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The monster simple group acts on the monster vertex algebra, and the moonshine conjectures state
that the traces of elements of the monster on the vertex algebra are Hauptmoduls. Ryba [R94] conjectured
the existence of similar vertex algebras over fields of characteristics p acted on by the centralizers of certain
elements of prime order p in the monster, and conjectured that the Brauer traces of p-regular elements of
the centralizers were certain Hauptmoduls. We will prove these conjectures when the centralizer involves a
sporadic group (p ≤ 11, corresponding to the sporadic groups B, Fi′24, Th, HN , He, and M12).
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1. Introduction.

The original “moonshine conjectures” of Conway, Norton, McKay, and Thompson said that the monster
simple group M has an infinite dimensional graded representation V = ⊕n∈ZVn such that the dimension of Vn

is the coefficient of qn of the elliptic modular function j(τ)−744 = q−1+196884q+· · ·, and more generally the
McKay-Thompson series Tg(τ) =

∑
n∈Z Tr(g|Vn)qn is a Hauptmodul for some genus 0 congruence subgroup

of SL2(R). The representation V was constructed by Frenkel, Lepowsky, and Meurman [FLM], and it was
shown to satisfy the moonshine conjectures in [B92] by using the fact that it carries the structure of a vertex
algebra [B86], [FLM].

Meanwhile, Norton had suggested that there should be a graded space associated to every element g of
the monster acted on by some central extension of the centralizer of g ([N], see also [Q]). It is easy to see
that these graded spaces are usually unlikely to have a vertex algebra structure. Ryba suggested [R94] that
these spaces might have a vertex algebra structure if they were reduced mod p (if g has prime order p). He
also suggested the following definition for these vertex algebras:

gV =
V g/pV g

(V g/pV g) ∩ (V g/pV g)⊥
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where V is some integral form for the monster vertex algebra, and V g is the set of vectors fixed by g. He
conjectured that the dimensions of the homogeneous components of gV should be the coefficients of certain
Hauptmoduls, and more generally that if h is a p-regular element of CM (g) then

Tr(h|gVn) = Tr(gh|Vn)

where the trace on the left is the Brauer trace. (The numbers on the right are known to be the coefficients of
a Hauptmodul depending on gh by [B92].) We will call these conjectures the modular moonshine conjectures.

We now describe the proof of the modular moonshine conjectures for some elements g given in this
paper. We observe (proposition 2.3) that the definition of gV in [R94] is equivalent to defining it to be the
Tate cohomology group Ĥ0(g, V ), or at least it would be if a good integral form V of the monster Lie algebra
was known to exist. The lack of a good integral form V does not really matter much, because we can just as
well use a Z[1/n]-form for any n coprime to |g|, and a Z[1/2]-form can be extracted from Frenkel, Lepowsky
and Meurman’s construction of the monster vertex algebra.

It is difficult to work out the dimension of Ĥ0(g, V [1/2]n) directly. However it is easy to work out the
difference of the dimensions of Ĥ0 and Ĥ1, which can be thought of as a sort of Euler characteristic (and is
closely related to the Herbrand quotient in number theory). This suggests that we should really be looking at
Ĥ∗(g, V [1/2]) = Ĥ0(g, V [1/2])⊕ Ĥ1(g, V [1/2]), and it turns out for essentially formal reasons that this has
the structure of a vertex superalgebra. The traces of elements h of the centralizer of g on this superalgebra
are just given by the traces of the elements gh on the monster vertex algebra.

We can now complete the proof of the modular moonshine conjectures for the element g of the monster
by showing that Ĥ1(g, V [1/2]) = 0. We do this for certain elements of odd prime order of the monster
coming from M24 in section 4; this is a long but straightforward calculation. There are plenty of elements
g of the monster for which Ĥ1(g, V [1/2]) does not vanish; this happens whenever some coefficient of the
Hauptmodul of g is negative; for example, g of type 3B. There are also some elements of large prime order
for which we have been unable to prove the modular moonshine conjectures because we have not proved that
Ĥ1(g, V [1/2]) = 0 (though this is probably true), but we do at least cover all the cases when g has prime
order and its centralizer involves a sporadic simple group.

The case when p = 2 has several extra complications, due partly to the existence of several extensions of
groups by 2-groups, and due partly to the fact the FLM construction can be carried out over Z[1/2] but it is
not clear how to do it over Z. We deal with these extra problems in section 5 by using a Z[1/3]-form of the
monster vertex algebra. To construct this Z[1/3]-form we need to make a mild assumption (which we have
not checked) about the construction of the monster vertex algebra from an element of order 3 announced
by Dong and Mason and by Montague. (In particular the proof of the modular moonshine conjectures for
elements of type 2A in the monster uses this assumption.)

In section 6 we give some calculations illustrating the case when g is an element of type 7A in the
monster (so the centralizer CM (g) of g is 〈g〉 × He). We give the characters and the decomposition into
irreducible modular representations of the first few graded pieces of Ĥ0(g, V [1/2]).

In section 7 we discuss some open problems, in particular how one might construct a good integral form
of the monster vertex algebra.

Notation.

AG The largest submodule of A on which G acts trivially.
AG The largest quotient module of A on which G acts trivially.

A,B,C G-modules.
Aut The automorphism group of something.

B The baby monster sporadic simple group.
C The complex numbers.

CM (g) The centralizer of g in the group M .
Fi24 One of Fischer’s groups.
Fq The finite field with q elements.

g An element of G, usually of order p.
〈g〉 The group generated by g.
G A group, often cyclic of prime order p and generated by g.
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Ĥi(G, A) A Tate cohomology group of the finite group G with coefficients in the G-module A.
Ĥi(g,A) means Ĥi(〈g〉, A), where 〈g〉 is the cyclic group generated by g.
Ĥ∗(g,A) The sum of the Tate cohomology groups Ĥ0(g,A) and Ĥ1(g,A), considered as a super module.

He The Held sporadic simple group.
HN The Harada-Norton sporadic simple group.

I The elements of a group ring of norm 0.
Im The image of a map.

Ker The kernel of a map.
Λ, Λ̂ The Leech lattice and a double cover of the Leech lattice.

L An even lattice.
M The monster simple group.

M12 A Mathieu group.
M24 A Mathieu group.

N The norm map: N(v) =
∑

g∈G g(v).
NM (g) The normalizer of the subgroup 〈g〉 in the group M .

p A prime, usually the order of g.
R The real numbers.

Rp A finite extension of the p-adic integers.
S(a) =

∑
0≤n<p ngn(a)

SL2 A special linear group.
Th Thompson’s sporadic simple group.
Tr Tr(g|A) is the usual trace of g on a module A if A is a module over a ring of characteristic 0, and the

Brauer trace if A is a module over a field of finite characteristic.
V [1/n] A Z[1/n]-form of the monster vertex algebra.

VΛ The integral form of the vertex algebra of Λ̂.
Vn The degree n piece of V .
V n An eigenspace of some group acting on V .
gV A modular vertex algebra or superalgebra given by Ĥ∗(g, V [1/n]) for some n coprime to |g|.
Z The integers.

Zp The p-adic integers.
ω A cube root of 1 or a conformal vector.

2. Cohomology and modular representations.

In this section we summarize some basic facts about group cohomology that we will use later. For more
details about Tate cohomology groups see the article [AW].

If G is a finite group acting on an abelian group A we define AG to be the elements of A fixed by G,
and AG to be the largest quotient of A on which G acts trivially. We write N for the norm map defined by
N(a) =

∑
g∈G g(a). If n is any integer then Ĥn(G, A) is the Tate cohomology group of G with coefficients

in A. It has the following properties.
1. Ĥ0(G, A) = AG/Im(N).
2. Ĥ−1(G, A) = Ker(N |AG).
3. If 0 → A → B → C → 0 is an exact sequence of G modules then

· · · −→ Ĥi−1(G, C) −→ Ĥi(G, A) −→ Ĥi(G, B) −→ Ĥi(G, C) −→ Ĥi+1(G, A) −→ Ĥi+1(G, B) −→ · · ·

is exact.
4. There is a bilinear cup product from Ĥi(G, A)× Ĥj(G, B) to Ĥi+j(G, C), defined whenever we have a

G-invariant bilinear map from A× B to C, and which is the obvious induced product when i = j = 0.
Ĥ∗(G,Z) is a super-commutative ring under cup product. More generally if A has any G-invariant
algebraic structure defined in terms of multilinear products and multilinear identities (e.g., commutative
ring, Lie algebra, vertex algebra, etc.) then Ĥ∗(G, A) = ⊕n∈ZĤn(G, A) is a “super” version of this
algebraic structure under the cup product; this means that it satisfies the same identities as A except
that we insert a factor of −1 whenever we interchange the order of two elements of odd degree. This
follows from the associativity and supercommutativity properties of the cup product given in [AW]. For
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example, if A is a Lie algebra, then Ĥ∗(G, A) is a Lie superalgebra (at least if A is 2-divisible so that
the Lie algebra axioms can all be written as multilinear identities).

5. If G is a cyclic group generated by an element g we will also write the cohomology groups Ĥi(G, A)
as Ĥi(g,A). In this case Ĥ2(g,Z) has a canonical element (depending on the generator g) such that
cup product by this element is an isomorphism from Ĥi(g,A) to Ĥi+2(g,A). In particular there are
essentially only 2 different cohomology groups, Ĥ0 and Ĥ1, as all the others are isomorphic to one of
these two, so we define Ĥ∗(g,A) to be Ĥ0(g,A) ⊕ Ĥ1(g,A). As in 4 above, if A has some algebraic
structure, then Ĥ∗(g,A) = Ĥ0(g,A)⊕ Ĥ1(g,A) has a super version of this algebraic structure, with Ĥ0

and Ĥ1 being the even and odd parts. Notice that the algebra product from Ĥ1 × Ĥ1 to Ĥ0 depends
on the choice of generator g because it uses the isomorphism from Ĥ2 to Ĥ0. In particular if g ∈ G
and A has an algebra structure invariant under G, then the natural action of the normalizer NG(g) on
Ĥ∗(g,A) need not preserve the algebra structure (unless of course Ĥ1(g,A) = 0). The centralizer CG(g)
always preserves the algebra structure. We always regard Ĥ∗(g,A) as a supermodule, and in particular
when we take the trace of an element h on it we multiply the trace on Ĥ1 by −1, i.e., Tr(h|Ĥ∗(g,A)) is
defined to be Tr(g|Ĥ0(g,A))−Tr(g|Ĥ1(g,A)). (The trace will always be the Brauer trace, which takes
values in a field of characteristic 0.)

6. Ĥ∗(G, A) is a |G|-torsion module, and in particular if multiplication by |G| is an isomorphism on A then
Ĥ∗(G, A) vanishes.
We let Zp be the ring of p-adic integers.

Lemma 2.1. If A is a free Z[1/n] module acted on by a p-group G with (p, n) = 1 then the natural map
from Ĥ∗(G, A) to Ĥ∗(G, A⊗ Zp) is an isomorphism.

Proof. This follows by looking at the long exact sequence of 0 → A → A⊗Zp → A⊗ (Zp/Z[1/n]) → 0,
if we observe that multiplication by p is an isomorphism on Zp/Z[1/n] so the cohomology of A⊗(Zp/Z[1/n])
vanishes. This proves lemma 2.1.

Now suppose that G is a cyclic group of order p generated by g. Recall ([CR] p. 690) that there are
exactly 3 indecomposable finitely generated modules over the group ring Zp[G] which are free as Zp modules;
these are:

1. The 1-dimensional module Zp (with g acting trivially). The cohomology groups of G with coefficients
in Zp are Ĥ0(g,Zp) = Z/pZ, Ĥ1(g,Zp) = 0, as can be easily checked by explicit calculation.

2. The group ring Zp[G]. All cohomology groups of this module are trivial as it is a projective module.
3. The module I, which is the kernel of the natural map from Zp[G] to Zp. The cohomology groups of

I can be worked out from the long exact sequence of 0 → I → Zp[G] → Zp → 0, and are given by
Ĥ0(g, I) = 0, Ĥ1(g, I) = Z/pZ.
The next proposition is the main tool for calculating the Brauer characters of the modular vertex

algebras we will construct.

Proposition 2.2. Suppose that A is a finitely generated free module over Zp (or over Z) acted on by a
group G containing an element g of order p in its center. Then the Brauer character of the virtual modular
representation Ĥ∗(g,A) = Ĥ0(g,A)− Ĥ1(g,A) of G/〈g〉 is given by

Tr(h|Ĥ∗(g,A)) = Tr(gh|A)

for any p-regular element h of G. (The left hand trace is the Brauer trace, and the right hand one is the
usual trace.)

Proof. We can assume that G is the product of the cyclic groups generated by g and h. We adjoin the
|h|’th roots of 1 to Zp to obtain an unramified extension Rp of Zp. It is sufficient to prove the proposition
for the module A ⊗ Rp because both sides are unaffected by tensoring A by Rp. (The Brauer trace of the
cohomology groups is of course calculated by regarding them as modules over the residue class field of Rp.)
We can decompose A⊗Rp into eigenspaces for h, and as both traces are additive on modules we can assume
that h acts on A⊗Rp as multiplication by some fixed root of unity ζ.

Both sides of proposition 2.2 are additive on short exact sequences (the additivity for the left hand side
follows from the “exact hexagon” of Tate cohomology). The only irreducible representations of Q ⊗ Rp[g]
over the quotient field Q⊗ Rp of Rp are Q⊗ Rp and Q⊗ I ⊗ Rp, which implies that the module A can be
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built from I ⊗ Rp, Rp, and finite modules by taking repeated extensions. By additivity it is then sufficient
to prove proposition 2.2 in the cases when A is I ⊗ Rp or Rp or a finite module. The case when A is finite
is trivial as both sides are zero (the dimensions of Ĥ0(g,A) and Ĥ1(g,A) are equal because the Herbrand
quotient |Ĥ0(g,A)|/|Ĥ0(g,A)| is 1 for finite modules A).

We have reduced the proof of proposition 2.2 to checking the 2 cases when A⊗Rp is Rp or I ⊗Rp, and
where h acts as multiplication by ζ. If A⊗Rp is Rp, then Ĥ0(g,Rp) = Rp/pRp, and Ĥ1(g,A⊗Rp) = 0, so
Tr(h|Ĥ∗(Rp)) = ζ, which is equal to Tr(gh|Rp) = Tr(h|Rp). If A ⊗ Rp is the group ring Rp[g], then both
cohomology groups are 0 and the trace of gh on Rp[g] is also 0 as the eigenvalues of gh are ζ multiplied by
every p’th root of 1 (including 1). Finally the case when A ⊗ Rp = I ⊗ Rp follows from the previous two
cases and the exact sequence

0 −→ I ⊗Rp −→ Rp[g] −→ Rp −→ 0

because both traces are additive on short exact sequences. This proves proposition 2.2.
If A is a finitely generated free module over a ring R with a bilinear form (, ), then we say this form is

self dual if every linear map f from A to R is of the form f(a) = (a, b) for some fixed b ∈ A. If the form is
symmetric and R is the ring of integers this is equivalent to saying that A is a unimodular lattice. We say
the bilinear form is nonsingular if there is no nonzero element a with (a, b) = 0 for all b ∈ A. We say that a
submodule B of A is primitive if A/B is torsion free.

Proposition 2.3. Suppose A is a free Z or Zp module acted on by the finite group G of order p with an
invariant self dual symmetric bilinear form (, ). Then N(A) is the set of all elements a ∈ AG such that
p|(a, b) for all b ∈ AG. In particular the bilinear form (, ) induces a nonsingular bilinear form on Ĥ0(G, A).

Proof. We will prove this when A is a free Z-module; the proof when A is a free Zp module is similar.
We think of A as a lattice in the real vector space A⊗R, which also has a nonsingular bilinear form induced
by that of A. Note that A ⊗R is the orthogonal direct sum of the subspaces AG ⊗R and Ker(N), so the
bilinear form is nonsingular on each of these subspaces. The map N is just p times orthogonal projection
onto the subspace (A ⊗ R)G. Hence 1

pN(A) is just the orthogonal projection of A into (A ⊗ R)G. The
sublattice AG is also primitive because if na is fixed by G for some nonzero n ∈ Z then so is a. On the other
hand, the set of vectors a ∈ AG such that p|(a, b) for all b ∈ AG is the same as p(AG′) (where B′ means the
dual of the lattice B, i.e., the set of all vectors of B⊗R which have integral inner product with all elements
of B). For any nonsingular primitive sublattice B of A, and in particular for B = AG, B′ is the projection
of A into B⊗R because the bilinear form on A is self dual. (As B is a primitive sublattice of A the natural
map from A′ to B′ is surjective, so as A is self dual and can be identified with A′ we see that the projection
from A to B′ is surjective.) This proves proposition 2.3.

There is a similar but slightly more complicated result for Ĥ1.

Proposition 2.4. Suppose A is a free Z or Zp module with an invariant self dual symmetric bilinear
form (, ) acted on by the finite group G generated by g of order p. Define a bilinear form 〈a, b〉 on A by
〈a, b〉 = (S(a), b) where S(a) =

∑
0≤n<p ngn(a). Then AG is the quotient of A by the set C of all elements

a ∈ Ker(N) such that p|〈a, b〉 for all b ∈ Ker(N). In particular the bilinear form 〈, 〉 induces a nonsingular
antisymmetric bilinear form on Ĥ1(G, A).

Proof. Some easy calculations show (even if we do not assume (, ) is self dual) that 〈, 〉 is antisymmetric
modp, that S(a) − S(g(a)) = N(a) − pa, that N(S(a)) = (p − 1)pN(a)/2, and that the kernel of the map
from A to AG (i.e., the module generated by elements of the form a− g(a)) is contained in C.

Suppose a ∈ C; we want to deduce that a = b−g(b) for some b ∈ A. We know that N(S(a)) = 0 (because
N(a) = 0), and p|(S(a), b) for all b with N(b) = 0. Hence S(a)/p lies in Ker(N)′. The submodule Ker(N) is
a primitive nonsingular submodule of the self dual module A, so S(a)/p lies in the orthogonal projection of
A into Ker(N)⊗R, i.e., S(a)/p = b−N(b)/p for some b ∈ A. But this means that S(a) = S(g(b))− S(b),
so that S(a− b + g(b)) = 0. But S is injective, as we can see by checking that it multiplies every eigenvector
of g by a nonzero constant, so a− b + g(b) = 0. This proves proposition 2.4. (It is easy to see that Ĥ1(G, A)
has an antisymmetric Z/pZ-valued bilinear form induced from the cup product and the bilinear form on A,
followed by the isomorphism from Ĥ2(G,Z) to Ĥ0(G,Z). The main point of the proof above is that this
antisymmetric form is self dual when the form on A is self dual.)
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3. Vertex superalgebras mod p.

In this section we will construct a vertex superalgebra for every element of odd prime order in the
monster.

If R is a subring of the complex numbers C, then by an R-form of the monster vertex algebra we mean
a graded vertex algebra defined over R which is a free R module, and which becomes isomorphic to the FLM
monster vertex algebra when it is tensored with C, and which is acted on by the monster and contains a
conformal vector (the components of whose vertex operator generate the Virasoro algebra). We say that an
R-form is self dual if the natural bilinear form on the FLM algebra restricts to a self dual R-valued bilinear
form on each homogeneous piece.

We let V [1/2] be the Z[1/2]-form of the monster vertex algebra constructed in theorem 3.2 below.

Theorem 3.1. If g is an element of the monster of odd prime order p then Ĥ∗(g, V [1/2]) = Ĥ0(g, V [1/2])⊕
Ĥ1(g, V [1/2]) is a Z-graded vertex superalgebra over Z/pZ, acted on by CM (g)/〈g〉. It has a nonsin-
gular supersymmetric bilinear form that is invariant under CM (g)/〈g〉. If h ∈ CM (g) is p-regular then∑

n∈Z Tr(h|Ĥ∗(g, V [1/2]n))qn is a Hauptmodul for some genus 0 subgroup of SL2(R), and is equal to the
Hauptmodul of the element gh of M .

Proof. The fact that Ĥ∗(g, V [1/2]) is a vertex superalgebra follows from the remarks about group
cohomology in the previous section. The nonsingularity of the supersymmetric bilinear form follows from
propositions 2.3 and 2.4. The fact that the trace of g is a Hauptmodul follows from proposition 2.2 together
with the result of [B92] that the series

∑
n∈Z Tr(g|Vn)qn is a Hauptmodul for any element g ∈ M . This

proves theorem 3.1.
Remark. The bilinear form in theorem 3.1 is also compatible with the vertex algebra structure (where

this notion is defined in the discussion below), but we will not use this fact.
Proposition 2.3 also shows that Ĥ0(g, V [1/2]) is isomorphic to the space gV = V g/pV g/((V g/pV g) ∩

(V g/pV g)⊥) suggested in [R94].
In the rest of this section we recall some results about vertex algebras from [B86] and give the con-

struction of the Z[1/2]-form V [1/2] of the monster vertex algebra. The only serious use we make of vertex
algebra structures is to use them to construct other modular vertex algebras, so the reader who wishes to
ignore vertex algebras completely and only see the proof that the traces of various group elements are Haupt-
moduls can replace the words “vertex algebra” by “graded vector space” without losing much. Similarly the
conformal vectors and bilinear forms on vertex algebras are used mainly to construct conformal vectors and
bilinear forms on modular vertex algebras, so the reader can ignore all the discussion of these.

We recall the definition of a vertex algebra over any commutative ring R. The definition we give here is
equivalent to that given in [B86]. If V is an R module we define a vertex operator a(z) on V to be a sequence
of linear operators an for n ∈ Z on V , with the property that for any b ∈ V , anb = 0 for n sufficiently large
(depending on a and b). We put these operators into the formal Laurent series a(z) =

∑
n∈Z zna−n−1. Then

a vertex algebra over R is an R module V together with an element 1 ∈ V and a vertex operator a(z), acting
on V , for each a ∈ V , such that the following conditions are satisfied for any a, b ∈ V .

1. 1(z) = 1, and a(0)1 = a (i.e., an1 = 0 if n ≥ 0 and a−11 = a).
2. The vertex operators a(z) and b(y) formally commute, in the sense that we can find n ≥ 0 (depending

on a and b) such that all coefficients of monomials xiyj of

(x− y)n(a(x)b(y)− b(y)a(x))

are zero. (For a vertex superalgebra we replace b(y)a(x) by (−1)(deg(a),deg(b))b(y)a(x).)
3. We denote the element a−n−11 by D(n)(a). Then (D(n)a)(z) = (( d

dz )n/n!)a(z).
This is similar to a definition of commutative associative algebras over R: we can define these as R

modules V such that for every a ∈ V we are given an operator aL on V and an element 1 ∈ V with the
properties that 1La = aL1 = a, and the operators aL and bL commute for all a, b ∈ V . This shows that a
vertex algebra can be thought of as a “commutative ring with singularities in the multiplication”.

The operators D(n) have the properties D(0)(a) = a, D(m) = 0 if m < 0, and D(m)D(n) =
(
m+n

m

)
D(m+n).

We briefly recall the structure of the integral form VΛ of the vertex algebra of Λ from [B86]. The lattice
Λ has a certain nonsplit central extension Λ̂ (in which the group operation is written multiplicatively) such

6



that if we denote a lifting of a ∈ Λ by ea ∈ Λ̂, then eaeb = (−1)(a,b)ebea so we get an exact sequence

0 −→ ±1 −→ Λ̂ −→ Λ −→ 0.

The automorphism group of Λ̂ preserving the inner product on Λ is a nonsplit extension of the form
224.Aut(Λ) which acts on the vertex algebra VΛ of Λ (which really depends on Λ̂ rather than Λ). VΛ is
graded by Λ in such a way that ea has degree a ∈ Λ, it has an underlying ring structure which is “graded
commutative”, i.e., ab = (−1)(deg(a),deg(b))ba if a and b are homogeneous elements with Λ-degrees deg(a) and
deg(b), and it has a derivation with divided powers, i.e., a set of additive operations D(m) for m ∈ Z such that
D(0)(a) = a, D(m)D(n) =

(
m+n

m

)
D(m+n), D(m) = 0 if m < 0, and D(n)(ab) =

∑
m∈Z(D(m)(a))D(n−m)(b).

The derivation D has Λ-degree 0; in other words D(m)(a) has the same Λ-degree as a. The graded-
commutative ring VΛ contains a copy of the twisted group ring of Λ which has a basis of elements denoted
by ea for a ∈ Λ with the properties that eaeb = ±ea+b, eaeb = (−1)(a,b)ebea, and can be defined as the
universal graded-commutative ring with a derivation with divided powers generated by this group ring. The
subring VΛ,0 of elements of VΛ with Λ-degree 0 is generated as a commutative ring by elements of the form
(ea)−1D(i)(ea) for a ∈ Λ, i ≥ 1.

A conformal vector of dimension (or “central charge”) c ∈ R of a vertex algebra V is defined to be an
element ω of V such that ω0v = D(v) for any v ∈ V , ω1ω = 2ω, ω3ω = c/2, ωiω = 0 if i = 2 or i > 3,
and any element of V is a sum of eigenvectors of the operator L0 = ω1 with integral eigenvalues. If v is an
eigenvector of L0, then its eigenvalue is called the (conformal) weight of v. If v is an element of the monster
vertex algebra V of conformal weight n, we say that v has degree n − 1 (= n − c/24), and we write Vn for
the module of elements of V of degree n.

The R-form of the vertex algebra of any c-dimensional even lattice L has a canonical conformal vector
ω =

∑
i ai(1)ai(1)/2 of dimension c, where the elements ai run over an orthonormal basis of L⊗R and the

monster vertex algebra has a conformal vector of dimension 24. If ω is a conformal vector of a vertex algebra
V then we define operators Li on V for i ∈ Z by

Li = ωi+1.

These operators satisfy the relations

[Li, Lj ] = (i− j)Li+j +
(

i + 1
3

)
c

2
δi
−j

and so make V into a module over the Virasoro algebra. The operator L−1 is equal to D.
The vertex algebra of any even lattice L has a real valued symmetric bilinear form (,) such that the

adjoint of the operator un is (−1)i
∑

j≥0 Lj
1(σ(u))2i−j−n−2/j! if u has degree i, where σ is the automorphism

of the vertex algebra defined by σ(ew) = (−1)(w,w)/2(ew)−1 for ew an element of the twisted group ring of
L corresponding to the vector w ∈ L. Similarly the monster vertex algebra has a real valued symmetric
bilinear form (,) such that the adjoint of the operator un is (−1)i

∑
j≥0 Lj

1(u)2i−j−n−2/j! if u has degree i.
If a vertex algebra has a bilinear form with the properties above we say that the bilinear form is compatible
with the conformal vector. If a vertex algebra does not have a conformal vector but only a Z-grading we
can still define compatible bilinear forms, because we can define the operator Lj

1/j! to be the adjoint of the
operator Li

−1/i! = D(i). (If we are not in characteristic 0 we have to modify these definitions slightly by
replacing Li

1/i! by a system of divided powers of L1 satisfying some conditions.)
The integral form VΛ of the vertex algebra of the Leech lattice contains the conformal vector ω =∑

1≤i≤24 ai(1)ai(1)/2 where the ai’s run over an orthogonal basis of Λ ⊗R because we can rewrite this as
ω =

∑
1≤i<j≤24 ai(1)aj(1)(a′i, a

′
j)+

∑
1≤i≤24 ai(1)ai(1)(a′i, a

′
i)/2 where the ai’s run over a basis of Λ and the

a′i’s are the dual basis. The elements a′i have integral inner products and even norms because they all lie in
Λ as Λ is unimodular. In general the same argument shows that the conformal vector of any even integral
unimodular lattice lies in the integral form of its vertex algebra; this is usually false for lattices that are not
unimodular and even. The bilinear form on the integral form VΛ is self dual (section 2, (vi) of [B86]), and
in fact the same is true if Λ is replaced by any even unimodular lattice.

For working out values of the bilinear form in VΛ it is useful to note that (a(1)b(1), c(1)d(1)) =
(a, c)(b, d) + (a, d)(b, c) for a, b, c, d ∈ Λ. In particular the conformal vector ω has norm (ω, ω) = dim(Λ)/2 =
12.
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Theorem 3.2. There is a Z[1/2]-form V [1/2] of the monster vertex algebra with a conformal vector and a
self dual bilinear form such that V [1/2] can be written as a direct sum of 212.M24 modules each of which is
isomorphic to a submodule of the Z[1/2]-form VΛ[1/2] of VΛ.

Proof. Frenkel, Lepowsky and Meurman construct the monster vertex algebra as a complex vector
space. However their construction almost works over the integers (if we use the integral form of VΛ above)
except that they often need to decompose vector spaces into eigenspaces of abelian groups of order 2. This
can be done over Z[1/2] (proof: a = a+h(a)

2 + a−h(a)
2 ). A precise definition of this Z[1/2]-form V [1/2] of the

monster vertex algebra is given implicitly in the next 2 paragraphs.
The Z[1/2]-form V [1/2] of the monster vertex algebra splits as the sum V 0 ⊕ V 1 of the +1 and −1

eigenspaces of an element h ∈ M of type 2B. As modules over Aut(Λ̂) = 224.Aut(Λ), V 0
Λ and V 0 are

isomorphic, where V 0
Λ is the subalgebra of VΛ[1/2] fixed by the automorphism σ.

To construct the action of the monster on V [1/2], Frenkel, Lepowsky, and Meurman split it further as
V [1/2] = V 00⊕V 01⊕V 10⊕V 11 where the V ij ’s are the eigenspaces of a 22-group in the monster containing
h, and can be taken as free Z[1/2] modules. The modules V 0 and V 1 decompose as V 0 = V 00 ⊕ V 01,
V 1 = V 10 ⊕ V 11. Frenkel, Lepowsky, and Meurman construct a triality automorphism σ that maps V 00

to itself, transitively permutes the modules V 01, V 10, and V 11, and commutes with the elements of the
group 212.M24 ⊂ Aut(Λ̂). We use the isomorphism defined by σ between these 3 modules to transport the
Z[1/2]-form from V 01 to V 10, and V 11, which defines the Z[1/2]-form V [1/2] = V 00 ⊕ V 01 ⊕ V 10 ⊕ V 11.
In particular σ commutes with 212.M24, so that V 01, V 10, and V 11 are all isomorphic as modules over this
group.

The conformal vector of V [1/2] is just the conformal vector of V 0 ⊂ VΛ[1/2] (which is fixed by h). The
self dual bilinear form on VΛ induces a self dual bilinear form on V 0 over Z[1/2], which restricts to self dual
forms on V 01 and V 00, which give self dual forms on V 10 and V 11 by using the triality automorphism to
transport the self dual form from V 01. This defines the self dual form on V [1/2]. This proves theorem 3.2.

4. A vanishing theorem for cohomology.

For every element g of the monster (or at least for those of odd order) we have constructed a vertex
superalgebra Ĥ∗(g, V ) acted on by CM (g) whose McKay-Thompson series are Hauptmoduls. For some
elements g we will now show that the first cohomology group vanishes, so in fact we have constructed a
modular vertex algebra satisfying the modular moonshine conjectures for the element g. It is certainly not
true that Ĥ1(g, V ) vanishes for all elements g; by proposition 2.2 a necessary condition is that all coefficients
of the Hauptmodul of g are nonnegative. This may be a sufficient condition but we do not know how to
prove this in general. We will prove it is sufficient if g is an element of odd order coming from an element of
M24. This covers the cases of the conjugacy classes 3A, 3C, 5A, 7A, 11A, 15A, 21A, and 23A of the monster.
In section 5 we will prove a similar theorem for elements of type 2A (under a mild assumption).

We will call a free R-module A acted on by a group G a permutation module if it has a basis that is
closed under the action of G.

Lemma 4.1. If A is a permutation module of a finite group G over a ring R with no |G| torsion then
Ĥ−1(G, A) = 0.

Proof. We can assume that A comes from a transitive permutation representation of G, as all per-
mutation representations are sums of transitive ones. Suppose S is the set of elements in the permutation
representation, so that S is a basis for A. We have to show that Ker(N) is spanned by elements of the form
a− g(a). But Ker(N) is the set of elements

∑
s∈S ass with

∑
g∈G ag(s) = 0 (for some fixed s ∈ S), which is

the set of elements with
∑

s∈S as = 0 because A has no |G| torsion. But this space is obviously spanned by
the set of elements of the form s− g(s) as G acts transitively on S. This proves lemma 4.1.

Lemma 4.2. The set of permutation modules is closed under taking sums, tensor products, and symmetric
powers.

Proof. The operations of taking sums or tensor products correspond to taking unions and products
on the permutation representations. The operation of taking a symmetric n’th power of a representation
corresponds to taking the set of “multisubsets” of cardinality n of a permutation representation S. (A
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multisubset is like a subset except that we are allowed to take several copies of some element.) This proves
lemma 4.2.

Remark. If A is a permutation module for G coming from a permutation in which every element of G
acts as an even permutation then all exterior powers of A are permutation modules for G. In particular if
G has odd prime order then the set of permutation modules is closed under taking exterior powers, but this
is false when G has order 2.

Lemma 4.3. If A is a free Zp module acted on by the group G generated by an element g of order p, then

Ĥ1(g,A) = 0 if and only if A is a permutation module of G.

Proof. If A is a permutation module then Ĥ1(g,A) vanishes by lemma 4.1 (using the fact that Ĥ−1 is
isomorphic to Ĥ1 for cyclic groups). Conversely if Ĥ1(g,A) vanishes then A is a sum of the indecomposable
representations Zp and Zp[G] (because the other indecomposable representation I⊗Zp has nonvanishing Ĥ1

by the remarks after lemma 2.1), and these are both permutation modules of G. This proves lemma 4.3.

Lemma 4.4. The free modules over Zp acted on by G = Z/pZ with vanishing Ĥ1 are closed under taking
sums, products, and symmetric powers.

Proof. This follows immediately from lemmas 4.2 and 4.3.

Lemma 4.5. If g is an element of odd prime order p in M24 ⊂ Aut(Λ) (where Λ is the Leech lattice) then
Ĥ1(g,Λ) = Ĥ1(g,Λ⊗ Zp) = 0.

Proof. This follows from lemmas 2.1 and 4.1 and the fact that as a representation of M24, Λ ⊗ R
is isomorphic to the representation coming from the usual permutation representation of M24 whenever R
contains 1/2, and in particular whenever R is the ring of p-adic integers for p an odd prime. (Recall that the
Leech lattice Λ contains a set of 24 pairwise orthogonal vectors of squared length 8 which are acted on by
M24 as the standard permutation of M24 and which generate the Z[1/2]-module Λ ⊗ Z[1/2].) This proves
lemma 4.5.

Theorem 4.6. Suppose g is an element of odd prime order p in Aut(Λ) such that Ĥ1(g,Λ) = 0. Then
Ĥ1(g, VΛ) = 0.

Proof. Recall from section 3 that there is an integral form VΛ of the vertex algebra of Λ, which is graded
by Λ.

We will show that the sum of the degree-λ pieces VΛ,λ of Vλ for λ running over the elements of some
orbit of G on Λ has vanishing first cohomology, which will prove theorem 4.6. If λ is not fixed by g then
the sum of the spaces VΛ,gi(λ) is a free module over the group ring of G and so all its cohomology groups
vanish. Hence we may assume that λ is fixed by g. In this case, VΛ,λ is isomorphic to the degree 0 piece VΛ,0

as a G module (under multiplication by eλ). (At this point we are implicitly using the fact that g has odd
order to deduce that g fixes eλ whenever g fixes λ; if g has even order we need to be more careful.) Hence
we have reduced the proof of theorem 4.6 to showing that Ĥ1(g, VΛ,0) = 0, or equivalently to showing that
Ĥ1(g, VΛ,0 ⊗ Zp) = 0.

By assumption on g and by lemma 4.3 we can choose a basis a1, . . . , a24 of Λ⊗Zp such that the action
of g on Λ ⊗ Zp is given by some permutation representation on this basis. The ring VΛ,0 is the polynomial
ring over Zp generated by the elements e−aj D(i)(eaj ) for i ≥ 1, 1 ≤ j ≤ 24. This polynomial ring, considered
as a representation of G over Zp, is a direct sum of products of symmetric powers of Λ⊗Zp, so by lemma 4.4
its first cohomology vanishes. This proves theorem 4.6. (Warning: VΛ,0 is strictly larger than the polynomial
ring generated by the elements D(i)(aj) for i ≥ 1, 1 ≤ j ≤ 24.)

Theorem 4.7. Suppose g is an element of the monster of type 3A, 3C, 5A, 7A, 11A, or 23A, and let V [1/2]
be the Z[1/2]-form of the monster vertex algebra constructed in 3.2. Then Ĥ1(g, V [1/2]) = 0.

Proof. The element g in the monster commutes with an element h of type 2B because it can be seen
from the monster character table in [C] that the monster always has an element of order 2p (and type 6C,
6F, 10B, 14B, 22B, or 46A) whose square is in the conjugacy class pA or 3C of g and whose p’th power is of
type 2B. The centralizer of h is a group with structure 21+24.Co1, which contains a split extension of M24

by a 2-group of the form 21+24.212. We can identify g with an element of this M24 group.
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In particular we can consider g to be an element of Aut(Λ̂), so that it acts on the integral form VΛ of
the vertex algebra of the Leech lattice Λ. The 1st cohomology of g with coefficients in any direct summand
of VΛ⊗Z[1/2] must also vanish, as it is a direct summand of Ĥ1(g, VΛ[1/2]) = 0. By theorem 3.2, V [1/2] is a
direct sum of modules (V 00, V 01, V 10, and V 11) which are isomorphic as modules over g to direct summands
of VΛ[1/2], so Ĥ1(g, V [1/2]) = 0. This proves theorem 4.7.

Corollary 4.8. (The modular moonshine conjectures [R94] for the primes 3, 5, 7, 11, 23.) Suppose g is an
element of order p in one of the conjugacy classes 3A, 3C, 5A, 7A, 11A, or 23A of the monster. Then there
is a vertex algebra gV = ⊕n

gV n defined over the field with p elements with the following properties.
1 If g is not in the class 3C then gV2 contains a conformal vector (generating an action of the mod p

Virasoro algebra) and has a nonsingular bilinear form compatible with the vertex algebra structure.
2 gV is acted on by the group CM (g)/〈g〉, and this action preserves the conformal vector and the bilinear

form.
3 The Brauer trace

∑
n Tr(h|gVn)qn of any p-regular element h of CM (g)/〈g〉 on pV is a Hauptmodul,

and is equal to the Hauptmodul of the element gh of the monster.

Everything in corollary 4.8 except for the existence of a conformal vector follows from 4.7 and other
things stated above. To show the existence of a conformal vector it is sufficient to show that the image of the
conformal vector ω in V [1/2] is nonzero, and to do this it is sufficient to find some vector fixed by g that has
nonzero inner product with ω(modp). We let a1, . . . a24 be an orthonormal base of Λ⊗Zp corresponding to
a set acted on by M24, and the element g fixes at least one of the ai’s (as g is not of type 3C), say a1. Then
the conformal vector ω is

∑
ai(1)ai(1)/2 which has nonzero inner product 1 with the element a1(1)a1(1)

modp. This proves 4.8.
The head representation Ĥ0(g, V [1/2]1) containing the conformal vector ω splits slightly differently

depending on whether p > 3 or p ≤ 3. If p > 3 then ω has norm 12 mod p, which is nonzero so that
Ĥ0(g, V [1/2]1) splits as the orthogonal direct sum of a 1-dimensional space spanned by ω and its orthogonal
complement (and this splitting is obviously invariant under CM (g)). If p = 3 and g is an element of type
3A then ω has norm 12 ≡ 0 mod 3 so it is contained in its orthogonal complement, and Ĥ0(g, V [1/2]1) has
a composition series of the form 1.781.1 (as a CM (g)/〈g〉 = Fi′24 module). The Atlas [C] states that the 781
dimensional module has an algebra structure mod 3, but this seems to be a mistake and the construction
there only gives an algebra structure on 1.781.1 mod 3.

When g is in the class 3C then the vertex algebra Ĥ0(g, V [1/2]) does not have a conformal vector,
and in fact not only is the image of ω equal to zero, but the whole degree 1 space Ĥ0(g, V [1/2]1) is zero.
However we can turn Ĥ0(g, V [1/2]) into a better vertex algebra by “compressing” it. If we look at the
series q−1 + 248q2 + 4124q5 + · · · we see that only every 3rd term of the graded space Ĥ0(g, V [1/2]) is
nonzero. Hence we change the grading of the piece of degree 3n−1 to n. We also change the vertex operator
v(x) of v ∈ Ĥ0(g, V [1/2]) to v(x1/3). It is easy to check that this defines a new vertex algebra structure
on Ĥ0(g, V [1/2]), (because if we are in characteristic 3 then x − y = (x1/3 − y1/3)3), whose homogeneous
degrees are the coefficients of 1 + 248q + 4124q2 + · · ·. The compression of the vertex algebra Ĥ0(g, V [1/2])
is probably isomorphic to the vertex algebra VE8/3VE8 (the vertex algebra of the E8 lattice reduced mod 3)
which is acted on by the finite group E8(F3), because both vertex algebras have the same graded dimension
and are both acted on by the Thompson group. (It is well known that the Thompson group CM (g)/〈g〉 is
contained in E8(F3).) Warning: the vertex algebra VE8/3VE8 can be lifted to characteristic 0, but the the
action of the Thompson group does not lift to an action on the vertex algebra VE8 .

5. The case p = 2.

In this section we will extend the proof of the modular moonshine conjectures (Corollary 4.8) to cover
the case of the elements of type 2A in the monster, to obtain a vertex algebra over F2 acted on by the baby
monster. The proof is similar to the cases for elements of odd order, except that there are several extra
technical complications, and we have to use one assertion which we have not completely proved.

The theorems in this section depend on the following assumption about the monster vertex algebra. We
have not rigorously verified this, but we sketch how its verification should go.

Assumption 5.1. There is a Z[1/3]-form V [1/3] of the monster vertex algebra with a self dual bilinear
form such that V [1/3] can be written as a direct sum of 2.M12.2 modules each of which is isomorphic to a
submodule of the Z[1/3]-form VΛ[1/3] of VΛ.
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We outline a possible proof of 5.1. (Roughly speaking, this outline would become a correct proof if
Dong, Mason or Montague do not need to divide by any integer other than 3 in their constructions.) We
obviously cannot use the FLM construction of the monster vertex algebra, which writes V as the sum of
the eigenspaces of an element of type 2B, because this involves inverting 2 and gives a 2-divisible module
whose cohomology vanishes. Instead we use the construction of the monster vertex algebra as a sum of
eigenspaces of an element of type 3B, due independently to Dong and Mason [DM] and Montague [M]. This
should produce a Z[1/3, ω]-form V [1/3, ω] of the monster vertex algebra as follows, where ω is a cube root of 1
satisfying ω2+ω+1 = 0. We first note that modules over Z[1/3, ω] can be written as the sums of eigenspaces
of any group 〈h〉 of order 3 acting on them, because a = a+h(a)+h2(a)

3 + a+ωh(a)+ω2h2(a)
3 + a+ω2h(a)+ωh2(a)

3 .
The vertex algebra V [1/3, ω] is a sum of 3 submodules V 0, V 1, and V 2, which are the eigenspaces of an
element h of type 3B. The space V 0 is isomorphic to the subspace of VΛ[1/3, ω] fixed by an element of order
3 coming from a fixed point free element of order 3 of Aut(Λ), and this defines the Z[1/3, ω]-form of V 0.
The spaces V i each split into the sum of 3 subspaces V ij which are the eigenspaces of a group (Z/3Z)2 in
the monster, and Dong and Mason and Montague show that there is a group SL2(F3) acting transitively
on the spaces V ij for (i, j) 6= (0, 0). We use this group to transport the Z[1/3, ω]-form from V 01 and V 02

to V ij for i 6= 0. This defines the Z[1/3, ω]-form on the monster vertex algebra (and it also has a self dual
Z[1/3, ω] bilinear form and a conformal vector, coming from the same structures on VΛ).

We now reduce this Z[1/3, ω]-form to a Z[1/3]-form. We have an operation of complex conjugation
on V 0 coming from complex conjugation on VΛ ⊗ Z[1/3, ω], and the action of SL2(F3) can be used to
transfer this to complex conjugation on all the spaces V ij ⊕V 2i,2j , and hence to V [1/3, ω]. This conjugation
preserves the vertex algebra structure and commutes with the monster, and satisfies ωv = ω̄v̄. Any element
of V [1/3, ω] can be written uniquely in the form a + ωb with a and b fixed by conjugation, because finding
a and b involves solving the 2 linear equations v = a + bω, v̄ = a + ω̄v, and there is a unique solution for a
and b because the determinant of this system of equations is ω − ω̄ which is a unit in Z[1/3, ω]. Hence if we
define V [1/3] to be the fixed points of the conjugation, we see that V [1/3] ⊗ Z[1/3, ω] = V [1/3, ω]. Hence
V [1/3] is a Z[1/3]-form for the monster vertex algebra. This completes the arguments for assumption 5.1.

Theorem 5.2. If we assume that 5.1 is correct then there is a vertex algebra defined over F2 acted on by the
baby monster, such that the McKay-Thompson series of every element of the baby monster is a Hauptmodul.
The vertex algebra has a conformal vector and a compatible self dual bilinear form, also invariant under the
baby monster.

Proof. We will only give details for parts of the argument that differ significantly from the proof of
corollary 4.8. We choose an element g ∈ M24 ⊂ Aut(Λ) of order 2 and trace 8. (There is a unique conjugacy
class of such elements in M24.)

The first step is to prove that Ĥ1(g,Λ) = Λ〈g〉/Ker(N) = 0, which we do by direct calculation as follows.
We can assume that g acts on Λ in the usual coordinates by acting as −1 on the first 8 coordinates and as
+1 on the last 16. Then Ker(N) is the sublattice of Λ of vectors whose last 16 coordinates vanish. This
lattice is a copy of the E8 lattice with norms doubled (so it has 240 vectors of norm 4 and so on). It is
generated by its norm 4 vectors and the centralizer of g acts transitively on these norm 4 vectors, so to prove
that Λ〈g〉 = Ker(N) we only need to prove that one of these norm 4 vectors is of the form v − g(v) for some
vector v ∈ Λ. We can do this by taking v to be the vector (123,−3). Therefore Ĥ1(g,Λ) = 0.

From this it follows as in theorem 4.6 that Ĥ1(ĝ, VΛ) = 0, provided we show that g lifts to an element
in Aut(Λ̂) which we denote by ĝ, such that ĝ also has order 2 and ĝ fixes every element ea of the twisted
group ring of Λ corresponding to an element a of Λ fixed by g. (If g is of odd order the existence of a
good element ĝ is trivial, but for some elements of even order, for example those of trace 0, a lift with these
properties does not exist.) Lemma 12.1 of [B92] says that such a lift ĝ exists provided that (v, g(v)) is even
for all elements v ∈ Λ, which follows because (v, g(v)) = ((v − g(v), v − g(v))− (v, v)− (g(v), g(v)))/2, and
(v, v) = (g(v), g(v)) is even while v − g(v) ∈ Ker(N) has norm divisible by 4. Hence Ĥ1(ĝ, VΛ) = 0.

In particular any submodule of VΛ[1/3] invariant under ĝ also has vanishing Ĥ1, so by assumption 5.1
Ĥ1(ĝ, V [1/3]) = 0. We can now follow the argument proving corollary 4.8 to construct a vertex algebra
satisfying the conditions of theorem 5.2. This proves theorem 5.2.

Remark. In the proof of theorem 5.2 we should really have checked that the 2 vertex algebras constructed
by Frenkel-Lepowsky-Meurman and by Dong-Mason-Montague are isomorphic as modules over the monster,
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so that the traces of elements of the monster are Hauptmoduls. Dong and Mason have announced [DM] that
these two vertex algebras are indeed isomorphic as vertex algebras acted on by the monster. It would also
be easy to show that they are isomorphic as modules over the monster (but not as vertex algebras) by using
the results of [B92] to calculate the character of the Dong-Mason-Montague algebra.

It seems likely that V [1/2] and V [1/3] both come from a conjectural integral form V of the monster
vertex algebra by tensoring with Z[1/2] or Z[1/3]; see lemma 7.1.

If we look at the McKay-Thompson series for the element 2B of the monster we see that the coefficients
are alternating, which suggests that Ĥ0 vanishes for half the homogeneous pieces of V , and Ĥ1 vanishes for
the other half. The next theorem shows that this is indeed the case.

Theorem 5.3. Assume that 5.1 is correct. If ĝ is an element of type 2B in the monster, then Ĥ0(ĝ, V [1/3]n)
vanishes if n is even, and Ĥ1(ĝ, V [1/3]n) vanishes if n is odd.

Proof. By using the argument in the last few paragraphs of the proof of theorem 5.2 we see that it
is sufficient to prove the same result for the cohomology with coefficients in VΛ for a suitable element ĝ of
Aut(Λ̂). We will take g to be the automorphism −1 of Λ, and take its lift ĝ in Aut(Λ̂) to be the element
taking ea to (−1)(a,a)/2(ea)−1 in the group ring. It is easy to check that ĝ is an automorphism of order
2. As a graded ĝ module, VΛ is the tensor product of the twisted group ring and the module VΛ,0 as in
theorem 4.6. The twisted group ring is a sum of infinitely many free modules over the group ring and one
copy of Z (spanned by 1), so its 0’th cohomology group is Z/2Z, and its first cohomology vanishes. Hence
H∗(ĝ, VΛ) = H∗(ĝ, VΛ,0). We let ω be the involution of VΛ,0 that is the product of ĝ and the involution
acting as −1n on the piece of degree n. As multiplying the action of ĝ by −1 exchanges H0 and H1, we see
that to prove theorem 5.3 we have to show that H1(ω, VΛ,0) = 0. To do this it is sufficient to show that VΛ,0

is a permutation module for ω.
We now complete the proof of theorem 5.3 by finding an explicit basis of VΛ,0 described in terms of

S-functions, on which ω acts as a permutation. If we choose a basis a1, . . . , a24 of Λ, then VΛ,0 is the
polynomial ring generated by the elements hi,n = e−aiD(n)eai , 1 ≤ i ≤ 24, n ≥ 1. The element ĝ takes hi,n

to eaiD(n)e−ai , so ω(hi,n) = ei,n, where ei,n = (−1)neaiD(n)e−ai . From the relation∑
m

D(m)(eai)D(n−m)(e−ai) = D(n)(eaie−ai) = 0

for n ≥ 1 we find that ∑
0≤m≤n

(−1)mei,mhi,n−m = 0

for n ≥ 1, which recursively defines the ei,n’s in terms of the hi,n’s. If we identify the hi,n’s with the n’th
complete symmetric function (see [Mac], page 14) then the ring generated by the hi,n’s for some fixed i
is the ring of all symmetric functions. By the formulas 2.6’ and 2.7 on page 14 of [Mac] we see that the
ei,n’s are then identified with the elementary symmetric functions, and ω with the canonical involution ω of
[Mac]. The ring of all symmetric functions is spanned by the S-functions sλ for permutations λ [Mac, p. 24,
formulas 3.1 and 3.3], and the action of ω on the S-functions is given by

ω(sλ) = sλ′

[Mac, p. 28, formula 3.8] where λ′ is the conjugate partition of λ [Mac, p. 2]. Therefore the ring generated
by the hi,n’s for any fixed i is a permutation module for ω, and therefore so is VΛ,0 because it is the tensor
product of 24 permutation modules. This proves theorem 5.3.

Of course, as we are working in characteristic 2, there is really no difference between a vertex algebra
and a vertex superalgebra, so the superalgebra associated to 2B can be considered as a vertex algebra with
dimensions given by the coefficients of the series q−1 + 276q + 2048q2 + · · ·. However it seems more natural
to think of it as a superalgebra.

This superalgebra is acted on by the group 224.Co1. The next paragraph suggests that the 224 may act
trivially, so that we get an action of Co1, but we have not proved this.

We can also ask if this superalgebra can be lifted to characteristic 0. It turns out that there is a vertex
superalgebra (constructed below) with the right grading acted on by Aut(Λ). In fact this superalgebra has
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2 different natural actions of Aut(Λ), one faithful, and one for which the center of Aut(Λ) acts trivially.
Unfortunately we do not know of an integral form invariant under either action of Aut(Λ), but it seems
reasonable to guess that both actions have invariant integral forms, and the reduction mod 2 of either
integral form is the mod 2 vertex superalgebra above. (This requires that the 224 acts trivially on this mod
2 vertex algebra.)

We can construct this superalgebra in characteristic 0 easily as the vertex superalgebra of the odd 12-
dimensional unimodular lattice with no roots D12, which is the set of vectors (x1, . . . , x24) in R24 such that
all the xi’s are integers or all are integers +1/2, and their sum is even. This vertex superalgebra is acted
on by the spinor group Spin12(R). The group Aut(Λ) in SO24(R) can be lifted to the spin group as it has
vanishing Schur multiplier, so we get an action of Aut(Λ) on the vertex algebra. The reason why we get two
actions is that there are two conjugacy classes of embeddings of Aut(Λ) in SO24(R) (which are interchanged
by a reflection). The spin group does not act faithfully because an element of order 2 in the center acts
trivially, and it is not hard to check that for exactly one of the classes of embeddings of Aut(Λ) in SO24(R)
the element −1 ∈ Aut(Λ) lifts to the element of Spin24(R) acting trivially.

The existence of these two actions of Aut(Λ) has the curious consequence that every second coefficient
of q−1 + 276q + 2048q2 + · · · is in a natural way the dimension of 2 different representations of Aut(Λ), in
which the nontrivial element of the center acts as either +1 or −1. For example 2048 decomposes as either
1771 + 276 + 1 or 2024 + 24.

6. Example: the Held group.

We give some numerical tables to illustrate the case when g is an element of type 7A in the monster,
with centralizer 〈g〉 ×He. First we give the 7-modular character table of He (taken from [R88]), followed
by the modular characters of the first few head characters of Ĥ0(g, V [1/2]) (which can be read off from [CN]
table 4). The bottom line gives the corresponding conjugacy classes in the monster group (the one whose
Hauptmodul is given by the coefficients of the head characters).
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1A 2A 2B 3A 3B 4A 4B 4C 5A 6A 6B 8A 10A 12A 12B 15A 17A 17B
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

50 10 2 5 −1 2 2 −2 0 1 −1 0 0 −1 −1 0 −1 −1
153 9 −7 0 3 −3 1 1 3 0 −1 1 −1 0 1 0 0 0
426 26 10 3 −3 −2 2 2 1 −1 1 −2 1 1 −1 −2 1 1
798 38 14 6 3 6 −2 2 −2 2 −1 0 −2 0 1 1 −1 −1

1029 −35 21 21 0 −7 −3 1 4 1 0 −1 0 −1 0 1 1−
√

17
2

1+
√

17
2

1029 −35 21 21 0 −7 −3 1 4 1 0 −1 0 −1 0 1 1+
√

17
2

1−
√

17
2

1072 16 −16 10 −2 0 0 0 −3 −2 2 0 1 0 0 0 1 1
1700 20 4 −10 5 0 −4 −4 0 2 1 0 0 0 −1 0 0 0
3654 −10 38 −9 3 2 −2 −2 4 −1 −1 2 0 −1 1 1 −1 −1
4249 9 −7 −8 −5 −3 1 1 −1 0 −1 1 −1 0 1 2 −1 −1
6154 −70 −22 −2 7 6 2 2 4 2 −1 −2 0 0 −1 −2 0 0
6272 −64 0 35 8 −8 0 0 −3 −1 0 0 1 1 0 0 −1 −1
7497 81 −7 0 3 −3 1 −3 −3 0 −1 −1 1 0 1 0 0 0

13720 −56 56 −14 7 0 8 0 −5 −2 −1 0 −1 0 −1 1 1 1
14553 9 −7 0 −9 9 −7 1 3 0 −1 1 −1 0 −1 0 1 1
17493 21 21 −21 0 −7 −3 5 −7 3 0 1 1 −1 0 −1 0 0
23324 −196 28 14 −7 0 4 −4 −1 2 1 0 −1 0 1 −1 0 0

H−1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H1 51 11 3 6 0 3 3 −1 1 2 0 1 1 0 0 1 0 0
H2 204 20 −4 6 3 0 4 0 4 2 −1 2 0 0 1 1 0 0
H3 681 57 9 15 0 1 9 1 6 3 0 1 2 1 0 0 1 1
H4 1956 92 −12 30 0 0 12 0 6 2 0 2 2 0 0 0 1 1
H5 5135 207 15 41 8 7 15 −1 10 9 0 3 2 1 0 1 1 1
H6 12360 312 −24 66 0 0 24 0 10 6 0 4 2 0 0 1 1 1
H7 28119 623 39 111 0 7 39 3 19 11 0 5 3 1 0 1 1 1
H8 60572 932 −52 146 11 0 52 0 22 14 −1 6 2 0 1 1 1 1
H9 125682 1674 66 222 0 18 66 −2 32 18 0 8 4 0 0 2 1 1
H10 251040 2464 −96 336 0 0 96 0 40 16 0 8 4 0 0 1 1 1

7A 14A 14B 21A 21C 28A 28B 28C 35A 42A 42C 56A 70A 84A 84C 105A 119A 119A

The values for the first 50 head characters can be extracted from the tables in [MS], by looking up
the values of the head characters in the monster conjugacy classes listed in the last line. The paper [MS]
also gives the decompositions of the first 50 head characters of the monster into irreducibles, which can be
compared with the next table. (The top left corners of both tables are very similar.)

The next table gives the decomposition of the first few head characters Hi of Ĥ0(g, V [1/2]) into irre-
ducible characters. The columns correspond to the irreducible characters arranged in order of their degrees
(which are given in the first row). For example the 5th row means that the composition factors of the head
representation H2 are the representations of dimension 1, 50, and 153.
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1 50 153 426 798 1029 1029 1072 1700 3654 4249 6154 6272 7497 13720 14553 17493 23324
H−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H4 2 3 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
H5 4 5 3 2 1 0 0 1 1 0 0 0 0 0 0 0 0 0
H6 4 7 5 3 1 0 0 3 1 0 1 0 0 0 0 0 0 0
H7 7 12 8 7 3 0 0 5 2 1 2 0 0 0 0 0 0 0
H8 8 16 13 9 4 0 0 9 4 1 4 1 0 1 0 0 0 0
H9 12 25 18 17 8 0 0 15 7 4 7 1 0 2 0 1 0 0
H10 14 35 29 26 11 0 0 27 12 6 15 4 1 4 0 2 0 0
H11 23 53 43 45 21 0 0 43 22 13 25 7 2 8 1 4 1 0
H12 26 75 67 68 29 0 0 74 37 21 48 16 4 14 1 9 2 1
H13 40 114 99 114 50 0 0 119 62 41 79 27 8 26 3 18 5 3
H14 49 161 155 174 72 0 0 202 106 68 144 58 16 44 6 32 10 6
H15 71 243 233 290 119 0 0 328 176 124 244 99 28 74 13 58 20 14
H16 88 348 358 446 173 0 0 543 292 204 422 186 53 124 22 103 35 28
H17 128 519 543 723 279 1 1 876 484 355 700 319 91 206 43 176 64 54
H18 161 752 831 1121 408 1 1 1425 785 578 1179 562 160 335 72 300 110 100
H19 231 1125 1263 1793 643 4 4 2280 1271 969 1927 937 270 542 129 500 190 180
H20 298 1637 1932 2769 951 6 6 3656 2043 1560 3159 1591 457 868 215 824 315 313

Notice that the multiplicities of nontrivial representations of small dimension have a tendency to start
off with some of the values of the series 1, 1, 2, 3, 5, 7, . . . which are the values p(n) of the partition function.
The same is true for the multiplicities of representations of the monster in the monster vertex algebra, and
in that case it can be explained using the Virasoro algebra, and the fact that the Verma modules for the
Virasoro algebra with c = 24, h > 0 are irreducible and have graded dimensions 1, 1, 2, 3, 5, 7, . . . , p(n), . . ..
(The irreducible factor of the Verma module with c = 24, h = 0 has pieces of dimension p(n) − p(n − 1) =
1, 0, 1, 1, 2, 2, 4, 4, 7, . . ., which more or less accounts for the initial multiplicities of the trivial character.) For
our modular vertex algebras this explanation does not work so well, because the Verma modules are usually
reducible over finite fields. We can get a small amount of information by examining how the Verma modules
decompose, but this does not seem to be enough to account for why the numbers in the table above are so
similar to the numbers we get when we look at the monster vertex algebra. On the other hand, if g has large
prime order then the corresponding numbers do not seem to be similar to those for the monster; for example,
if g has order 71 then the dimensions of the Hi’s start off 1, 0, 1, 1, 1, . . ., which cannot be the dimensions
corresponding to any representation of the Virasoro algebra in characteristic 0.

Silly question: why do the representations of dimension 1029 appear so late in the head characters?

7. Open problems and conjectures.

1. Can the information about modular representations be used to calculate the |g|-modular character tables
of CM (g)? The mod 7 character table of He has already been worked out in [R88], so the next simplest
case is the mod 5 character table of the Harada-Norton group HN . For example, by cutting up the
mod 5 vertex algebra of HN using the mod 5 Virasoro algebra we find that HN has representations
over F5 of dimensions 1, 133, 626 and 2451 (which are probably irreducible). Unfortunately it seems to
be difficult to get useful information like this from the later head representations, because we run into
the problem that Verma modules over the Virasoro algebra mod p are not irreducible.

2. Does the monster vertex algebra have an integral form V such that each homogeneous piece is self dual
under the natural bilinear form? It is easy to construct some monster invariant integral form by taking
some integral form and taking the intersections of its conjugates under the action of the monster, but
this will be far too small. The following lemma shows that we are quite close to constructing such an
integral form.

Lemma 7.1. Suppose that the spaces V [1/2]⊗Z[1/6] and V [1/3]⊗Z[1/6] are isomorphic as vertex algebras
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acted on by the monster. Then there exists an integral form of the monster vertex algebra with a compatible
self dual integral bilinear form.

Dong and Mason [DM] have announced that these two vertex algebras are isomorphic over the complex
numbers, but their description of the proof (which has not appeared yet) sounds as if it might be hard to
carry out over Z[1/6].

Proof. We denote V [1/2]⊗Z[1/6] by V [1/6], so we can assume that V [1/6] contains V [1/2] and V [1/3]
as subalgebras, and we define V to be V [1/2]∩V [1/3]. It is obvious that V is a Z-form of the monster vertex
algebra, and we just have to check that the bilinear form on V is self dual. The embeddings of V [1/2] and
V [1/3] into V [1/6] preserve the conformal vector (as this is the only degree 2 vector ω fixed by the monster
such that the operator ω1 multiplies every vector by its degree), so the embeddings preserve the action of
the Virasoro algebra. The bilinear forms are determined by the grading and vertex algebra structure and
the action of the Virasoro algebra, so the embeddings also preserve the bilinear forms on all 4 algebras. If we
look at the embedding of V into V [1/2] we see that the bilinear form on V is self dual over Zp for any odd
prime p (as the bilinear form on V [1/2] is self dual over Z[1/2]), and similarly if we look at the embedding
into V [1/3] we see that the bilinear form on V is self dual over Zp for any p 6= 3. Hence the symmetric
bilinear form on V is self dual over all rings of p-adic integers, and is therefore self dual over Z. This proves
lemma 7.1.

It may be possible to prove that the vertex algebras V [1/2] and V [1/3] are isomorphic over Z[1/6] either
by carrying out the proof suggested in [DM] over Z[1/6], or by constructing the monster vertex algebra as
a sum of eigenspaces of an element of the monster of type 6B. This element corresponds to a fixed point
free element of order 6 in Aut(Λ) (of trace 12) whose cube and square are the elements of orders 2 and 3 in
Aut(Λ) used to construct V [1/2] and V [1/3].

The integral form V would give integral forms for all the homogeneous spaces Vn, and in particular would
give an integral form on the Griess algebra V1. This cannot be the same as the integral form constructed
by Conway and Norton in [C85], because the one in [C85] contains the element ω/2 (which is denoted by
1 there). It seems possible that Conway and Norton’s integral form is spanned by ω/2 together with the
elements of V1 which have integral inner product with ω/2. Notice that the bilinear form used in [C85] is
half the bilinear form on V1.

3. Assume the integral form V exists. Is Ĥ1(g, V ) zero whenever g is an element of the monster whose
Hauptmodul has no negative coefficients? (Theorem 4.7 shows this for some elements of odd order.) If
the coefficients of the Hauptmodul for g alternate in sign, do the groups Ĥ0(g, V2n) and Ĥ1(g, V2n+1)
vanish? (Theorem 5.3 proves this for elements of type 2B.)

4. What happens if g is an element of composite order? For example, if we look at the Hauptmodul for
an element of type 4B we see that it starts off q−1 + 52q + 834q3 + 4760q5, and the coefficient 52 of
q1 is the dimension of the Lie algebra F4, and the centralizer of an element of type 4B is of the form
(4 × F4(F2)).2. This suggests there should be a modular vertex algebra corresponding to elements of
type 4B, whose “compression” should be the reduction mod 2 or 4 of a vertex algebra for F4 defined over
Z, in the same way that the compression of the vertex algebra for elements of type 3C is the reduction
mod 3 of an algebra for E8. (See the end of section 4.)

5. We can construct Lie algebras and superalgebras which have much the same relation to our modular
vertex algebras as the monster Lie algebra [B92] has to the monster vertex algebra. We do this by
using the Zp-forms of the monster vertex algebra to put Zp-forms on the monster Lie algebra (with a
self dual symmetric invariant bilinear form), and then take the Tate cohomology of this Zp-form of the
monster Lie algebra, which by the comments at the beginning of section 2 produces a Lie superalgebra.
(Of course if we have a good integral form of the monster Lie algebra we can use this directly and not
worry about Zp-forms.) The Lie algebras and superalgebras we get are similar to generalized Kac-Moody
algebras, except that they are over fields of characteristic p rather than characteristic 0: they have a root
system, a Cartan subalgebra, an invariant nonsingular symmetric bilinear form, a Cartan involution,
and a Z-grading with finite dimensional homogeneous pieces. Their structure as CM (g) modules can be
described as follows: they have a Z2-grading, such that the piece of degree (m,n) is isomorphic to gVmn

if (m,n) 6= (0, 0), and the piece of degree (0, 0) (the Cartan subalgebra) is 2-dimensional and acted on
trivially by CM (g). This suggests that there should be some sort of theory of “generalized Kac-Moody
algebras modp”, which could be applied to study these algebras. For example, we could ask for the
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Lie algebra homology groups of the positive degree subalgebras (which in characteristic 0 is equivalent
to asking for the simple roots). Notice that many of these modular Lie algebras cannot be obtained
by reducing some integral form of a generalized Kac-Moody algebra modp, because the denominator
formula shows that some of the simple roots would then have negative multiplicity.

6. The modules Ĥ∗(g, V [1/2]) are acted on not just by the centralizer of g but by the normalizer NM (g)
of g. What are the traces of elements of the normalizer of g that are not in the centralizer? It may be
possible to do this by extending proposition 2.2 to the case when the subgroup 〈g〉 is only normal and
not central. (Notice that if Ĥ1(g, V [1/2]) is nonzero then elements of the normalizer do not necessarily
preserve the algebra structure on Ĥ∗(g, V [1/2]).)

7. Give a complete proof of assertion 5.1.
8. Can the modular vertex algebras gV be lifted to characteristic 0 in some way? The answer to the strong

form of this question is usually “no”: it is easy to check that it is usually impossible to lift gV to a vertex
algebra in characteristic 0 that is acted on by CM (g). However Queen [Q] found strong evidence that
gV could be lifted to some CM (g) representation in characteristic 0 (which cannot carry an invariant
vertex algebra structure). The representations that Queen found evidence for are now called twisted
sectors. Perhaps these representations have some sort of “twisted” vertex algebra structure, where the
vertex operators a(z) have branch points of order p at the origin. It might be possible to use some sort
of analogue of Witt vectors for vertex algebras to construct these. (But there is one serious obstruction
to any canonical way of lifting some gV ’s to characteristic 0: the automorphism group in characteristic
0 is sometimes a nonsplit central extension of the automorphism group in characteristic p.) On the other
hand we have seen (in the remarks at the end of sections 4 and 5) that if g is of type 3C or 2B then gV
can probably be lifted to a vertex algebra in characteristic 0, which is not acted on by CM (g). Dong, Li
and Mason [DLM] have recently made some progress on this question by constructing a twisted sector
that is probably a lift to characteristic zero of the space gV when g is of type 2A.

9. If p = 3, 5, 7, or 13 and g is an element of type pB in the monster corresponding to the group Γ0(p)
then the group CM (g)/Op(CM (g)) contains an element of order 2 in its center. We conjecture that
this element of order 2 acts as +1 on Ĥ0(g, V [1/2]) and as −1 on Ĥ1(g, V [1/2]). This would imply
that the graded modular characters of both Ĥ0 and Ĥ1 can be expressed as a linear combination of
2 Hauptmoduls. These are the only elements of prime order in the monster not already covered by
theorems 4.7, 5.2, 5.3, and question 3 above, so an affirmative answer to this question and question 3
would mean that we would have a complete description of the modular characters of both Ĥ0(g, V ) and
Ĥ1(g, V ) for all elements g of prime order in the monster.
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