M = L⊕ II1,1. We choose a negative norm vector in
L⊗R and write r > 0 to mean that r has positive inner product with this negative norm
vector. We will prove

Theorem 10.1. Suppose that f(τ) =
∑

n c(n)qn is a nearly holomorphic modular form of
weight −s/2 for SL2(Z) with integer coefficients, with 24|c(0) if s = 0. There is a unique
vector ρ ∈ L such that

Φ(v) = e−2πi(ρ,v)
∏
r>0

(1− e−2πi(r,v))c(−(r,r)/2)

is a meromorphic automorphic form of weight c(0)/2 for OM (Z)+. All the zeros and poles
of Φ lie on rational quadratic divisors, and the multiplicity of the zero of Φ at the rational
quadratic divisor of the primitive positive norm vector r ∈M (see section 5) is∑

n>0

c(−n2(r, r)/2).
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In particular if this number is always nonnegative then Φ is holomorphic.

Proof. We write L = K ⊕ II1,1 where K is the lattice Es/8
8 . We let φ(τ, z) be the

nearly holomorphic Jacobi form f(τ)θK(z, τ). We define a vector system on Es/8
8 to be the

multiset of vectors v ∈ K with multiplicities c(v) = c(−(v, v)/2). This is a vector system
by lemma 6.1, as OK(Z) acts irreducibly on K when K is Es/8

8 so the set of vectors of
any fixed norm is a vector system. We define the corresponding affine vector system V to
be the multiset of vectors (v, n) ∈ K ⊕ Z with multiplicities c((v, n)) = c(−(v, v)/2). By
theorem 6.5 the function ψ(z, τ) associated to V satisfies the following functional equations

ψ(z, τ + 1) = ψ(z, τ)

ψ(z/τ,−1/τ) = τke2πim(z,z)/2τψ(z, τ)
ψ(z + µ, τ) = ψ(z, τ)

ψ(z + λτ, τ) = q−m(λ,λ)/2ζ−mλψ(z, τ)

for any λ, µ ∈ K. (This follows because the integer k = s/2 is divisible by 4 and d is
divisible by 24, and ρ ∈ K by the remark after lemma 6.4.) In particular ψ is a Jacobi
form of weight k and index m for J(Z)+, and therefore

pmψ(z, τ)

transforms like an automorphic form of weight k under all elements of J(Z)+.
On the other hand φ|V` is a Jacobi form of weight 0 and index `, so that

exp(
∑
`>0

p`(φ|V`)(z, τ))

transforms like an automorphic form of weight 0 for all elements in the Jacobi group J(Z)+

whenever the product converges. If we multiply these two expressions together and use
theorem 4.2 we find that

Φ(z, τ, σ) = pmψ(z, τ) exp(
∑
`>0

p`(φ|V`)(z, τ))

transforms like an automorphic form of weight k = c(0)/2 for all elements in the Jacobi
group J(Z)+ whenever the product converges. By theorem 5.1 Φ can be analytically
continued as a nonzero multivalued function to all vectors with imaginary parts in the
positive cone, except for some singularities or zeros along rational quadratic divisors.

Next we check that Φ is invariant or antiinvariant under the Fourier group F (Z)+. It
is obviously invariant under the unipotent radical of F (Z)+ (which is isomorphic to L),
so we have to check invariance under the group OL(Z)+, which we will do by considering
the Fourier expansion of Φ. We first check that it is invariant under the element g1 taking
(z, α,−δ, γ, β) to (z,−δ, α, γ, β). Under this transformation the factor e−2πi(ρ,v) of ψ is
multiplied by

e2πi(ρ−g1(ρ),v),
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and the factor
∏

(1 − e−2πi(r,v))c(−(r,r)/2) of ψ is multiplied by a factor of∏
r>0,g1(r)<0−e2πic(−(r,r)/2)(r,v). Hence to prove (anti)invariance under g1 we have to

show that
ρ− g1(ρ)−

∑
r>0,g1(r)<0

c(−(r, r)/2)r = 0.

Before proceeding further with the proof of invariance of Φ under g1 we need to
calculate the Weyl vector ρ and check some of its properties, which we do in 10.2 to 10.7.

Lemma 10.2. If f(τ), g(τ) are nearly holomorphic modular functions for SL2(Z) (pos-
sibly transforming according to some nontrivial character of SL2(Z)) then the constant
term of the q expansion of f(τ)g′(τ) vanishes.

Proof. The SL2(Z) invariant differential form f(τ)g′(τ)dτ has only one pole on
the compactification of the upper half plane modulo SL2(Z) (which is at the cusp i∞)
and therefore its residue there must vanish. But its residue is just the constant term of
f(τ)g′(τ). This proves lemma 10.2.

Lemma 10.3. Suppose that θ(τ) is a nearly holomorphic modular form of weight s/2 and
f(τ) is a nearly holomorphic modular form of weight −s/2 (both of level 1). Then the
constant term of the q expansion of

sθ(τ)f(τ)E2(τ)/24− θ′(τ)f(τ)

is zero.

Proof. This follows by applying lemma 10.2 to the modular functions f(τ)η(τ)s and
θ(τ)η(τ)−s, since η′(τ)/η(τ) = E2(τ)/24. (Alternatively we can observe that θ′(τ) −
sθ(τ)E2(τ)/24 is a nearly holomorphic modular form of weight s/2 + 2, so the expression
in lemma 10.3 is a nearly holomorphic modular form of weight 2 with only one pole, whose
residue must be 0.) This proves theorem 10.3.

Theorem 10.4. The Weyl vector ρ is equal to ∑
(r,v)>0

c(−r2/2)r/2, m, d/24


where m is the constant coefficient of θK(τ)f(τ)E2(τ)/24, and d is the constant coefficient
of θK(τ)f(τ).

Proof. The Weyl vector is (ρK ,m, d/24) where ρK ,m, and d are as in section 6. The
formulas for ρK and d then follow immediately from the definitions in section 6. The
integer m in section 6 is equal to the constant term of θ′K(τ)f(τ)/s, so we have to show
that the constant term of

θ′K(τ)f(τ)/s− θK(τ)f(τ)E2(τ)/24

vanishes. But this follows from lemma 10.3. This proves theorem 10.4.
Now we check that the Weyl vector ρ lies in L (and not just L⊗Q).
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Lemma 10.5. For any nonzero integer n the constant term of ∆(τ)n is divisible by 24.

Proof. ∆′(τ)/∆(τ) = 1− 24
∑

m>0 σ1(m)qm is congruent to 1 mod 24, so

(∆(τ)n)′ = n∆(τ)n−1∆′(τ) ≡ n∆(τ)n mod 24n.

As the left hand side has zero constant coefficient, so does the right hand side mod 24n,
which proves lemma 10.5 as n 6= 0.

Lemma 10.6. If f is a nearly holomorphic modular form of level 1 and negative weight
then the constant term of f is divisible by 24.

Proof. We can write f as an integral linear combination of functions of the form
∆mEn

4 with m < 0, and lemma 10.6 then follows from lemma 10.5 and the fact that
E4 ≡ 1 mod 24.

Corollary 10.7. The Weyl vector ρW lies in L.

Proof. Suppose that K is the lattice E3n
8 . We have to check that m and d/24 are

integers and that ρK =
∑

(r,v)>0 c(−r2/2)r/2 lies in K. We know that ρK ∈ K by the
remark after lemma 6.4. The constant term d of f(τ)θK(τ) is divisible by 24 by lemma 10.6
and the fact that θK(τ) = E4(τ)s/8 ≡ 1 mod 24, so d/24 is integral. Also, E2 ≡ 1 mod 24,
so m ≡ d/24 mod 1 is an integer. This proves corollary 10.7.

We now continue with the proof that Φ is invariant under g1, which was interrupted
by the calculation of ρ. We know that ρ = (ρK ,m, d/24) by theorem 10.4, so that g1(ρ) =
(ρK , d/24,m). The vector (κ, a, b) is positive if a > 0, or a = 0, b > 0, or a = b = 0, κ > 0,
so that (κ, a, b) > 0 and g1(κ, a, b) = (κ, b, a) < 0 if and only if a > 0, b < 0. Hence∑

r>0,g1(r)<0

c(−(r, r)/2)r =
∑

κ

∑
a>0

∑
b<0

c(ab− (κ, κ)/2)(κ, a, b)

=
∑

κ

∑
n>0

∑
a|n

c(−n− (κ, κ)/2)(0, a,−a)

=
∑

κ

∑
n>0

c(−n− (κ, κ)/2)(0, σ1(n),−σ1(n))

= (0, x,−x)

where x is the constant term of θK(τ)f(τ)
∑

n>0 σ1(n)qn. By theorem 10.4 x = m− d/24
(as E2(τ) = 1 − 24

∑
n>0 σ1(n)qn). By comparing this with the expression for ρ we see

that we have proved that

ρ− g1(ρ)−
∑

r>0,g1(r)<0

c(−(r, r)/2)r = 0.

This completes the proof that Φ is (anti)invariant under g1.
Next we see that it transforms like an automorphic form under the element g2 taking

(z, α,−δ, γ, β) to (z, α,−δ, β, γ), because this is conjugate to g1 under an element of the
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Jacobi group. This element g2 acts as v → 2v/(v, v) on L⊗C, and in particular commutes
with of OL(Z)+. If g3 is any element of OL(Z)+ then Φ(g3(v)) = e2πi(λ,v)Φ(v) for some λ
depending on g3 because of the expression for Φ as an infinite product. We now see that

((v, v)/2)ke2πi(λ,v)Φ(v)

=((g3(v), g3(v))/2)kΦ(g3(v))
=Φ(g2(g3(v)))
=Φ(g3(g2(v)))

=e2πi(λ,g2(v))Φ(g2(v))

=e2πi(λ,2v/(v,v))((v, v)/2)kΦ(v)

so that
e2πi(λ,v) = e2πi(λ,2v/(v,v))

for all v, which implies that λ = 0 and hence that Φ is invariant or antiinvariant under
OL(Z)+.

We have shown that Φ transforms correctly under both F (Z)+ and J(Z)+, so by
theorem 8.1 Φ transforms like an automorphic form under the whole of OM (Z)+.

Next we have to find the singularities and zeros of Φ, which we know lie on rational
quadratic divisors by theorem 5.1. If v ∈ M is a primitive positive norm vector corre-
sponding to a rational quadratic divisor, then there is some primitive norm zero vector
u of U orthogonal to v, because U is 2-dimensional. As J(Z)+ acts transitively on such
vectors u we can assume that u is the standard choice (0, 0, 0, 0, 1). This rational quadratic
divisor is then just the linear divisor of points orthogonal to some positive norm vector
of L. But such a divisor intersects the region where the infinite product for Φ converges,
(except where one of the factors is zero or singular) so the only singularities or zeros along
such a divisor must be where one of the factors in the infinite product for f has a zero or
singularity. But if r is a primitive positive norm vector of L, then the order of the zero of
Φ along the divisor of r is just ∑

n>0

c(−(nr, nr)/2),

coming from the factors ∏
n>0

(1− e−2πi(nr,v))c(−(nr,nr)/2)

in the infinite product for Φ. This completes the proof of theorem 10.1.
Example 1. If we take L to be II1,1 and f to be j(τ)−744 we recover the denominator

formula for the monster Lie algebra (which can of course be proved easily without using
theorem 10.1).

Example 2. Suppose we take L to be II25,1 and f to be 1/∆(τ). Then we find that Φ is
an antiinvariant automorphic form of weight 12 for OII26,2(Z)+ whose zeros are the rational
quadratic divisors corresponding to vectors of norm 2. Any antiinvariant automorphic form
must vanish at these zeros, and so must be divisible by Φ. By the Koecher boundedness
principle the quotient is an invariant automorphic form. Hence multiplication by Φ is an
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isomorphism from invariant automorphic forms of weight k to antiinvariant automorphic
forms of weight k + 12. In particular any antiinvariant automorphic form of weight less
that 24 must be a multiple of Φ because the only invariant forms of weight less than 12
are constant. (From theorem 9.3 we know that there is an invariant form of weight 12, so
there is a nontrivial antiinvariant form of weight 24.) The form Φ is also the denominator
function of the fake monster Lie algebra. As it has singular weight, all its nonzero Fourier
coefficients correspond to vectors of norm 0. The multiplicities of norm 0 vectors are always
easy to work out explicitly, so we find that

Φ(v) = e−2πi(ρ,v)
∏
r>0

(1− e−2πi(r,v))p24(1−r2/2) =
∑

w∈W

∑
n>0

det(w)τ(n)e−2πin(w(ρ),v),

which gives a new proof of the denominator formula of the fake monster Lie algebra. This
is the only case when theorem 10.1 produces a holomorphic automorphic form of singular
weight. When the weight is not singular, the Fourier coefficients are much harder to
describe explicitly.

11. The negative weight case.

In sections 9 and 10 we have shown how to construct holomorphic automorphic forms
from Jacobi forms of positive or zero weight. In this section we show that Jacobi forms of
negative weight do not seem to give new examples of automorphic forms, at least not in
any obvious way.

Suppose that f =
∑
c(n)qn is a nearly holomorphic modular form of weight k < −s/2.

We can try to apply the construction of sections 9 or 10 to f to produce some function Φ
which might be similar to an automorphic form. The first problem with this function is
that it has polylogarithm singularities. We can turn these into poles by applying a high
power of the Laplace operator, and then we get a meromorphic automorphic function.
Unfortunately we will see in this section that this meromorphic automorphic is not new;
it is the function associated to the modular form (d/dτ)1−kf(τ).

We would expect the Fourier coefficients A(v) (v ∈ L) of Φ to look something like

A(v) =
∑
d|v

dk−1c(−(v, v)/2d2).

(We will not worry about what the coefficient of 0 is or whether this does somehow define
an automorphic function, since the point of this section is that even if these problems can
be solved we still do not seem to get new automorphic forms.) If we apply the (1− k)’th
power of the Laplacian to this we get a function whose Fourier coefficients are∑

d|v

dk−1(−(v, v)/2)1−kc(−(v, v)/2d2).

On the other hand, if we apply the operator d
dτ

1−k
to f we get a nearly holomorphic

modular form of positive weight 2 − k with Fourier coefficients n1−kc(n), because the
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(1 − k)’th derivative of a meromorphic modular form of weight k ≤ 0 is a meromorphic
modular form of weight 2−k. The automorphic form associated to d

dτ

1−k
f in theorem 9.3

has Fourier coefficients∑
d|v

d(2−k)−1(−(v, v)/2d2)1−kc(−(v, v)/2d2).

These are equal to the Fourier coefficients above. So the good news is that if we apply
the (1− k)’th power of the Laplacian to Φ we do seem to get a meromorphic automorphic
form (assuming we can define Φ), but the bad news is that this is not a new automorphic
form.

We can of course still apply powers of the Laplacian to Φ if f has weight ≥ −s/2, and
this gives a few examples where some power of the Laplacian applied to some meromorphic
automorphic form is a meromorphic automorphic form.

It may be possible to apply some of the Laplacian to Φ to produce a function with
logarithmic singularities and then exponentiate this to get a function which can be written
as an infinite product. One problem with this is that if we apply an arbitrary power of the
Laplacian to something that transforms like an automorphic form, the result usually does
not transform like an automorphic form.

12. Invariant modular products

In this section we will define Weyl vectors and Weyl chambers of modular products.
These are sometimes the Weyl vectors and Weyl chambers of hyperbolic reflection groups,
and even when they are not they still have many of the properties of hyperbolic reflection
groups. Conversely, we can often find automorphic forms associated to hyperbolic reflection
groups which have the same Weyl vectors and Weyl chambers. We will also give some
applications to even unimodular lattices.

Suppose that
Φ(y) = e−2πi(ρ,y)

∏
x>0

(1− e−2πi(x,y))c(x)

is a modular product for some Lorentzian lattice L which defines a holomorphic automor-
phic form. In particular Φ is invariant up to sign for some finite index subgroup G of
OL(Z)+. The hyperplanes orthogonal to the positive norm vectors x with c(x) 6= 0 divide
up the cone C into closed chambers that we will call the Weyl chambers of Φ. If W is a
Weyl chamber of Φ, we define the Weyl vector ρW of W by

Φ(y) = ±e−2πi(ρW ,y)
∏

(x,−W )>0

(1− e−2πi(x,y))c(x)

(where (x,−W ) > 0 means that (x,w) > 0 for any w in the interior of −W ). We list some
of the properties of Weyl vectors of Φ.

1 If g ∈ G then ρg(W ) = g(ρW ).
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2 If W1 and W2 are Weyl chambers then

ρW1 = ρW2 +
∑

(x,−W1)<0,(x,−W2)>0

c(x)x.

3 Any Weyl vector has coefficient ±1 in the Fourier expansion of Φ. In particular any
Weyl vector lies in the closure of C and has norm at most 0, because this is true of
any vector corresponding to a nonzero coefficient of a holomorphic automorphic form.

4 Any Weyl vector of maximal norm with Weyl chamber W has positive inner product
with all the positive real roots of W . In particular ρW lies in the interior of W if ρW

has negative norm, and on the boundary if it has zero norm. In either case, W is
the only Weyl chamber containing ρW . (If ρW does not have maximal norm I do not
know whether or not it necessarily lies in W .)

5 If W1 and W2 are 2 adjacent chambers separated only by the hyperplane x⊥ with
(x,W1) > 0, and x is a root of G, then (ρW1 , x) =

∑
r∈Q,r>0 c(rx)(rx, rx)/2. This

follows by applying property 1 with g equal to reflection in x⊥. In particular if c(rx)
is 1 when r = 1 and 0 otherwise then (ρW , x) = −(x, x)/2, so that ρW does indeed
behave like a Weyl vector with respect to the simple root x.

6 Any two Weyl vectors differ by a vector of L.
Weyl chambers behave differently depending on whether the Weyl vector W has neg-

ative or zero norm. When its norm is negative, the Weyl chamber has only a finite number
of sides, a finite automorphism group, and its image in hyperbolic space has finite vol-
ume. (The finite volume property follows because W/Aut(W ) is a subset of a fundamental
domain of G which has finite volume.) When the Weyl vector has zero norm, the Weyl
chamber may have an infinite number of sides, an infinite automorphism group, and infi-
nite volume. The automorphism group then has a free abelian subgroup of finite index,
and the quotient of the Weyl chamber by this free abelian subgroup has finite volume. It
is quite common for both of these cases to occur for the same function Φ. In any case we
obtain a canonical decomposition of hyperbolic space into Weyl chambers each of which
has finite volume modulo the action of a free abelian subgroup.

To avoid confusion we will also list a few properties that Weyl vectors and Weyl
chambers do not always have. Weyl chambers are not always acted on transitively by
some group. Weyl chambers may have quite different shapes, and their Weyl vectors may
have different lengths. Reflection in the hyperplane separating two Weyl chambers is not
always an automorphism of L.

We will apply these considerations about Weyl vectors to the Lorentzian lattice
IIs+1,1. In the special case s = 24, our results immediately imply several well known
results about Niemeier lattices (for example, the existence and uniqueness of the Leech
lattice, Conway’s result that the Leech lattice is the Dynkin diagram of the reflection
group of II25,1, and the fact that the number of roots of a Niemeier lattice is divisible by
24).

We let Φ(y) be the automorphic form

Φ(y) = e−2πi(ρW ,y)
∏
x>0

(1− e−2πi(x,y))c(x)
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where c(x) is the coefficient of q−(x,x)/2 in some nearly holomorphic modular form
f(τ) =

∑
n c(n)qn of level 1 and weight −s. We let K be the even s-dimensional lat-

tice corresponding to u, and we identify IIs+1,1 with K ⊕ II1,1, so that vectors of IIs+1,1

can be written in the form (v,m, n) with v ∈ K, m,n ∈ Z, and (v,m, n)2 = v2 − 2mn.
We choose the vector u to be (0, 0, 1). We choose a vector v ∈ K not orthogonal to any
vectors of K of small norm, and we let W be the Weyl chamber of IIs+1,1 containing u
and (v, 0, 0).

Theorem 12.1. If 24|s and s > 0 then the constant term of θK(τ)/∆(τ)s/24 is divisible
by 24.

Proof. We take f to be ∆−s/24. By theorem 10.4 the constant term of θK(τ)/∆(τ)s/24

is equal to d = 24(ρ, u1) where ρ is the Weyl vector of the Weyl chamber containing u and
u1 = (0,−1, 0). By corollary 10.7, ρ ∈ L so the inner product (ρ, u) is an integer, and this
proves theorem 12.1.

For example, when s = 24 and f(τ) = ∆(τ)−1 = q−1 + 24 + . . ., this theorem is
just the well known fact that the number of norm 2 vectors of any Niemeier lattice K is
divisible by 24.

The automorphic form Φ(y) is a cusp form if and only if there are no Weyl vectors of
zero norm, which is true unless f(τ) has weight −s/2 and there is an extremal lattice of
dimension s. (An extremal even unimodular lattice in dimension s is one with no nonzero
vectors of norm at most 2[s/24].) According to [C-S, Chapter 7, section 7], there is exactly
one extremal lattice in 24 dimensions (the Leech lattice), at least 2 in dimension 48, and
none in dimensions larger than about 41000.

For Niemeier lattices it is well known that there are either no roots (the Leech lattice)
or the roots span the vector space of the lattice (any other Niemeier lattice). For even
unimodular lattices K of dimension divisible by 24 this has the following generalization:

Theorem 12.2. An even unimodular lattice K of dimension s divisible by 24 is either
extremal (no nonzero vectors of norm at most s/12), or the vectors of norm at most s/12
span the vector space K ⊗R.

Proof. Consider the Weyl chamber W containing a norm 0 vector u corresponding
to K. If K is not extremal, then u is not a Weyl vector, so the intersection of the Weyl
chamber with a small neighborhood of u has finite volume. This implies that the Weyl
chamber has a cusp at u, which implies that the vectors of norm at most s/12 in K span
K as a vector space.

We can also use the ideas of this section to give an amusing proof of the existence
and uniqueness of the Leech lattice (i.e., a 24 dimensional even unimodular lattice with
no norm 2 vectors). We do this by considering the automorphic function Φ for the group
OL(Z)+ in theorem 10.1 for L = II25,1 and f(τ) = 1/∆(τ) = q−1 + 24 + 324q + . . ..
This form has weight 24/2 = 12 which is singular, so all its nonzero Fourier coefficients
correspond to norm 0 vectors of L. In particular the Weyl vector ρ has norm zero, so by
the remarks above it corresponds to an extremal lattice, i.e. a 24-dimensional unimodular
lattice with no roots. This proves the existence of the Leech lattice. To prove uniqueness,
we observe that all faces of any Weyl chamber are orthogonal to norm 2 vectors which
are roots, so OL(Z)+ acts transitively on the Weyl chambers. Any norm 0 vector of an
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extremal lattice is the Weyl vector of some Weyl chamber, so there can be only one orbit
of such norm zero vectors, so the Leech lattice is unique. This also proves Conway’s result
[C-S, chapter 27] that the Leech lattice is essentially the Dynkin diagram of II25,1, which
in turn easily implies that the Leech lattice has covering radius

√
2.

13. Heights of vectors.

Suppose that we have fixed an automorphic form Φ for OM (Z)+ which is a modular
product, which defines a system of Weyl chambers and Weyl vectors as in section 12. We
define the height of a vector λ in the positive cone of L = IIs+1,1 to be the inner product
−(ρ, λ) where ρ is the Weyl vector of any Weyl chamber containing λ. The height is a
continuous positive function on the positive cone which is linear in the interior of any
Weyl chamber, and can be extended to norm 0 vectors of L. We have already found a
formula for the height of v when v has norm 0 in theorem 10.4. In this section we will find
formulas for the height when λ has norm −2 or −2p for p a prime. We do this by looking
at the restriction of f to multiples τλ of λ. This is a modular form in τ for the group
Γ0(p) = {

(
ab
cd

)
∈ SL2(Z)|c ≡ 0 mod p} whose zeros in the upper half plane are known

explicitly and whose zero at the cusps has an order related to the height of λ.
We let v be a vector of norm −2N , where for the moment N is any positive integer.

We write c(n) for the coefficients of f(τ) =
∑

n c(n)qn, where f is the nearly holomorphic
modular form of weight −s/2 from which Φ is constructed as in section 10.

We define an isomorphism from (L ⊕ II1,1) ⊗ R to v⊥ ⊗ R ⊕ sl2(R) which takes
(λ,m, n) to

λ̄⊕
(
−(λ, v) 2n
2mN (λ, v)

)
where λ̄ is the projection of λ into v⊥ and sl2(R) is the set of real 2× 2 matrices of trace
0. We let the group SL2(R) act on sl2(R) by conjugation, and on v⊥ by the trivial action,
which induces an action of SL2(R) on (L⊕ II1,1)⊗R. This action is given by(
ab

cd

)
(λ,m, n) =(

λ+ (bdm− b
c

N
(λ, v)− a

c

N
n)v, d2m− c

N
d(λ, v)− c2

N
n, ab(λ, v) + a2n− b2mN

)
.

In particular, if
(
ab
cd

)
∈ Γ0(N) (so that N |c) then this maps L⊕ II1,1 into L⊕ II1,1. This

defines an action of Γ0(N) on L⊕ II1,1, and hence an action on the Hermitian symmetric
space H.

We embed the upper half plane into H by mapping τ to τv, which is represented
by the point (τv, 1,−τ2N) ∈ M ⊗ C. The action of Γ0(N) on H restricts to the usual
action

(
ab
cd

)
(τ) = (aτ + b)/(cτ + d) on the upper half plane. In particular if we restrict an

automorphic form of weight k on H to multiples of v we get a modular form of weight 2k
for Γ0(N).
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The restriction of Φ to multiples of v will often be identically 0. We define Φ0 to be Φ
divided by all the factors in the product defining Φ which are identically zero on multiples
of v, so that

Φ0(y) = e−2πi(ρ,y)
∏

x∈L,x>0,(x,v) 6=0

(1− e−2πi(x,y))c(x).

We defineHN,j(−D) to be the number of complex numbers τ in a fundamental domain
of Γ0(N) satisfying a nonzero quadratic equation of the form aτ2 + bτ + c = 0 with
a,
¯
c ∈ Z, N |a, b ≡ j mod 2N , and b2 − 4ac = D < 0 if D < 0, and define HN,j(0) to be

−|SL2(Z)/Γ0(N)|/12 if j ≡ 0 mod 2N and 0 otherwise. (Points on the boundary of the
fundamental domain have to be counted with fractional multiplicity in the usual way.) We
define the function HN,j(τ) by

HN,j(τ) =
∑

n

HN,j(n)qn.

We put HN (n) =
∑

j mod 2N HN,j(n) and HN (n) =
∑

j mod 2N HN,j(n). For example, the
first few functions are

H1(τ) = −1/12 + (1/3)q3 + (1/2)q4 + q7 + q8 + q11 + (4/3)q12 + · · ·
H2(τ) = −1/4 + (1/2)q4 + 2q7 + q8 + 2q12 + · · ·
H3(τ) = −1/3 + (1/3)q3 + 2q8 + 2q11 + (4/3)q12 + · · ·

Theorem 13.1. Suppose v is a vector of norm −2N < 0 and let Φ0(vτ) the function Φ0

defined above, restricted to the multiples vτ of v for τ ∈ C, =(τ) > 0. Then Φ0(vτ) is a
modular form for Γ0(N) of weight k0 equal to the constant term of f(τ)θv⊥(τ). If τ is a
root of an equation aτ2 + bτ + c = 0 with a/N, b, c ∈ Z, (a/N, b, c) = 1, b2 − 4ac = D < 0,
then the order of the zero of Φ0(τv) is∑

d>0

∑
(λ,v)=db

c(d2D/4N − λ̄2/2).

The sum of the orders of the zeros of Φ0(τv) at the cusps of a fundamental domain of
Γ0(N) is the constant term of

−
∑

b mod 2N

f(τ)θv⊥,bHN,b(τ/4N).

Under the Fricke involution τ → −1/Nτ Φ0(τv) transforms as

Φ0(−v/Nτ) = ±(
√
Nτ)k0Φ0(τv).

Proof. Under the group Γ0(N), direct calculation shows that the function Φ transforms
as

Φ
(
−2Nȳ + (ay + bv, cy + dv)v

(cy + dv, cy + dv)

)
= ±

(
(cy + dv, cy + dv)

−2N

)k

Φ(y).
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From this we find that the function Φ0(τv) transforms as

Φ0(v(aτ + b)/(cτ + d)) = ±(cτ + d)2k+2
∑

x>0,(x,v)=0
c(−(x,x)/2)Φ0(vτ)

for
(
ab
cd

)
∈ Γ0(N), so that Φ0(τv) is a nonzero modular form for Γ0(N) of weight equal to

2k + 2
∑

x>0,(x,v)=0

c(−(x, x)/2) =
∑

(x,v)=0

c(−(x, x)/2)

which is the constant term of f(τ)θv⊥(τ). This follows because Φ0(τv) is essentially the
first nonvanishing coefficient in the Taylor series expansion of Φ orthogonal to Cv and is
obtained by differentiating Φ c(−(x, x)/2) times for each positive norm vector x orthogonal
to v, and each differentiation contributes 2 to the weight of Φ0(τv).

We have to calculate the zeros of Φ0(τv). The zeros of Φ0(y) are the divisors of
positive norm vectors (λ,m, n) of M , each with multiplicity c(−λ2/2 +mn). We have to
remember only to count the zeros from one of the vectors (λ,m, n) and −(λ,m, n), and also
remember to count the zeros from positive multiples of (λ,m, n). This gives a contribution
of c(−λ2/2 + 2mn) to the zero of Φ0(τv) at τ whenever ((vτ, 1, v2τ2/2), (λ,m, n)) = 0,
or in other words when mNτ2 + (v, λ)τ − n = 0. In particular τ must be an imaginary
quadratic irrational. Suppose that aτ2 + bτ + c = 0 with a/N, b, c ∈ Z, (a/N, b, c) = 1,
b2 − 4ac = D. Then we must have m = da, (v, λ) = db, −n = dc for some integer d. But
then d2D/4N = (v, λ)2/4N + mn = λ̄2/2 + (mn − λ2/2) where λ̄ = λ − v(λ, v)/(v, v) is
the projection of λ into v⊥. Hence the multiplicity of the zero of Φ0(τv) at τ is∑

d>0

∑
λ,(λ,v)=bd

c(d2D/4N − λ̄2/2).

As Φ0(τv) is a modular form for Γ0(N), the total number of zeros in a fundamental
domain is equal to |SL2(Z)/Γ0(N)|/12 times its weight, which is the constant term of
−HN,b times the constant term of f(τ)θv⊥(τ). Hence the number of zeros at all the cusps
is this number minus the number of complex zeros of Φ0(τv) in a fundamental domain.
We have just worked out the multiplicity of a zero at any complex number τ , so we can
work out the total number of complex zeros in a fundamental domain, and we find that
the number of zeros at the cusps is as stated in 13.1.

Finally the transformation formula for Φ0(τv) under the Fricke involution follows from
the formula Φ(2y/(y, y)) = ±((y, y)/2)kΦ(y). This proves theorem 13.1.

Corollary 13.2. Suppose that v is a vector of norm −2N ≤ 0.
If N = 0 and v is primitive then the height of v is the constant term of

θv⊥/v(τ)f(τ)E2(τ)/24.

If N = 1 then the height of v is the constant term of

−θv⊥′(τ)f(τ)H(τ).
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If N is prime then the height of v is the constant term of

−1
2

∑
b mod 2N

θv⊥,b(τ)f(τ)HN,b(τ).

Proof. The case N = 0 follows from theorem 10.4. If N = 1 then the height is just
the order of the zero of Φ0 at the cusp i∞ and as SL2(Z) has only one cusp the corollary
then follows from theorem 13.1. If N is prime then Γ0(N) has 2 cusps represented by 0
and i∞. These two cusps are exchanged by the Fricke involution, so the Φ0(τv) has zeros
of the same order at both cusps. Therefore the order of the zero at i∞ is half the sum of
the orders at all cusps. This case of the corollary then follows from theorem 13.1.

The fact that the height is always an integer can be used to find some congruences
between the coefficients of theta functions of lattices. As an example we will work out
these congruences for the theta functions of some unimodular lattices explicitly. The
isomorphism classes of 25 dimensional unimodular lattices can be identified with the orbits
of norm −4 vectors v in II25,1, where the lattice v⊥ is isomorphic to the lattice of vectors
of even norm in the corresponding 25-dimensional unimodular lattice. We put N = 2 and
f(τ) = 1/∆(τ) and find that the constant term of

−1
2

∑
b mod 4

θv⊥,bH2,b(τ)f(τ)

is the height of v and therefore is an integer. The first few coefficients of H2,b are given
by H2,0(τ/8) = −1/4 + q + · · ·, H2,1(τ/8) = H2,3(τ/8) = q7/8 + · · ·, and H2,2(τ/8) =
(1/2)q1/2 + · · ·. The coefficients of the theta functions are given by θv⊥,0(τ) + θv⊥,2(τ) =
θK(τ), and θv⊥,1(τ) = θv⊥,3(τ) = aq1/8 + · · ·, where a = 1 if K is the sum of a one
dimensional lattice and a Niemeier lattice, and a = 0 otherwise. Putting everything
together, we find that

8height(v) = 20 + r2 − 2r1 − 8a

where rn is the number of vectors of norm n in K. In particular

r2 ≡ 2r1 + 4 mod 8.

A consequence of this is that any 25 dimensional even unimodular lattice has minimum
norm at most 2. More generally we find that if K is a unimodular lattice of dimension
s+ 1 ≡ 1 mod 24 with s > 0 then the constant term of

(H2,0(τ/8) + H2,2(τ/8))θK(τ)/∆(τ)s/24

is divisible by 2. As the Fricke involution acts on a fundamental domain of Γ0(2) fixed
point freely except at the images of the points τ = i and τ =

√
2i the coefficients of the

series H2,0 and H2,2 are usually even; more precisely H2,0(τ) ≡ −1/4 +
∑

n>0 q
8n2

mod 2
and H2,2(τ) ≡ (1/2)

∑
n>0 q

4n2
mod 2. This implies that the constant term of

(2θ(τ) + θ(τ/2))θK(τ)/∆(τ)s/24

41



is divisible by 8. We can get similar congruences for unimodular lattices whose dimension
is not 1 mod 24 by adding on copies of the 1-dimensional unimodular lattice until the
dimension is 1 mod 24. These congruences can probably also be deduced by constructing
automorphic forms for the groups OK⊕I2,2(Z)+.

14. Product formulas for modular forms.

In this section we will prove theorem 14.1 below. This immediately implies the prod-
uct formula for the modular polynomial stated in the introduction, because the product∏

[σ](j(τ) − j(σ)) obviously satisfies the conditions in theorem 14.1, and has zeros corre-
sponding to a function f0(τ) of the form qD +O(q).

Recall that H(n) is the Hurwitz class number for the discriminant −n if n > 0, and
H(0) = −1/12. (So

∑
H(n)qn = −1/12 + q3/3 + q4/2 + q7 + q8 + q11 + (4/3)q12 + · · ·. )

Theorem 14.1. Suppose that f0(τ) =
∑
c0(n)qn is a nearly holomorphic modular form

of weight 1/2 for Γ0(4) with integer coefficients whose coefficients c0(n) vanish unless n is
0 or 1 mod 4. We put

Ψ(τ) = q−h
∏
n>0

(1− qn)c0(n
2)

where h is the constant term of f0(τ)
∑
H(n)qn. Then Ψ(τ) is a meromorphic modular

form for some character of SL2(Z), of integral weight, leading coefficient 1, whose coeffi-
cients are integers, and all of whose zeros and poles are either cusps or imaginary quadratic
irrationals. This correspondence gives an isomorphism between the additive group of func-
tions satisfying the conditions on f0 and the multiplicative group of functions satisfying
the conditions on Ψ. Under this isomorphism, the weight of the modular form Ψ is c0(0),
and the multiplicity of the zero of Ψ at a quadratic irrational τ of discriminant D < 0 is∑

d>0 c0(Dd
2). (The discriminant of τ is D = b2 − 4ac, where a, b, and c are integers with

no common factor such that aτ2 + bτ + c = 0.)

Example 1. Under this isomorphism f0(τ) = 12θ(τ) = 12 + 24q + 24q4 + 24q9 + · · ·
corresponds to Ψ(τ) = ∆(τ) = q

∏
n>0(1 − qn)24 of weight c0(0) = 12; this is the usual

product formula for the ∆ function.
Example 2. Put

F (τ) =
∑

n>0,n odd

σ1(n)qn = q + 4q3 + 6q5 · · ·

θ(τ) =
∑
n∈Z

qn2
= 1 + 2q + 2q4 + · · ·

f0(τ) = F (τ)θ(τ)(θ(τ)4 − 2F (τ))(θ(τ)4 − 16F (τ))E6(4τ)/∆(4τ) + 56θ(τ)

= q−3 − 248q + 26752q4 − · · ·

=
∑

n

c0(n)qn.

Then the corresponding infinite product Ψ(τ) has weight c0(0) = 0 and has zeros of order
c0(−3) = 1 at the point of discriminant −3 (which are the conjugates of (1 + i

√
3)/2) and
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nowhere else, so it must be j(τ)1/3. The Fourier series of 3f0(τ) is

3f0(τ) = 3q−3 − 744q + 80256q4 − 257985q5 + 5121792q8 − 12288744q9 + · · ·

so
j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · ·

= q−1
∏
n>0

(1− qn)3c0(n
2)

= q−1(1− q)−744(1− q2)80256(1− q3)−12288744 · · ·

Example 3. The Eisenstein series E4, E6, E8, E10, and E14 all satisfy the condition
on Ψ and so can be written as infinite products corresponding to some functions f0(τ).
An explicit formula for E4 follows easily from the infinite product expansions of j and ∆
because j = E3

4/∆, and an explicit formula for E6 is given in example 2 of section 15.
The other cases follow from E8 = E2

4 , E10 = E4E6, and E14 = E2
4E6. The remaining

Eisenstein series cannot be written as modular products.
Example 4. There are exactly 13 integers n for which j(τ)−n satisfies the conditions

on Ψ(τ) and hence can be written as a modular product; these are the values of j(τ)
at values of imaginary quadratic τ for which j(τ) is integral which are well known to be
j((1+i

√
3)/2) = 0, j(i) = 26.33, j((1+i

√
7)/2) = −3353, j(i

√
2) = 2653, j((1+i

√
11)/2) =

−215, j(i
√

3) = 243353, j(2i) = 2333113, j((1 + i
√

19)/2) = −21533, j((1 + i
√

27)/2) =
−2153.53, j(i

√
7) = 33.53.173, j((1+i

√
43)/2) = −2183353, j((1+i

√
67)/2) = −2153353113,

j((1 + i
√

163)/2) = −2183353233293. There are therefore exactly 14 modular forms of
weight 12 with integer coefficients for SL2(Z) which are modular products: the forms
∆(τ)(j(τ)− n) and the form ∆(τ).

We will prove theorem 14.1 as follows. We find a spanning set for the set of modular
forms f0 in theorem 14.1 and check for each of them that the conclusion of theorem 14.1
is true using the automorphic forms on IIs+2,2 constructed in section 10. Then we check
that all the modular forms Ψ satisfying the conclusion of theorem 14.1 can be written as
a product of the modular products constructed from the forms f0.

Lemma 14.2. Every sequence of integers c0(n) for n ≤ 0, n ≡ 0, 1 mod 4 which are
almost all zero is the set of coefficients of nonpositive degree for a unique modular form f0
satisfying the conditions of theorem 14.1.

Proof. This is similar to the proof of theorem 5.4 of [E-Z] with a few sign changes.
If f0(τ) =

∑
n c0(n)qn is a modular form satisfying the conditions of theorem 14.1 with

c0(n) = 0 for n ≤ 0 then we define h0(τ) =
∑

n c0(4n)qn and h1(τ) =
∑

n c0(4n+1)qn+1/4.
If we use the fact that f0(τ) = h0(4τ) + h1(4τ) satisfies the relation f0(σ/(4σ + 1)) =√

(4σ + 1)f0(4σ) and put τ = 4σ + 1 we find that h0 and h1 satisfy the relation

h0(−1/τ)− ih1(−1/τ) =
√
τ(h0(τ)− ih1(τ)).

If we let τ be imaginary and take real and imaginary parts of this we find that h0 and h1
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satisfy the relations

h0(τ + 1) = h0(τ)
h1(τ + 1) = ih1(τ)
h0(−1/τ) = (1/2− i/2)

√
τ(h0(τ) + h1(τ))

h1(−1/τ) = (1/2− i/2)
√
τ(−h0(τ) + h1(τ)).

This implies that h0 and h1 modular forms of weight 1/2 which have zeros of order at
least 1/4 at all cusps, so h0 and h1 are both zero because h0/η and h1/η are holomorphic
modular functions vanishing at all cusps. This proves that the form f0 in lemma 14.2 is
unique if it exists.

To prove the existence of f0 we must exhibit such a form f0 whose Laurent series
starts off qn = · · · for every n ≤ 0 with n ≡ 0, 1 mod 4. It is sufficient to do this for
n = 0 or −3, because we can then get all values of n by multiplying by powers of j(4τ).
For n = 0 we can use the function

∑
n∈Z q

n2
, and for n = −3 we can use the function

F (τ)θ(τ)(θ(τ)4 − 2F (τ))(θ(τ)4 − 16F (τ))E6(4τ)/∆(4τ) + 56θ(τ) where F (τ) is defined in
example 2 above. This proves lemma 14.2.

Lemma 14.3. There is a norm −2 vector v ∈ II25,1 such that θv⊥′(τ) = 1+2q1/4 +O(q).

Proof: We take v to be the image of a norm −2 vector of II1,1 in II25,1 = II1,1 ⊕
(Leech lattice).

Lemma 14.4. There is a norm −2 vector v ∈ II25,1 such that θv⊥′(τ) = 1+6q+O(q5/4) =
1 +O(q).

Proof. If we take ρ to be a primitive norm 0 vector of II25,1 corresponding to the Leech
lattice, then ρ is a Weyl vector for the reflection group of the Leech lattice and the simple
roots are the norm 2 vectors r with (r, v) = −1 and they correspond to vectors of the Leech
lattice. If we take r1 and r2 to be simple roots having inner product −1 (corresponding to
two vectors of the Leech lattice at distance

√
6) then the vector v = ρ+ r1 + r2 is a norm

−2 vector of the Leech lattice. It is easy to check that it is in the Weyl chamber of the
reflection group of II25,1, and that the simple roots of v⊥ are just r1 and r2 so that v⊥

has root system a2 and therefore has 6 norm 2 vectors. It is also easy to check that there
are no norm 0 vectors of II25,1 having inner product 1 with v, which implies that there
are no vectors of norm 1/2 in v⊥′. This proves lemma 14.4.

Lemma 14.5. The Z-module of functions f0 satisfying the conditions of theorem 14.1 is
spanned by functions of the form θv⊥′(4τ)f(4τ), where v is a norm -2 vector of a lattice
IIs+1,1 and f =

∑
n c(n)qn is a nearly holomorphic modular form of level 1 and weight

−s/2.

Proof: By using lemmas 14.1 and 14.4 we can find functions which are linear com-
binations of the functions mentioned in lemma 14.5, and whose Fourier series start off
q−4n + . . . or 2q−4n−3 + . . . for any nonnegative integer n. By lemma 14.2 these functions
span the module of functions f0 satisfying the conditions of theorem 14.1.
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We can now prove theorem 14.1. Suppose that v is a norm −2 vector of II25,1 and f
is a nearly holomorphic modular form of weight −12, and

Φ0(y) = e−2πi(ρ,y)
∏

x∈L,x>0,(x,v) 6=0

(1− e−2πi(x,y))c(x)

is the function defined in section 13. By theorem 13.1 Ψ(τ) = Φ0(τv) is a modular form for
SL2(Z) of weight equal to 2k + 2

∑
x>0,(x,v)=0 c(−(x, x)/2) =

∑
(x,v)=0 c(−(x, x)/2) which

is the constant term of f(τ)θv′(τ). By theorem 13.1 again the zeros of Ψ are as stated in
theorem 14.1.

We can find the infinite product decomposition of Φ0(τv) from that of Φ0(y) by
restriction, and we see that

Φ0(τv) = qh
∏
n>0

(1− qn)c0(n
2)

where h is the height of v and c0(n) is the coefficient of qn in f(4τ)θv⊥′(4τ) = f0(τ). By
theorem 13.1 the height h is given by the formula stated in theorem 14.1.

Finally we have to check that the map from functions f0 to functions Ψ in theorem
14.1 is an isomorphism. If the image of f0 is 1, then Ψ has no zeros and weight 0, so the
coefficients c0(n) are 0 if n ≤ 0, so f0 is 0 by lemma 14.2, which proves that the map is
injective. If Ψ is any function satisfying the conditions of theorem 14.1, then again by
lemma 14.2 we can find a function f0 such that the corresponding infinite product has the
same complex zeros and poles as Ψ. By taking the quotient we can assume that Ψ has
no zeros or poles except at cusps. But this implies that Ψ must be a positive or negative
power of η(τ)2 (as Ψ has integral weight), and we obtain these functions Ψ by taking f0
to be an integral multiple of θ(τ) = 1 + 2q + 2q4 + · · ·. This proves theorem 14.1.

Remark: in the case when we take v to be a norm −2 vector in the lattice II1,1 we
can work out the Weyl vector explicitly. By identifying its height with the integer h in
theorem 14.1 we recover the classical Hurwitz formula∑

t∈Z

H(4m− t2) =
∑
d|m

max(d,m/d)

for positive integers m.

15. Generalized Kac-Moody algebras.

Many automorphic forms for OM (Z)+ that are modular products, especially those of
singular weight, are the denominator functions of generalized Kac-Moody algebras. We
give a few examples of this.

Example 1. If f(τ) is the Hauptmodul of an element of the monster simple group then
f(σ)−f(τ) is an automorphic function on O2,2(R) with respect to some discrete subgroup,
and can be written as an infinite product whose exponents can be described explicitly. See
[B] for details. More generally, if A and B are elements of SL2(Z) then f(Aσ) − f(Bτ)
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can often be written explicitly as an infinite product, and these expressions are often the
denominator formulas for generalized Kac-Moody algebras.

Example 2. The product formula

E6(τ) = 1− 504
∑
n>0

σ5(n)qn

= 1− 504q − 16632q2 − 122976q3 − · · ·

=
∏
n>0

(1− qn)a(n2)

= (1− q)504(1− q2)143388(1− q3)51180024 · · ·

where ∑
n

a(n)qn

=q−4 + 6 + 504q + 143388q4 + 565760q5 + 18473000q8 + 51180024q9 +O(q12)

=(j(4τ)− 852)θ(τ)− 2F (τ)θ(τ)(θ(τ)4 − 2F (τ))(θ(τ)4 − 16F (τ))E6(4τ)/∆(4τ)

(see section 14) is the denominator formula for a generalized Kac-Moody algebra of rank
1 whose simple roots are all multiples of some root α of norm −2, the simple roots are nα
(α > 0) with multiplicity 504σ3(α), and the multiplicity of the roots nα is a(n2). (Kok
Seng Chua pointed out that the formula in the published paper is wrong: 876 should be
changed to 852.) The positive subalgebra of this generalized Kac-Moody algebra is a free
Lie algebra, so we can also state this result by saying that the free graded Lie algebra with
504σ5(n) generators of each positive degree n has a degree n piece of dimension a(n2).
There are similar examples corresponding to the infinite products for the Eisenstein series
E10 and E14.

Example 3. In [B] there is an example of an infinite product formula for every element
of 224.OΛ(Z) (where Λ is the Leech lattice) given by taking the trace of this element on
the cohomology of the fake monster Lie algebra. This is probably always an automorphic
form of singular weight for some group OM (Z)+, although I have not checked this for
all cases. This automorphic form is often the denominator function for some generalized
Kac-Moody algebra or superalgebra. This gives several examples of automorphic forms of
singular weight on groups OM (Z)+ with level greater than 1.

Example 4. There seems to be a superalgebra of rank 10 associated with the E8 lattice
in the same way that the fake monster Lie algebra is associated with the Leech lattice. In
fact, there seem to be 2 closely related superalgebras, one with zero Weyl vector and one
with Weyl vector equal to the Weyl vector of the reflection group of OI9,1(Z) generated by
the reflections of norm 1 vectors. I have a construction for these superalgebras but have
not yet checked all the details. The denominator formula for one of these superalgebras is
proved in [B]. The superalgebra is probably acted on by a group 28.W (E8) where W (E8) is
the Weyl group if the E8 lattice. There are presumably twisted versions of the denominator
formula for this superalgebra associated to conjugacy classes in 28.W (E8). These twisted
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denominator functions are probably automorphic forms of singular weights, and this can
probably be proved case by case using the methods of this paper.

Example 5. The product formula

∑
m,n∈Z

(−1)m+npm2
qn2

rmn =
∏

a+b+c>0

(
1− paqcrb

1 + paqcrb

)f(ac−b2)

where f(n) is defined by
∑
f(n)qn = 1/(

∑
n(−1)nqn2

) = 1 + 2q + 4q2 + 8q3 + 14q4 + . . ..
is the denominator formula for a generalized Kac-Moody superalgebra of rank 3. This
superalgebra is graded by Z3, and the subspace of degree (a, b, c) had dimension 3 if
(a, b, c) = (0, 0, 0), and f(ac−b2)|f(ac−b2) otherwise. (The symbol m|n for the dimension
of a superspace means that it is the sum of an ordinary part of dimension m and a super
part of dimension n.) This product formula can be proved using the ideas of this paper,
except that we need to use Jacobi forms of level 2 rather than level 1. The left hand side
is essentially Siegel’s theta function of genus 2, and so is an automorphic form for Sp2(Z).
As Sp2(R) is locally isomorphic to O3,2(R), it is also an automorphic form for the group
OM (Z)+ where M is the even lattice of determinant 2, dimension 5 and signature 1.

16. Hyperbolic reflection groups

There is often an automorphic form with a modular product expansion associated with
the hyperbolic reflection group of a Lorentzian lattice, especially when the reflection group
of the lattice has finite index in the automorphism group. We will give several examples
of this.

Example 1. We let L be the 10-dimensional even Lorentzian lattice II9,1, whose
reflection group has Dynkin diagram e10. We let f be the automorphic form of weight
252 corresponding to the weight −4 modular form E4(τ)2/∆(τ) = q−1 + 504 + · · ·. All
the real vectors of the corresponding vector system are norm 2 roots and have multiplicity
1, so they are exactly the roots of the reflection group of L. The Weyl chambers of f
are all conjugate and any Weyl vector has norm −1240, and these are the same as the
Weyl chambers and Weyl vectors of the reflection group of L. Unfortunately the norm 0
vectors all have multiplicity 504 which is much larger than the multiplicity 8 of the norm
0 vectors of the Kac-Moody algebra e10, so this seems to give no useful information about
the root multiplicities of this Kac-Moody algebra. The function f has a simple zero at all
rational quadratic divisors of norm 2 and no other zeros, so it divides any antiinvariant
automorphic form for the group OII10,2(Z)+ , and therefore gives an isomorphism from
invariant automorphic forms of weight k to antiinvariant forms of weight k + 252. In
particular any antiinvariant form of weight less than 256 is a multiple of f .

Example 2. We let L be the 18-dimensional even Lorentzian lattice. We let f be the
form associated to the weight −8 form E4(τ)/∆(τ) = q−1 + 256 + · · ·. As in the previous
example, we find that the Weyl chambers and Weyl vectors (norm −620) of f are the
same as those of the reflection group of L, and multiplication by f is an isomorphism from
invariant forms of weight k to antiinvariant ones of weight k + 128.

Example 3. We let L be the even sublattice of index 2 in I21,1, which is the orthogonal
complement of a d4 lattice in II25,1. The reflection group of L has finite index in the full
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automorphism group and is generated by the reflections of vectors of norms 2 and 4. If
we take an automorphic form Φ for OII26,2(Z)+ and divided it by the factors vanishing on
L, we get a function Φ0 which restricts to an automorphic form for OL⊕II1,1(Z)+. If we
take Φ to be the automorphic form associated to 1/∆(τ) then the positive norm vectors
of L of nonzero multiplicity are the norm 2 vectors with multiplicity 1, and half the norm
4 roots with multiplicity 8. This gives an automorphic form whose positive norm vectors
of nonzero multiplicity are multiples of the roots of L. This example cannot correspond to
any generalized Kac-Moody algebra because all the positive norm roots of a generalized
Kac-Moody algebra have multiplicity 1.

Example 4. More generally if we take any subdiagram of the Dynkin diagram Λ of
II25,1 whose components are all of the form d4, dn for n ≥ 6, e6, e7, or e8 and we let
L be the orthogonal complement in II25,1 of the lattice of this subdiagram, then we get
an example similar to the previous example of an automorphic form whose positive norm
vectors of nonzero multiplicity are closely related to the roots of some reflection group of
finite index in the full automorphism group of L. Examples 1,2, and 3 correspond to the
subdiagrams e28, e8, and d4.

17. Open problems.
1. Can the methods for constructing automorphic forms as infinite products be used for

semisimple groups other than Os+2,2(R)?
2. Extend the methods of this paper to level greater than 1. Can any nearly holomorphic

Jacobi form of nonnegative weight be used to construct a meromorphic automorphic
form? In particular, can the explicit calculations used in section 10 to prove the
existence of a Weyl vector be replaced by a more general argument? Can any auto-
morphic form (with rational integral Fourier coefficients) all of whose zeros are rational
quadratic divisors be written as a modular product?

3. Are there a finite or infinite number of automorphic forms of singular weight that
can be written as modular products? Are there any such forms on Os+2,2(R) for
s > 24? The forms of singular weight which are modular products are particularly
interesting because they often correspond to generalized Kac-Moody algebras. If a
form has singular weight then its Weyl vectors must be of norm 0, and the lattices
corresponding to them have no vectors of small norm.

4. Find some interesting cases of the generalized Macdonald identities of chapter 6 such
that the sum of theta functions times modular forms can be written down explicitly.

5. What are the eigenvalues of the Hecke operators acting on the weight 12 form for
OII26,2(Z)+ (which is an eigenform of the Hecke operators)? Does it correspond to
some Galois representation?

6. Can the automorphic forms that are modular products be understood in terms of
representation theory or Langlands philosophy? (I do not even know how to under-
stand the product formula for ∆(τ) in terms of representation theory.) One problem
with this is that the automorphic forms which are modular products are often not
eigenforms of Hecke operators; for example there are 14 modular forms of level 1 and
weight 12 which are modular products, only one of which (∆) is an eigenform.

7. Many automorphic forms that are modular products can be interpreted as the denom-
inator formulas of generalized Kac-Moody algebras. Is it possible to construct these
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generalized Kac-Moody algebras explicitly (other than by generators and relations)?
For example, the fake monster Lie algebra is the Lie algebra of chiral strings on a
26-dimensional torus.

8. Given an automorphic form for OM (Z)+ with a modular product we obtain a decom-
position of the cone C into Weyl chambers, each of which either has finite volume, or
has finite volume modulo the action of a free abelian group. In the only cases I know
of where this decomposition has been worked out explicitly (mostly reflection groups
or the examples associated with II25,1 in chapter 14) the automorphism group acts
transitively on the Weyl chambers, but this is certainly not usually the case. What
happens in general? I would guess that there are usually a large number of Weyl
chambers, each one of which has a fairly simple structure and not too many sides,
but I have no real evidence for this. The structure of any given Weyl chamber can
probably be worked out using some sort of extension of Vinberg’s algorithm for the
case of reflection groups.

9. Is there any connection between the 3 product formulas for j(τ) − j(σ)? (The three
formulas are the Gross-Zagier formula when both of σ, τ are imaginary quadratic
integers, the formula of this paper when one of them is, and the product formula for
the monster Lie algebra when neither of them are.)

10. Extend theorem 14.1 to higher levels. Can any modular form (of any level) with inte-
gral coefficients, such that all its zeros are cusps or imaginary quadratic irrationals, be
written as a modular product? What happens if the coefficients are not required to be
rational? Is there a proof of theorem 14.1 which only uses modular forms on SL2 and
not automorphic forms on larger groups? In theorem 14.1 the coefficients of negative
powers of q in f0 are related to the orders of the zeros of Φ0, and the coefficients
of qn2

appear in the infinite product expansion of Φ0. Is there any interpretation
of the coefficients of qn for positive values of n that are not squares? Does the cor-
respondence in theorem 14.1 commute with some action of a Hecke algebra? (The
Hecke operators would have to act multiplicatively rather than additively on mero-
morphic modular forms.) The Shimura-Kohnen isomorphism [Ko] is an isomorphism
from the space of weight k/2 forms of level 4 whose Fourier coefficients c(n) vanish
unless n ≡ 0, (−1)(k−1)/2 mod 4, to the space of modular forms of level 1 and weight
k − 1 (k odd). In this isomorphism the coefficients c(n2) are closely related to the
eigenvalues of the Hecke operators. Is there any connection with the isomorphism of
theorem 14.1, which has the same condition on the coefficients c(n) and for which the
coefficients c(n2) are also particularly important? (Notice that the Shimura-Kohnen
isomorphism is additive, while the one in theorem 14.1 is multiplicative.)

11. The extension of theorem 14.1 to higher levels appears to give many modular functions
whose zeros are the imaginary quadratic irrationals that are used to define Heegner
divisors of modular curves. R. Taylor suggested that this could be used to produce
linear relations between the Heegner points on the Jacobian.

12. Suppose L is a Lorentzian lattice whose reflection group has finite index in its au-
tomorphism group. Is there always an automorphic form with a modular product
expansion such that the positive vectors of nonzero multiplicity are more or less the
same as the roots of L (possibly multiplied by nonzero rational numbers)?
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