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We discuss how modular forms and automorphic forms can be written as infinite products, and how

some of these infinite products appear in the theory of generalized Kac-Moody algebras. This paper is based
on my talk at the ICM, and is an exposition of [B5].

1. Product formulas for modular forms.

We will start off by listing some apparently random and unrelated facts about modular forms, which
will begin to make sense in a page or two. A modular form of level 1 and weight k is a holomorphic
function f on the upper half plane {τ ∈ C|=(τ) > 0} such that f((aτ + b)/(cτ + d)) = (cτ + d)kf(τ)
for
(
ab
cd

)
∈ SL2(Z) that is “holomorphic at the cusps”. Recall that the ring of modular forms of level 1 is

generated by E4(τ) = 1+240
∑

n>0 σ3(n)qn of weight 4 and E6(τ) = 1−504
∑

n>0 σ5(n)qn of weight 6, where
q = e2πiτ and σk(n) =

∑
d|n d

k. There is a well known product formula for ∆(τ) = (E4(τ)3 − E6(τ)2)/1728

∆(τ) = q
∏
n>0

(1− qn)24

due to Jacobi. This suggests that we could try to write other modular forms, for example E4 or E6, as
infinite products. At first sight this does not seem to be very promising. We can formally expand any power
series as an infinite product of the form qh

∏
n>0(1− qn)a(n), and if we do this for E4 we find that

E4(τ) = 1 + 240q + 2160q2 + 6720q3 + · · ·
= (1− q)−240(1− q2)26760(1− q3)−4096240 · · ·

(1.1)

but this infinite product does not even converge everywhere because the coefficients are exponentially in-
creasing. In fact such an infinite product can only converge everywhere if the function it represents has no
zeros in the upper half plane, and the only level 1 modular forms with this property are the powers of ∆.
On the other hand there is a vague principle that a function should have a nice product expansion if and
only if its zeros and poles are arranged nicely. Well known examples of this are Euler’s product formulas
for the gamma function and zeta function, and Jacobi’s product formulas for theta functions. (Of course
the region of convergence of the infinite product will usually not be the whole region where the function
is defined, because it cannot contain any zeros or poles.) The zeros of any modular form are arranged in
a reasonably regular way which suggests that some modular forms with zeros might still have nice infinite
product expansions.

For a reason that will appear soon we will now look at modular forms of level 4 and weight 1/2 which
are holomorphic on the upper half plane but are allowed to have poles at cusps. Kohnen’s work [Ko] on the
Shimura correspondence suggests that we should look at the subspace A of such forms f =

∑
n∈Z c(n)qn

whose Fourier coefficients c(n) are all integers and vanish unless n ≡ 0 or 1 mod 4. It is easy to find the
structure of A: it is a 2-dimensional free module over the ring of polynomials Z[j(4τ)],where j(τ) is the
elliptic modular function j(τ) = E4(τ)3/∆(τ) = q−1 + 744 + 196884q + · · ·. Equivalently, any sequence of
numbers c(n) for n ≤ 0 such that c(n) = 0 unless n ≡ 0 or 1 mod 4 is the set of coefficients of qn for n ≤ 0
of a unique function in A. The space A has a basis consisting of the following two elements:

θ(τ) =
∑
n∈Z

qn2
= 1 + 2q + 2q4 + · · ·

ψ(τ) = F (τ)θ(τ)(θ(τ)4 − 2F (τ))(θ(τ)4 − 16F (τ))E6(4τ)/∆(4τ) + 60θ(τ)

= q−3 + 4− 240q + 26760q4 − 85995q5 + 1707264q8 − 4096240q9 + · · ·

(1.2)
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where
F (τ) =

∑
n>0,n odd

σ1(n)qn = q + 4q3 + 6q5 · · · .

The reader will now understand the reason for all these odd definitions by comparing the coefficients of ψ
in (1.2) with the exponents in (1.1). This is a special case of the following theorem.

Theorem 1.3. ([B5]) Suppose that B is the space of meromorphic modular forms Φ of integral weight and
level 1 for some character of SL2(Z) such that Φ has integral coefficients, leading coefficient 1, and all the zeros
and poles of Φ are at cusps or imaginary quadratic irrationals. Then the map taking f(τ) =

∑
n∈Z c(n)qn ∈ A

to

Φ(τ) = qh
∏
n>0

(1− qn)c(n2)

is an isomorphism from A to B. (Here h is a certain rational number in 1
12Z depending linearly on f .) The

weight of Φ is c(0), and the multiplicity of the zero of Φ at an imaginary quadratic number of discriminant
D < 0 is

∑
n>0 c(n

2D).

Example 1.4 If f(τ) = 12θ(τ) = 12 + 24q + 24q4 + · · · then c(n2) = 24 for n > 0, so Φ(τ) = q
∏

n>0(1−
qn)c(n2) = q

∏
n>0(1 − qn)24 = ∆(τ) which is the usual product formula for the ∆ function. The fact that

f(τ) is holomorphic corresponds to the fact that ∆(τ) has no zeros, and the constant term 12 of f(τ) is the
weight of ∆.

Example 1.5 Most of the common modular forms or functions, for example the Eisenstein series E4,
E6, E8, E10, and E14, the delta function ∆(τ), and the elliptic modular function j(τ), all belong to the
space B and can therefore be written explicitly as infinite products. It is easy to work out the function f
corresponding to and Φ by using the remarks about weights and multiplicities of zeros at the end of theorem
1.3; for example, if Φ(τ) = j(τ)−1728, then Φ has a zero of order 2 at every imaginary quadratic irrational of
discriminant −4 and has weight 0, so the corresponding function f ∈ A must be of the form 2q−4+0q0+O(q)
and must therefore be 2θ(τ)(j(4τ)− 738)− 4ψ(τ).

Theorem 1.3 looks superficially similar to the Shimura correspondence; both correspondences use infinite
products to take certain modular forms of half integral weight to modular forms of integral weight. However
there are several major differences: the Shimura correspondence uses Euler product expansions, only works
for holomorphic modular forms, and is an additive rather than a multiplicative correspondence.

2. Product formulas for j(σ)−j(τ). In this section we describe 3 different product formulas for j(σ)−j(τ)
(where j(τ) =

∑
n c(n)qn = q−1 + 744 + · · · is the elliptic modular function).

The simplest one is valid for any σ, τ with large imaginary part (> 1 will do), and is

j(σ)− j(τ) = p−1
∏

m>0,n∈Z

(1− pmqn)c(mn) (2.1)

where p = e2πiσ. This is the denominator formula for the monster Lie algebra; see 5.2.
The next product formula was found by Gross and Zagier [GZ]. We let d1 and d2 be negative integers

which are 0 or 1 mod 4, and for simplicity we suppose that they are both less than −4. Then∏
[τ1],[τ2]

(j(τ1)− j(τ2)) = ±
∏

x∈Z,n,n′>0,x2+4nn′=d1d2

nε(n′)

where the first product is over representatives of equivalence classes of imaginary quadratic irrationals of
discriminants d1, d2, and ε(n′) = ±1 is defined in [GZ]. An example of this they give is

j

(
1 + i

√
67

2

)
− j

(
1 + i

√
163

2

)
= −2153353113 + 2183353233293

= 21537537213× 139× 331.
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In the first product formula σ and τ were both arbitrary complex numbers with large imaginary part, and
in the second they were both fixed to run over imaginary quadratic irrationals. The third product formula
is a sort of cross between these, because we allow τ to be any complex number with large imaginary part,
and make σ run over a set of representatives of imaginary quadratic irrationals of some fixed discriminant
d. For simplicity we will assume d < −4 and d squarefree. In this case we find that∏

[σ]

(j(τ)− j(σ)) = q−h
∏
n≥1

(1− qn)c(n2),

where the numbers c(n) are the coefficients of the unique power series in the space A of 1.3 of the form
q−d + O(q), and h is the class number of the imaginary quadratic field of

√
d. This follows from theorem

1.1 because it is easy to see that the product on the left lies in the space B. Conversely the analogue this
product formula for all values of d together with the Jacobi product formula for the eta function implies
theorem 1.1.

Strangely enough, there seems to be no obvious direct connection between these 3 product formulas. In
particular assuming any two of them does not seem to be any help for proving the third one. (Proposition
5.1 of [GZ] almost gives a fourth product formula: it expresses log |j(σ)− j(τ)| as a limit of an infinite sum.)

3. Automorphic forms for Os+2,2(R).

Theorem 1.3 is essentially a specialization of a product formula for automorphic forms on higher di-
mensional orthogonal groups Os+2,2(R)+. Before giving this generalization we recall the definitions of
automorphic forms on orthogonal groups and of rational quadratic divisors.

We will show how to construct the analogue of the upper half plane for these groups. Suppose that L is
a Lorentzian lattice of dimension s+2, in other words, a nonsingular lattice of dimension s+2 and signature
s. The negative norm vectors in L ⊗R form two open cones; we choose one of these cones and call it C.
We define H to be the subset of vectors τ ∈ L⊗C such that =(τ) ∈ C, so that if L is one dimensional then
H is isomorphic to the upper half plane. There is an obvious discrete group acting on H generated by the
translations τ → τ+λ for λ ∈ L and the automorphisms OL(Z)+ of L that map C into itself. When H is the
upper half plane this group is just the group of translations τ → τ +n for n ∈ Z. In this case we can enlarge
the group to SL2(Z) acting on the upper half plane (by

(
ab
cd

)
(τ) = (aτ + b)/(cτ + d)) by adding an extra

automorphism τ → −1/τ . The analogue of this for unimodular Lorentzian lattices L is the automorphism
τ → 2τ/(τ, τ).

An automorphic form of weight k on the upper half plane H is a function satisfying the two functional
equations

f(τ + n) = f(τ) (n ∈ Z)

f(−1/τ) = τkf(τ)
(and some conditions about being holomorphic). By analogy with this, if L is an even unimodular Lorentzian
lattice, we define an automorphic form on H to be a holomorphic function f on H satisfying the functional
equations

f(τ + λ) = f(τ) (λ ∈ L)
f(w(τ)) = ±f(τ) (w ∈ OL(Z)+)

f(2τ/(τ, τ)) = ±((τ, τ)/2)kf(τ).
The group generated by all these transformations is isomorphic to a subgroup of index 2 of the automorphism
group of the lattice M = L ⊕ II1,1, where II1,1 is the 2-dimensional even Lorentzian lattice (with inner
product matrix

(
01
10

)
).

Suppose that b ∈ L and a, c ∈ Z, with (b, b) > 2ac. The set of vectors y ∈ L⊗C with a(y, y)/2+(b, y)+
c = 0 is called a rational quadratic divisor. A rational quadratic divisor in the upper half plane is the same
as an imaginary quadratic irrational.

We choose some vector in −C which has nonzero inner product with all vectors of L, and we write r > 0
to mean that r ∈ L has positive inner product with this vector.

We have seen in theorem 1.3 that a modular form with integer coefficients tends to have a nice infinite
product expansion if all its zeros are imaginary quadratic irrationals. The next theorem shows that a
similar phenomenon occurs for automorphic forms on Os+2,2(R)+, provided we replace imaginary quadratic
irrationals by rational quadratic divisors.
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Theorem 3.1. ([B5]) Suppose that f(τ) =
∑

n c(n)qn is a meromorphic modular form with all poles at
cusps. Suppose also that f is of weight −s/2 for SL2(Z) and has integer coefficients, with 24|c(0) if s = 0.
There is a unique vector ρ ∈ L such that

Φ(v) = e−2πi(ρ,v)
∏
r>0

(1− e−2πi(r,v))c(−(r,r)/2)

is a meromorphic automorphic form of weight c(0)/2 for OM (Z)+. (Or more precisely, can be analytically
continued to a meromorphic automorphic form, because the infinite product does not converge everywhere.)
All the zeros and poles of Φ lie on rational quadratic divisors, and the multiplicity of the zero of Φ at the
rational quadratic divisor of the triple (b, a, c) (with no common factors) is∑

n>0

c(n2(ac− (b, b)/2)).

We see that just as in theorem 1.3, the coefficients of negative powers of q in f determine the zeros of
Φ, and the constant term of f determines the weight of Φ.

Notice that the zeros of rational quadratic divisors with a = c = 0 can be seen as zeros of factors of the
infinite product, but the other zeros cannot be seen so easily; they are not zeros of any of the factors of the
infinite product and therefore lie outside the region where the infinite product converges.

4. Generalized Kac-Moody algebras.

Some of the infinite products giving automorphic forms appear in the theory of generalized Kac-Moody
algebras, so in this section we briefly recall some facts about these.

Generalized Kac-Moody algebras are best thought of as infinite dimensional analogues of finite dimen-
sional reductive Lie algebras. They can almost be defined as Lie algebras G having the following structure
[B4]

1. G should have a nonsingular invariant bilinear form (, ).
2. G should have a self centralizing subalgebra H, called the Cartan subalgebra, such that G is the sum

of eigenspaces of H.
3. The roots of G (i.e., the eigenvalues of H acting on G) should have properties similar to those of the

roots of a finite dimensional reductive Lie algebra. In particular it should be possible to choose a set
of “positive” roots α > 0 with good properties, a set of “simple roots”, and there should be a “Weyl
group” W generated by reflections of real (norm ≥ 0) simple roots. Also G has a “symmetrized Cartan
matrix”, whose entries are the inner products of the simple roots.
An earlier characterization [B1] identified generalized Kac-Moody algebras as Lie algebras with an

“almost positive definite contravariant bilinear form”, but the one summarized above is easier to use in
practice because it avoids the rather difficult problem of proving positive definiteness.

There is a generalization of the Weyl character formula for the characters of some irreducible highest
weight representations of generalized Kac-Moody algebras, and in particular there is a generalization of the
denominator formula (coming from the character formula for the trivial representation) which is∑

w∈W

det(w)w(eρS) = eρ
∏
α>0

(1− eα)mult(α) (4.1)

where mult(α) is the multiplicity of the root α, i.e., the dimension of the corresponding eigenspace. The
vector ρ is a “Weyl vector”, and S is a correction term depending on the imaginary (norm ≤ 0) simple
roots. For finite dimensional reductive Lie algebras, and more generally for Kac-Moody algebras, there are
no imaginary simple roots so S = 1 and we recover the usual Weyl-Kac denominator formula.

The best known examples of generalized Kac-Moody algebras are the finite dimensional reductive Lie
algebras, the affine Lie algebras, and the Heisenberg Lie algebra (which should be thought of as a sort of
degenerate affine Lie algebra). Beyond these there are an enormous number of nonaffine generalized Kac-
Moody algebras, which can be constructed by writing down a random symmetrized Cartan matrix, and then
writing down some generators and relations corresponding to it. Most of these Lie algebras seem to be of
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little interest, and it does not usually seem possible to find a clean description of both the root multiplicities
and the simple roots. (It is not difficult to find large alternating sums for these numbers by using the
denominator formula, but these sums seem too complicated to be of much use; for example, they do not lead
to good bounds for the root multiplicities.) There are a handful of good nonaffine generalized Kac-Moody
algebras, for which we can describe both the simple roots and the root multiplicities explicitly. (See the next
section for some examples.) These all turn out to have the property that the product in the denominator
formula is an automorphic form for an orthogonal group Os+2,2(R)+, where s + 2 is the dimension of the
Cartan subalgebra. This suggests that this property of the denominator function being an automorphic form
can be used to separate out the “interesting” generalized Kac-Moody algebras from the rest. (Something
similar happens for the affine Kac-Moody algebras: in this case the denominator function is a Jacobi form
[EZ].)

5. Examples.

We finish by giving some applications and special cases of theorem 3.1.
Example 5.1 If we have an automorphic form for the group Os+2,2(R)+ with an infinite product expan-

sion we can restrict it to smaller subspaces to obtain automorphic forms for smaller groups Os−n+2,2(R)+

with infinite product expansions. For example if we restrict Φ to the multiples τv of a fixed norm −2N
vector v ∈ L (for τ in the upper half plane) we get a modular form of level N . In particular by specializing
the forms in theorem 3.1 we obtain many ordinary modular forms for SL2(R) (which is locally isomorphic to
O1,2(R)) with infinite product expansions, and this can be used to prove theorem 1.3. Similarly we can get
examples of Hilbert modular forms and genus 2 Siegel modular forms with infinite product expansions by
using the fact that the groups SL2(R)×SL2(R) and Sp4(R) are locally isomorphic to O2,2(R) and O3,2(R).

Example 5.2 The simplest nontrivial case of theorem 3.1 is when L is the lattice II1,1 and f(τ) is the
elliptic modular function j(τ)− 744 =

∑
n c(n)qn. In this case theorem 3.1 says that the infinite product

p−1
∏

m>0,n∈Z

(1− pmqn)c(mn)

is an automorphic function on H×H (where H is the upper half plane). This product is just the right hand
side of 2.1, and using the fact that it is an automorphic function with known zeros it is easy to identify it
as j(σ) − j(τ). This identity 2.1 is the denominator formula 4.1 for the monster Lie algebra, a generalized
Kac-Moody algebra acted on by the monster simple group which is the Lie algebra of physical states of a
chiral string on an orbifold of a 26-dimensional torus [B3].

Example 5.3 Suppose we take L to be the 26-dimensional even unimodular lattice II25,1, and take f(τ)
to be 1/∆(τ) =

∑
n p24(n+ 1)qn = q−1 + 24 + 324q2 + · · ·. Then by theorem 3.1 we know that

Φ(v) = e−2πi(ρ,v)
∏
r>0

(1− e−2πi(r,v))p24(1−(r,r)/2) (5.4)

is a holomorphic automorphic form of weight 24/2 = 12. We can identify it explicitly using some facts
about singular automorphic forms on Os+2,2(R)+. Any holomorphic automorphic form on Os+2,2(R)+ can
be expanded as a power series Φ(v) =

∑
r∈C̄ c(r)e

−2πi(r,v) where the coefficients c(r) are zero unless r lies
in the closure C̄ of the cone C. If the coefficients c(r) are zero unless r lies on the boundary of C then we
say that Φ is singular. It turns out that Φ is singular if and only if its weight is a “singular weight”, and
for Os+2,2(R)+ the singular weights are 0 and s/2. (Moreover any automorphic form of weight less than
s/2 must be constant of weight 0.) In particular the form Φ(v) above has singular weight 12 = 24/2 so its
coefficients c(r) vanish unless (r, r) = 0. But for any automorphic form it is easy to find the multiplicities of
the coefficients c(r) with (r, r) = 0, and if we do this for Φ we find that

Φ(v) =
∑

w∈W

det(w)∆((v, w(ρ))) (5.5)

where ρ is a norm 0 vector and W is the reflection group of the lattice II25,1. If we compare 5.4 with 5.5
we obtain the denominator formula for another Lie algebra called the fake monster Lie algebra [B2], which
is the Lie algebra of physical states of a chiral string on the torus R25,1/II25,1 [B3].
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Incidentally we also get a short proof of the existence of the Leech lattice (a 24-dimensional even
unimodular lattice with no roots), because it is not hard to show that if ρ has norm 0 then the lattice ρ⊥/ρ
is extremal (i.e., has no vectors of norm ≤ s/12), and the fact that c(ρ) = 1 is nonzero implies that ρ must
have norm 0 because Φ is singular. It is also possible to prove the uniqueness of the Leech lattice and the
fact that it has covering radius

√
2 using similar arguments. Unfortunately this argument does not seem

to produce examples of extremal lattices in higher dimensions because the forms Φ no longer have singular
weight.

The two examples above are particularly simple because the coefficients c(r) vanish for (r, r) 6= 0, so
it is easy to identify them all. Most of the automorphic forms constructed in theorem 3.1 do not have this
property and seem to be harder to describe explicitly. Moreover most of them do not seem to be related to
generalized Kac-Moody algebras, because all the positive norm roots of a generalized Kac-Moody algebra
with root lattice IIs+1,1 must have norm 2, which means that the function f(τ) cannot have any terms in
qn for n ≤ −2.

We conclude with an example of a generalized Kac-Moody algebra related to one of the modular forms
in theorem 1.3. Example 5.6. The product formula

E6(τ) = 1− 504
∑
n>0

σ5(n)qn

= 1− 504q − 16632q2 − 122976q3 − · · ·

=
∏
n>0

(1− qn)c(n2)

= (1− q)504(1− q2)143388(1− q3)51180024 · · ·

where ∑
n

c(n2)qn

=θ(τ)(j(4τ)− 1470)− 2φ(τ)

=q−4 + 6 + 504q + 143388q4 + 565760q5 + 18473000q8 + 51180024q9 +O(q12)

is the denominator formula for a generalized Kac-Moody algebra of rank 1 whose simple roots are all multiples
of some root α of norm −2, the simple roots are nα (α > 0) with multiplicity 504σ5(n), and the multiplicity
of the root nα is c(n2). The positive subalgebra of this generalized Kac-Moody algebra is a free Lie algebra,
so we can also state this result by saying that the free graded Lie algebra with 504σ5(n) generators of each
positive degree n has a degree n piece of dimension c(n2). There are similar examples corresponding to the
infinite products for the Eisenstein series E10 and E14. The identity for E14 is easy to prove directly because
it follows from 2.1 by dividing both sides by p−q, setting p = q, and using the fact that j′(τ) = E14(τ)/∆(τ).
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