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Introduction.

The Leech lattice has many strange properties, discovered by Conway, Parker, and
Sloane. For example, it has covering radius

√
2, and the orbits of points at distance at least√

2 from all lattice points correspond to the Niemeier lattices other than the Leech lattice.
(See Conway and Sloane [6, Chaps. 22-28].) Most of the properties of the Leech lattice
follow from the fact that it is the Dynkin diagram of the Lorentzian lattice II25,1, as in
Conway [4]. In this paper we show that several other well-known lattices, in particular the
Barnes-Wall lattice and the Coxeter-Todd lattice (see [6, Chap. 4]) are related to Dynkin
diagrams of reflection groups of Lorentzian lattices; all these lattices have properties similar
to (but more complicated than) those of the Leech lattice. Conway and Norton [5] showed
that there was a strange correspondence between some automorphisms of the Leech lattice,
some elements of the monster, some sublattices of the Leech lattice and some of the sporadic
simple groups. Many of these things also correspond to some Lorentzian lattices behaving
like II25,1 and to some infinite dimensional Kac-Moody algebras.

Most of the notation and terminology is standard. For proofs of the facts about
the Leech lattice that we use, see the original papers of Conway, Parker and Sloane in
chapters 23, 26, and 27 of Conway and Sloane [6], or see Borcherds [1]. Lattices are
always integral, and usually positive definite or Lorentzian, although they are occasionally
singular. A root of a lattice means a vector r of positive norm such that reflection in the
hyperplane of r is an automorphism of the lattice and such that r is primitive, i.e., r is
not a nontrivial multiple of some other lattice vector; by a strong root we mean a root r
such that (r, r) divides (r, v) for all v in the lattice. (For example, any vector of norm 1 is
a strong root.) The symbols an, bn, . . . , e8 stand for the spherical Dynkin diagrams, and
their corresponding affine Dynkin diagrams are denoted by An, Bn, . . . , E8. In some of the
examples we give later E8 also stand for the E8 lattice. The symbols In,1 and IIn,1 stand
for odd and even unimodular Lorentzian lattices of dimension n + 1, which are unique up
to isomorphism. The automorphism group Aut(R) of a Lorentzian lattice R means the
group of automorphisms that fix each of the two cones of negative norm vectors (so Aut(R)
has index 2 in the “full” automorphism group of R).

The reflection group of a Lorentzian lattice is the group generated by the reflections of
its roots. For any Lorentzian lattice, one of the two components of the norm −1 vectors can
be identified with hyperbolic space, and all automorphisms of the lattice act as isometries
on this space. In particular, a reflection of the lattice can be thought of as a reflection in
hyperbolic space, so the reflection group of a lattice is a hyperbolic reflection group.

Section 1 contains several results useful for practical calculation of Dynkin diagrams
of Lorentzian lattices, Section 2 contains some results about the reflection group of a
sublattice fixed by some group, and Section 3 applies the results of Sections 1 and 2 to the
Leech lattice to produce several lattices whose reflection groups either have finite index
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in the automorphism group of behave like the reflection group of the Lorentzian lattice
II25,1.

I thank J. Lepowsky for suggesting many improvements to this paper.

1. Reflection groups of Lorentzian lattices.

In this section we give some theorems which help in calculating the Dynkin diagram
of a reflection group of a Lorentzian lattice. Vinberg [7] described an algorithm for finding
the Dynkin diagram of any hyperbolic reflection group. In the special case of hyperbolic
reflection groups of Lorentzian lattices, his conditions for a root to be simple can be
sharpened slightly, which reduces the amount of work needed for practical calculations for
some of the lattices in Section 3. Most of the results of this section are not used later in
this paper, but they are useful in checking the examples in Section 3. We let R be any
Lorentzian lattice.

In a finite group acting on a lattice every positive root can be written uniquely as a
sum of simple roots. This is not usually true for hyperbolic reflection groups as the simple
roots are not always linearly independent, but in the case of Lorentzian lattices there is
still a “canonical” way to write a root as a sum of simple roots as follows.

Theorem 1.1. If r is a positive root of some hyperbolic reflection group W acting on the
lattice R then r can be written uniquely as r =

∑
nisi where the s’s are a finite number of

distinct simple roots of W , the n’s are positive integers, and the following condition holds:
Let Tr be the (possibly singular) lattice generated by linearly independent elements
ti with (ti, tj) = (si, sj). Then t =

∑
niti is conjugate to some ti under the reflection

group of Tr generated by the reflections of the roots ti. (Tr is singular if the s’s are
linearly independent, but the quotient of Tr by the kernel of its quadratic form is
Lorentzian or positive definite.)

Proof. Let T be the (possibly infinite dimensional and singular) lattice generated by
linearly independent elements ti for every simple root si of W , with the inner product on
T defined by (ti, tj) = (si, sj), and let W ′ be the reflection group of T generated by the
reflections of the roots ti. (T can also be described as the root lattice of the Kac-Moody
algebra of the Dynkin diagram of W .) We let c be a vector of R which has negative inner
product with all si, and define the height on R or T by ht(x) = −(x, c). As W ′ is a Weyl
group with linearly independent roots, every positive root of W ′ can be written uniquely
as a sum of simple roots. (A root of W ′ is a vector of T conjugate to some ti under W ′,
and is called positive if its height is positive.)

We now check that every root of W is the image of a unique root of W ′ under the
map from T to R taking ti to si. It is sufficient to check this for simple roots of W , as
any root of W is conjugate to a simple root, and it will follow for simple roots if we show
that no simple root s can be written as a nontrivial sum

∑
misi with mi positive integers.

If it could be, then one of the si’s, say s0, must be s because (s,
∑

misi) = (s, s) > 0
and all simple roots except s have inner product at most 0 with s. Now the fact that
ht(s) =

∑
miht(si) ≥ ht(s0) = ht(s) implies that m0 = 1 and there are no other m’s,

because all simple roots have positive height. Hence every positive root r of W can be
written uniquely in the form r =

∑
nisi such that

∑
niti is a root of W ′. t =

∑
niti

is a root of W ′ if and only if t is conjugate to one of the ti’s under W ′, or equivalently
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under the subgroup of W ′ generated by the reflections of the ti’s appearing in the sum for
t. Q.E.D.

We use this to prove a strengthened form of Vinberg’s condition (Vinberg [7]) for a
root to be simple. This corollary is not used later in the paper, but is sometimes useful
for practical calculations.

Corollary 1.2. Let c be an element of R which has inner product at most 0 with all
simple roots of some fundamental domain of some hyperbolic reflection group W acting
on R and call −(c, r) the height of r. Let r be a root of W of positive height. Then the
following are equivalent:
(1) r is simple.
(2) r has inner product at most 0 with all simple roots s such that ht(s) ≤

ht(r) min(1, |s|/(|r|
√

2)).
(3) r has inner product at most 0 with all simple roots s such that there is an integer n

satisfying the two conditions
(a) ht(s)/ht(r) ≤ 1/n ≤ s2/r2

(b) if n = 1 then r2 ≤ s2/2.

Proof. It is obvious that (1) implies (2) and an easy argument shows that any root
s satisfying the condition in (3) also satisfies the condition in (2), so that (2) implies
(3). Hence we have to show that if r is not simple there is a simple root s satisfying the
condition in (3) and having positive inner product with r.

Assume r is not simple. We can write r =
∑

nisi as in 1.1 with ni positive and si

simple. Let s be a simple root of smallest possible height having positive inner product with
r. If s has height 0 then it satisfies the conditions of (3), so we can assume that s has positive
height. The simple root s must be equal to some si, so ht(s) ≤ ht(r), so we can define a
positive integer n by n ≤ ht(r)/ht(s) < n+1. The reflection of r in the hyperplane of s is a
positive root equal to r − 2s(s, r)/(s, s), so ht(r) ≥ 2ht(s)(s, r)/(s, s). Also 2(s, r) ≥ (r, r)
as r is a root and (s, r) is positive, so ht(r)/ht(s) ≥ n ≥ 2(r, s)/(s, s) ≥ (r, r)/(s, s) (as
2(r, s)/(s, s) is an integer). It remains to check that if n = 1 then s2 ≥ 2r2. In this case
ht(s) > ht(r)/2, so r− 2s(s, r)/(s, s) = r− s as it must have height at least 0 (so it cannot
be r − ms for m > 1), so 2(r, s) = (s, s). Also (r, r − s) ≤ 0 because r − s is a sum of
simple roots of height less than that of s (as ht(s) > ht(r)/2), so by the choice of s they
all have inner product at most 0 with r. Hence (r, r) ≤ (r, s) = (s, s)/2. Q.E.D.

Remarks. The condition in (3) is in some sense the best possible. Vinberg’s condition
was that r is simple if it has inner product at most 0 with all simple roots s such that
ht(s)/|s| < ht(r)/|r|, which is weaker than the condition in (2) so that the corollary above
slightly reduces the amount of calculation needed to prove that a root is simple (by a factor
of about 1.5 for some typical examples). However, Vinberg’s condition remains true for all
hyperbolic reflection groups, while the corollary above is only true for those whose simple
roots are primitive vectors of some Lorentzian lattice.

The following corollary is sometimes a quick way to show that a root is simple and
will be used in Section 3.

Corollary 1.3. (Notation is as in 1.2.) Suppose that r is a root of positive height not
conjugate under W to any positive roots of smaller height. Then r is simple if and only
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if it has inner product at most 0 with all simple roots of height 0. (“Height” means the
same as in 1.2.)

Proof. We can write r =
∑

nisi as in 1.1 with s1 a simple root conjugate to r under
W , so ht(s1) = ht(r) and all the other si’s have height 0 as the height of r was minimal.
Hence r has inner product at most 0 with all simple roots of positive height other than si,
so by 1.2 it is simple if it has inner product at most 0 with all simple roots of height 0.
Q.E.D.

Remark. Similarly, if x is a vector of norm at most 0 not conjugate to any vector of
smaller height under W , then x is in the fundamental domain of the reflection group if and
only if it has inner product at most 0 with all simple roots. The proof of this is trivial, as
any root of positive height must have inner product at most 0 with r.

We have several ways to tell whether a root is simple. We also need to be able to tell
when some set of simple roots is the complete set of simple roots of some reflection group.
Vinberg gave a sufficient condition for this: if every critical subdiagram of a finite set of
simple roots is affine, and every affine subdiagram is contained in an affine subdiagram
of rank dim(R) − 2 then the set of simple roots is complete. Here a critical diagram is a
minimal non positive-definite diagram. Unfortunately many of the diagrams that occur in
the examples in Section 3 have critical subdiagrams that are not affine; in these cases we
can use the following theorem.

Theorem 1.4. Let S be some finite subset of the simple roots of the hyperbolic reflection
group W acting on a d-dimensional real Lorentzian space R, and let D be the set of all
points of R having inner product at most 0 with all points of S. Suppose that the roots
of S span R. Then the following two conditions are equivalent:

(1) S is the set of all simple roots of W and any vector of D has norm at most 0.

(2) S contains a spherical Dynkin diagram T of rank d−2 contained in a Dynkin diagram
of S which is spherical of rank d− 1 or affine of rank d− 2, and any such subset T of
S is contained in another Dynkin diagram of S which is either spherical of rank d− 1
or affine of rank d− 2. (These diagrams may be disconnected. Recall that the rank of
an affine Dynkin diagram is the number of points minus the number of components.)

(Vinberg showed that (1) is equivalent to D having finite volume; unfortunately it is
often difficult to check directly whether D has finite volume when the roots are linearly
dependent—there may be a large number of them.)

Proof. Let N be the (d− 1)-dimensional sphere of rays of R leading from the origin,
so there is a projection from nonzero points of R to N . Let H be the projection of one of
the cones of negative norm vectors into N , and let P be the projection of D into H. If
every vector of D has norm at most 0, then S is a complete set of simple roots of W , as
any simple root of W not in S is in D and has positive norm. Hence (1) is equivalent to
saying that P is in the closure H̄ of H, or equivalently that all vertices of P are in H̄.

A subset of the hyperplanes of S meet in a point of H if and only if they form a
spherical Dynkin diagram. Hence condition (2) states that there is an edge of P containing
a point of H, and any such edge contains two “good” vertices of P (where we call a vertex
of P good if it lies in H̄). Therefore (1) implies (2).

4



Conversely assume (2). There is at least one good vertex of P , so to prove (1) it
is sufficient to show that any vertex of P joined by some edge to a good vertex of P is
also good, as this will show all vertices are good. Any edge joined to a good vertex must
contain a point in H, so by the assumption of (2) both the vertices on this edge are good.
Q.E.D.

Similarly, (1) is equivalent to the condition that S contain at least one Dynkin diagram
that is spherical of rank d− 1 or affine of rank d− 2, and every spherical diagram of rank
d−2 contained in such a diagram is contained in a second such diagram. This is sometimes
slightly easier to check than (2).

2. Sublattices fixed by a group.

In this section we investigate the relation between the automorphism group of a lattice
R and the automorphism group of the sublattice R′ fixed by some finite subgroup G of the
group of “diagram automorphisms” of R. The case we are most interested in is when R
is the lattice II25,1 and G is a cyclic group. In this case R′ often turns out to have many
of the same properties as II25,1; for example its Dynkin diagram is often related to some
positive definite lattice in much the same way that the Dynkin diagram of II25,1 is related
to the Leech lattice. The theorems here describe the reflection group of R′ in terms of the
reflection group of R.

We fix some notation for the rest of this section: R is a Lorentzian lattice, D is a Weyl
chamber for a group W which is some normal subgroup of Aut(R) generated by reflections
whose roots span the vector space of R, G is a finite subgroup of Aut(R) fixing D (i.e., a
group of diagram automorphisms), R′ is the sublattice of R fixed by G, W ′ is the subgroup
of elements of W commuting with G, and if r is any vector of R then r′ is its projection
into the real vector space of R′.

Lemma 2.1. The sublattice R′ of R fixed by G is a Lorentzian lattice and if r is a simple
root of R the following conditions are equivalent:
(1) The orbit of r under G is the Dynkin diagram an

1 or an
2 for some positive integer n.

(2) The space generated by the conjugates of r under G is positive definite.
(3) The projection r′ of R into the vector space of R′ has positive norm.

Any of these imply that some multiple of r′ is a root of R′ such that the reflection
of r′ is the restriction of some element W ′ of R′. If r is a strong root of R then the
corresponding root of R′ is also strong.

Proof. If s is any vector of R of negative norm then the sum of the conjugates of S
under G is a vector in R′ of negative norm, so R′ is Lorentzian because it is a sublattice
of a Lorentzian lattice and has a vector of negative norm.

It is obvious that (1) implies (2) and (2) implies (3). We assume (3) and deduce (1).
Let r be a simple root of W such that r′ has positive norm, and suppose that r has n
conjugates r1, . . . , rn under G. Then

nr′ = r1 + · · ·+ rn,

so
(r, r1) + · · ·+ (r, rn) = n(r, r′) > 0.
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If ri 6= r then (ri, r) ≤ 0 and is a multiple of (r, r)/2, so at most one of the terms (r, ri) for
r 6= ri is nonzero, and such a nonzero term must be −(r, r)/2. G acts transitively on the
set of ri’s, so either they are all perpendicular in which case they form a Dynkin diagram
an
1 , or each has nonzero inner product with exactly one other ri and this inner product is
−(r, r)/2, in which case they form a Dynkin diagram a

n/2
2 . This proves (1).

Finally if σ is the element of the Weyl group of an
1 or an

2 mapping ρ to −ρ (where ρ is
the Weyl vector of an

1 or an
2 ) then the restriction of σ to R′ maps r′ to −r′ and fixes the

orthogonal complement of r′ in R′. Hence the reflection of r′ is an automorphism of R′

lifting to the element σ of W , and this implies that the smallest positive (real) multiple
of r′ that is in R′ is a root of R′. (If r is a strong root then the conjugates of r form a
Dynkin diagram an

1 , and the corresponding root of R′ is the sum of these conjugates and
therefore also a strong root.) Q.E.D.

If r is strong or the conjugates of r form a Dynkin diagram of type an
2 then the root

of R′ that is a multiple of r′ is the sum of the conjugates of r; otherwise it may be half
the sum of the conjugates of r.

Now we show that several ways of construction a reflection group of R′ from R, W ,
and G all give the same group.

Theorem 2.2. The following groups of automorphisms of the sublattice R′ of R are the
same.
(1) The elements of W commuting with G.
(2) The elements of W fixing the subspace R′.
(3) The reflection group W ′ generated by the reflections of the vectors r′ as r runs through

the simple roots of W ′ whose projections r′ have positive norm.
(4) Same as (3), with “simple roots” replaced by “roots”.

Moreover the subgroups of W in (1) and (2) act faithfully on R′.

Proof. It is obvious that the subgroup (1) of W is contained in the subgroup (2), and
that the groups (3) and (4) are the same. We will complete the proof by constructing an
injective map from the subgroup (2) of W to the group (4), and then checking that the
restriction of this map from the group (1) to the group (4) is onto.

The nonzero intersections of hyperplanes of W not containing R′ with R′ are hyper-
planes of R′, and by 2.1 the reflections of these hyperplanes are restrictions of elements
of W to R′. Hence the intersection D′ of D with R′ is a Weyl chamber for the reflection
group W ′. If w is any element of the subgroup (2) of W then there is an element w′ of
W ′ such that ww′ fixes the Weyl chamber D′ of W ′, and by Lemma 2.1 w′ can be lifted
to an element of W ′, which we also denote by w′. Then ww′ is an element of W fixing D
and is therefore 1. This implies that the restriction map from the subgroup (2) of W to
the group of automorphisms of R′ is injective and maps into the group (4).

Finally we have to check that the composed map from (1) to (4) is surjective; to do
this it is sufficient to check that any reflection of W ′ is the restriction of some element of
(1), but this follows from 2.1. Q.E.D.

We now consider the special case where there is a nonzero vector c having bounded
inner product with all simple roots of W (e.g., if W has a finite number of roots). This is a
very strong restriction on W . The existence of such vectors of negative norm is equivalent
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to W having only a finite number of simple roots, and if c has norm 0 then the simple
roots of W look a bit like the union of several cosets of some lattice together with a finite
number of extra roots. (See Section 3.) Two examples of this case are II25,1 or I9,1 with
W the group generated by reflections of vectors of norms 2 or 1, respectively. The simple
roots can then be identified with the points of the Leech lattice (as in Conway [4]) or with
the points of the E8 lattice and in general there is a similar description of the Dynkin
diagram of the lattice, as in Section 3. (Note that in the second case we are not using the
full reflection group, which has only a finite number (10) of simple roots.) These facts are
closely related to the facts that the covering radii of the Leech lattice and E8 are

√
2 and

1. We now show that if R has such a vector c then we can say a lot more about R′, and
in particular it also has such a vector.

Lemma 2.3. Let c be a nonzero vector in the fundamental domain D having bounded
inner products with all simple roots of the group W , and assume that these simple roots
span the vector space of R. If z is a norm 0 vector of D not proportional to c then the
simple roots of W perpendicular to z form an affine Dynkin diagram of rank dim(R)− 2.
(Recall that the rank of an affine Dynkin diagram is the number of points minus the
number of components.)

Proof. For any vector v of R perpendicular to z, the function mapping r in R to
r + (r, z)v − ((r, v) + (v, v)(r, z)/2)z is easily checked to be an automorphism of R fixing
all vectors perpendicular to z and v, and in particular fixing z. If the simple roots of W
perpendicular to z do not have rank dim(R)−2 we can find a vector v having inner product
0 with z and all the simple roots, and which is not a multiple of z. The automorphism
of nv fixes z and all the simple roots perpendicular to z, and therefore fixes the Weyl
chamber D and hence acts on the set of simple roots. We let r be any simple root of W
not perpendicular to z and consider its images under the automorphism of nv for large n.
The inner product of such an image with c is −n2(v, v)(r, z)(z, c)+ terms in n1 and n0, and
as the inner product of simple roots with c is bounded we must have (v, v)(r, z)(z, c) = 0.
However, (v, v) is nonzero because (v, z) = 0 and v is not a multiple of z, (r, z) is nonzero
by assumption on r, so (z, c) = 0 and therefore z is a multiple of c as (z, z) = 0 and z and
c are both in D. Q.E.D.

Theorem 2.4. Let c be a nonzero vector of the fundamental domain D of W having
bounded inner product with all simple roots of W . Then: either
(1) The smallest normal subgroup of Aut(R′) containing W ′ is a reflection subgroup of

finite index in Aut(R′), or
(2) c is in R′ and has norm 0, W ′ is a reflection subgroup of Aut(R′) of infinite index

and all simple roots of W ′ have bounded inner product with c. Any two conjugates
of c under Aut(R′) are conjugate under W ′, and the subgroup of W ′ fixing c is an
affine reflection group that has a simple root for every orbit (under G) of simple roots
of W perpendicular to c. (There may be no such roots, in which case W ′ is simply
transitive on the conjugates of c under Aut(R′).)
Also, if there are no roots of W ′ perpendicular to c then W ′ is normal in Aut(R′).

Proof. First note that the subgroup of elements of Aut(R′) that can be lifted to
Aut(R) has finite index in Aut(R′). If c has nonzero norm then W has a finite number of
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simple roots and hence has finite index in Aut(R) so W ′ has finite index in Aut(R′) and
we are in case (1), so we can assume that c has zero norm. If c is not fixed by G then the
sum of two conjugates of c is a vector of nonzero norm with the same properties as c, so
we can assume that c is fixed by G and hence is in R′.

The group of automorphisms of R′ that can be lifted to Aut(R) has finite index in
Aut(R′), so there are only a finite number of conjugates of c in D′, because any two
conjugates of c under Aut(R) are conjugate under W . Suppose first that there is more
than one conjugate of c under Aut(R′) in D′. By Lemma 2.3 any conjugate of c in D′

other than c has simple roots of W ′ perpendicular to it forming an affine Dynkin diagram
of rank dim(R) − 2, so the same is true for c. Hence if W ′′ is any reflection group of R′

containing W ′ with Weyl chamber D′′, the index of W ′′ in its normalizer is the number of
conjugates of c in D′′ times the order of the group of automorphisms of R′ fixing c and D′′,
which is finite. In particular if W ′′ is the smallest normal subgroup of Aut(R′) containing
W ′ then W ′′ is a normal reflection subgroup of finite index in Aut(R′), so we are in case
(1) again.

Hence we can assume that there is only one conjugate of c in D′ under Aut(R′). This
implies that any two conjugates of c under Aut(R′) are conjugate under W ′, and if there
are no roots of W ′ perpendicular to c then W ′ is simply transitive on the conjugates of c,
because W ′ is simply transitive on the conjugates of D′.

Finally assume that there are no roots of W perpendicular to c, and let W ′′ be the
smallest normal subgroup of Aut(R′) containing W ′. If r is any root of W ′′, then (r′′, c)
is equal to (r′, c) for some root r′ of W ′ because W ′ is transitive on the conjugates of c
under Aut(R′), and in particular (r′′, c) is nonzero. Hence W ′′ is simply transitive on the
conjugates of c under W ′′, and as the same is true for W ′, W ′′ is the same as W ′, so W ′

is normal in Aut(R′). Q.E.D.
Remark. Suppose that c is in R′ and (r, c) divides (v, c) for every simple root r of W

and every vector v of R (for example R could be II25,1). Then the same is true for every
root r of W ′ and every vector v of R′.

3. Examples.

The lattice II25,1 has a nonzero norm 0 vector which has bounded inner product with
all simple roots, and by applying the construction of the last section we can find many
other Lorentzian lattices with the same property. These lattices have properties similar
to those of II25,1. For example, the Dynkin diagram of II25,1 can be identified with the
Leech lattice which is closely related to the fact that balls of radius

√
2 just cover the vector

space of the Leech lattice, and similarly for other Lorentzian lattices we can describe their
Dynkin diagrams in terms of some positive lattice, and can cover some vector space with
balls and half planes.

We now describe the geometry of the simple roots when there is a non-zero norm 0
vector c of R having bounded inner product with all the simple roots of W , where W is
a normal reflection subgroup of Aut(R). We let T0 (respectively T1) be the set of points
of the real vector space of R having inner product 0 (respectively 1) with c, and we write
V0 and V1 for the quotients of T0 and T1, where we identify two points of T0 or T1 if their
difference is a multiple of c. V1 is an affine space over the dim(R)− 2 dimensional vector
space V0, and V0 inherits a positive definite inner product from R. For each simple root r
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of W we let Sr be the subset of points of V1 represented by norm 0 vectors of T1 that have
inner product at least 0 with r. (Note that every point of V1 is represented by a unique
norm 0 vector of T1.) We write R0 and R1 for the lattice vectors in V0 and V1.

The fact that the Leech lattice is the Dynkin diagram of II25,1 implies that the vector
space of the Leech lattice is covered by balls of radius

√
2 about each lattice point, each

ball corresponding to a simple root. This can be generalized by replacing II25,1 with the
lattice R above as follows.

Theorem 3.1. The balls and half-spaces Sr of the affine space V1 corresponding to the
simple roots r have the following properties:

(1) If r has height 0 Sr is a closed half-space; otherwise it is a closed ball with center
r/(r, c) and radius |r/(r, c)|. (Warning–Sr does not contain 0, because 0 is not in V1!)

(2) The sets Sr cover V1 and there are only a finite number of them intersecting any
bounded subset of V1.

(3) If two of these balls have radii r1 and r2 and the distance between their centers is d,
then d2 ≥ r2

1 + r2
2. The center of any ball is not contained in any other set Sr. In

particular, if any of the sets Sr are removed, the remaining sets do not cover V1.

(4) The points z not in the interiors of any of the sets Sr are in natural 1:1 correspondence
with the primitive norm 0 vectors of R in the fundamental domain D of W that are
not multiples of c. The roots r such that z lies on the surface of Sr form an affine
Dynkin diagram of rank dim(R) − 2. (Warning–it is possible for any affine Dynkin
diagram to occur; even “twisted” ones.)

(5) Let R0 be the lattice of points of V0 represented by points of R, and let L be the
sublattice of R0 of vectors perpendicular to all roots of W of height 0. Then L acts
by translation on the set of Sr’s and has only a finite number of orbits on this set.

The proof is routine and will be omitted.
The first example of this behavior was found by Conway [4] for the lattice II25,1. R0

and L are both isomorphic to the Leech lattice, and R1 is the affine Leech lattice. The
sets Sr are all balls of radius

√
2 with centers the points of the affine Leech lattice, and

the points z not in the interiors of any of these balls are the so-called “deep holes” of the
Leech lattice. The lattice points nearest to a deep hole form the affine Dynkin diagram of
the Niemeier lattice of the norm 0 vector corresponding to a deep hole. A similar example
is when R is I9,1 and W is generated by the reflections of norm 1 vectors, when R1 is the
E8 lattice and V1 is covered by balls of radius 1 about each lattice point. Theorem 3.1
states that the general case is rather like this, except that the balls do not necessarily have
the same radius (and may degenerate into half-spaces), their centers may form more than
1 orbit under the lattice L, and affine Dynkin diagrams with roots of different lengths
can occur. (In the case of II25,1, there is a natural correspondence between the orbits
of primitive norm 0 vectors and the Niemeier lattices. For arbitrary Lorentzian lattices
there is also a correspondence between the orbits of primitive norm 0 vectors and a finite
number of positive definite lattices, but these lattices do not necessarily have the same
determinant.) Roughly speaking the simple roots of W correspond to a finite number of
cosets of the lattice L, with a finite number of simple roots left over if L has dimension
less than that of R0.
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If we know the Dynkin diagram of the reflection group of some lattice, we can find
all normal reflection subgroups whose simple roots have bounded inner product with some
nonzero vector using the following lemma.

Lemma 3.2. Let W be a hyperbolic reflection group with fundamental domain D, and
let W ′ be a normal reflection subgroup with fundamental domain D′ containing D. Then
the group W is a spilt extension of W ′ by the reflection group H whose simple roots are
the simple roots of W that are not roots of W ′.

Proof. W is a split extension of W ′ by the group G of elements of W fixing D′.
This group certainly contains the reflections of any simple root of W that is not a root of
W ′, and hence contains the group H generated by these reflections. If E is the union of
all conjugates of D under H, then all faces of E are conjugates of faces of D′ under W
and hence are hyperplanes of W ′ because W ′ is a normal subgroup of W . Hence E is a
union of fundamental domains of W ′ and in particular contains D′, so H contains G and
is therefore equal to G. Q.E.D.

This means that we can sometimes find interesting normal reflection subgroups of
Aut(R) by finding subdiagrams of the Dynkin diagram of R which are affine or spherical
and such that any simple root conjugate under Aut(R) to some root of this subdiagram is
already in the subdiagram. For example, suppose R is I9,1. Then the Dynkin diagram of
R has 9 roots of norm 2 forming an extended E8 Dynkin diagram and one root of norm 1.
Hence the reflection group generated by the norm 2 vectors of R has 11 simple roots and
index 2 in W , while the quotient of W by the subgroup generated by the norm 1 vectors
is isomorphic to the affine E8 Weyl group. In fact the simple roots of the reflection group
generated by the norm 1 vectors are isometric to the E8 lattice in the same way that the
simple roots of II25,1 are isometric to the Leech lattice.

We now put everything together to prove the following theorem, which shows that
several well-known lattices behave like the Leech lattice.

Theorem 3.3. Let G be a group of automorphisms of the Leech lattice Λ such that the
sublattice Λ′ of vectors of Λ fixed by G has no roots, and let R be the Lorentzian lattice
that is the sum of Λ′ and the two dimensional even unimodular Lorentzian lattice U . Then
R has a norm 0 vector c such that the simple roots of the reflection group of R are exactly
the roots r of R such that (r, c) is negative and divides (r, v) for all vectors v of R. The
group Aut(R) is isomorphic to a split extension of its reflection group by the group of
affine automorphisms of Λ′.

Proof. The group of affine automorphisms of the Leech lattice Λ can be identified with
the group of diagram automorphisms of II25,1, so G can be considered to be a subgroup
of Aut(II25,1), and it is easy to check that that sublattice of points of II25,1 fixed by G
is isomorphic to R. The theorem then follows from 2.4, except that we still have to check
that the group W ′ of 2.4 is the full reflection subgroup of R. II25,1 has a vector c which has
inner product 1 with all simple roots of II25,1, and from this it follows that (r, c) divides
(r, v) for all simple roots r of W ′ and all vectors v of R, so (r, c) ≤ |(s, c)| for any conjugate
s of r. But then by 1.3 r is a simple root for the full reflection group of R, hence W ′ is
the full reflection group of R. Q.E.D.
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Remarks. The fact that (r, c) divides (r, v) for all v implies that (r, c) is either (r, r) or
(r, r)/2; both cases occur. Any root of R has even norm dividing 2|G|. There is a similar
theorem with II25,1, Λ and the full reflection group of II25,1 replaced by I9,1, E8, and the
reflection group of I9,1 generated by the reflections of norm 1 vectors; of course all roots
of W ′ will be strong roots.

Examples. Aut(Λ) has elements of orders 2 and 3 whose fixed lattices Λ16 and K12

have no roots and have dimensions 16 and 12 respectively. (Λ16 is the Barnes-Wall lattice,
and K12 is the Coxeter-Todd lattice; see Conway and Sloane [6, Chap. 4].) These lattices
have the same relation to the baby monster and Fi24 that Λ has to the monster. (See
Conway and Norton [5].) The theorem above shows that there are 18 and 14 dimensional
Lorentzian lattices R associated to them whose Dynkin diagrams can be described in terms
of the 16 and 12 dimensional lattices. Note that they have roots of norms 4 and 6 as well
as roots of norm 2, so the geometry is rather more complicated than that of the Leech
lattice. The simple roots of R correspond to some of the vectors of the dual of Λ′ (but
not necessarily all of them; for example not the ones within

√
2 of a lattice vector.) The

vectors of Λ′ itself correspond to norm 2 simple roots in R. For example, if we take Λ′ to
be Λ16 of dimension 16 and determinant 256, then R has a simple root of norm 2 for every
vector of Λ16 and a simple root of norm 4 for every vector in one of 120 cosets of Λ16. If
we draw a sphere of radius

√
2 about every point of Λ16, and of radius 1 about every point

of these 120 cosets, then these spheres just cover the vector space of Λ16 in the same way
that spheres of radius

√
2 around points of Λ just cover the vector space of Λ. We also

get large numbers of “deep holes” in Λ16 (e.g., F 4
4 ) which behave like the deep holes of Λ.

(Likewise K12 has deep holes of hype G6
2 and so on.)

Aut(Λ) also has an element of order 2 whose fixed sublattice is E8(2) (i.e., the lattice
E8 with the norms of all vectors doubled). In this case Λ′ has roots, and the reflection
group of R has finite index in Aut(R). Similarly if R is the sum of E8(n) and the two
dimensional even unimodular Lorentzian lattice U for 2 ≤ n ≤ 6 then the reflection group
of R has finite index in Aut(R). (In fact, it follows from 2.4 that this is true for any lattice
R fixed by some group of automorphisms of Λ whose roots span its vector space.) For
example when n = 6 the Dynkin diagram has 4 roots of norm 2, 2 or norm 4, 1 of norm
6, and 10 of norm 12 and its automorphism group has order 4; the theorems of Section 1
are useful for doing these calculations.

If R is a Lorentzian lattice, there are 3 possibilities for the “non-reflection group” of
R which is the quotient of the automorphism group of R by the subgroup generated by
reflections. (These can be thought of as the “elliptic”, “parabolic”, and “hyperbolic” cases,
although this terminology should not be taken too seriously.)
(1) This group is finite. This case includes many of the lattices whose dimension and

determinant are both small.
(2) The non-reflection group if R is infinite, but has a free abelian subgroup of finite

index. This case is the one mostly studied in this paper, and seems to be rare. The
existence of a free abelian subgroup of finite index is equivalent to the existence of a
nonzero vector of norm at most 0 fixed by all automorphisms of a fundamental domain
of the reflection group, so II25,1 is one example of this case, and 3.3 gives a few other
examples.
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(3) The general case: everything else. This case seems to include most Lorentzian lattices,
possibly all of dimension more than 26. In Borcherds [2] the non-reflection group is
calculated for a few unimodular lattices, and in these cases turns out to be a direct
limit of a finite number of finite groups. Many of the results of Borcherds [2] still hold
when Λ is replaced by some lattice R in class (2) above, so it would be possible to find
some more lattices whose non-reflection groups could be presented as a direct limit of
finite groups.
The monster Lie algebra (Borcherds, Conway, Queen, and Sloane, [6, Chap. 30], or

Borcherds [3]) is a generalized Kac-Moody algebra with root lattice II25,1 whose positive
simple roots are the simple roots of II25,1. (It also has simple roots of norm 0, so it
is not a Kac-Moody algebra.) (Note added 1998: this algebra is now called the fake
monster Lie algebra.) If G is a finite group of diagram automorphisms of II25,1 then by
Borcherds [3, theorem 3.1] the subalgebra of the monster Lie algebra fixed by G is still a
generalized Kac-Moody algebra. Note that the class of generalized Kac-Moody algebras is
invariant under the operation of taking the subalgebra fixed by a finite group of diagram
automorphisms, but the class of Kac-Moody algebras is not. We can therefore define
the baby monster Lie algebra, the Fi24 Lie algebra, and so on to be the subalgebras of
the monster Lie algebra fixed by the appropriate group. There algebras are generalized
Kac-Moody algebras whose positive simple roots are the simple roots of the corresponding
Lorentzian lattice., and which have simple roots of norm 0 which are multiples of the vector
c. There is some numerical evidence that the monster Lie algebra has no simple roots of
negative norm (note added in 1998: this has been proved), so it is natural to ask if this is
true for the new algebras (note added 1998: this is false).

Problems. Find all Lorentzian lattices which have a nonzero vector which has bounded
inner product with all simple roots. (Note that this includes as a special case the problem
of finding all Lorentzian lattices whose reflection group has finite index.) Are there only
essentially a finite number of such lattices of dimension greater than 2? (Note added 1998:
this has been proved by Nikulin if we assume that c has norm at most 0.) (Obviously
any multiple of such a lattice has the same property.) Is II25,1 the only such lattice of
dimension at least 26? Is I9,1 the only lattice of dimension ≥ 10 such that the simple roots
of the reflection group generated by strong roots have bounded inner product with some
vector c?
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