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We study a class of Lie algebras which have a contravariant bilinear form which is al-

most positive definite. These algebras generalize Kac-Moody algebras, and can be thought
of as Kac-Moody algebras with imaginary simple roots. Most facts about Kac-Moody
algebras generalize to these new algebras; for example, we prove a version of the Kac-Weyl
character formula, which is like the usual one except that it has an extra correction term
for the imaginary simple roots.

There are several ways in which these new algebras turn up. The fixed point algebra
of any Kac-Moody algebra under a diagram automorphism is not usually a Kac-Moody
algebra, but is one of these more general algebras. There is also a generalized Kac-Moody
algebra associated to any even Lorentzian lattice of dimension at most 26 or any Lorentzian
lattice of dimension at most 10, and we give a simple formula for the multiplicities of the
roots of these algebras (but unfortunately I do not know what the Cartan matrices are)!
The numbers 10 and 26 come from the “no ghost”theorem.

We assume that most of Kac [3] is known, and only give proofs when they differ
significantly from the ones given there.

1. Definitions.

This section consists mainly of definitions. We do not prove any of the results stated
here because they can all be proved by making trivial changes to the usual proofs for
Kac-Moody algebras.

A generalized Kac-Moody algebra G (GKM algebra for short) will be constructed
from the following objects:

(1) A real vector space H with a symmetric bilinear inner product (,).
(2) A set of elements hi of H indexed by a countable set I, such that (hi, hj) ≤ 0 if

i 6= j and 2(hi, hj)/(hi, hi) is an integer if (hi, hi) is positive.
We write aij for (hi, hj) and call the matrix aij the symmetrized Cartan matrix of G

(SCM for short). The GKM algebra G associated to this is defined to be the Lie algebra
generated by H and elements ei and fi for i in I with the following relations:

(1) The image of H in G is commutative. (In fact the natural map from H to G is
injective so we can consider H to be an abelian subalgebra of G.)

(2) If h is in H then [h, ei] = (h, hi)ei and [h, fi] = −(h, hi)fi.
(3) [ei, fj ] = hi if i = j, 0 if i 6= j.
(4) If aii is positive then (adei)1−2aij/aiiej = 0, and similarly (adfi)1−2aij/aiifj = 0.
(5) If aij = 0 then [ei, ej ] = [fi, fj ] = 0. (If aii or ajj is positive this follows from (4).)

The root lattice Q is defined to be the free abelian group generated by elements ri for
i in I, and Q has a real-valued bilinear form defined by (ri, rj) = aij . The Lie algebra G
is graded by Q by letting H have degree 0, ei have degree ri, and fi have degree −ri. A
root is a nonzero element r of Q such that there are elements of G of degree r. r is called
real if (r, r) is positive and imaginary otherwise. It is called simple if it is one of the ri’s,
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positive if it is a sum of simple roots, and negative if −r is positive. Every root is either
positive or negative. If r and s are in Q we write r ≥ s if r − s is a sum of simple roots.

Warning. For nonsymmetric Cartan matrices the elements ei, fi, and hi above are
not quite the same as the ones in Kac [3], but are multiples of them.

The Weyl group of G is generated by elements wi for every real simple root ri of G
with the relations

w2
i = 1 and (wiwj)mij = 1,

where mij is 2, 3, 4, 6, or ∞ depending on whether 4(aij)2/aiiajj is 0, 1, 2, 3, or greater
than 3. It acts on Q and H by letting wi act as reflection in the hyperplane perpendicular
to ri or hi. Something is said to be in the Weyl chamber if it has inner product at most 0
with all real simple roots.

The Cartan involution ω is the involution of G that acts as −1 on H and exchanges ei

and −fi. There is a unique invariant bilinear form (, ) on G extending the given form on
H, and we define the contravariant bilinear form (, )0 on G by (x, y)0 = −(x, ω(y)). (This
will turn out to be positive definite on the root spaces of G other than H.)

We use (, ) to indicate the bilinear pairing between any of Q, Q∗, H, and H∗ when
such a pairing can be sensibly defined, possibly using the map from Q to H which maps
ri to hi. We let ρ be the element of Q∗ such that (ρ, ri) = 1

2 (ri)2. We say that a vector x
in any of H, H∗, Q, or Q∗ is in the Weyl chamber if (x, ri) ≤ 0 for all i.

2. Geometry of the Root System.

In this section we prove or state some facts about the root system and Weyl group
of a GKM G that generalize results about Kac-Moody algebras. In particular we prove
enough about the root system so that the arguments in Kac [3] can be used to prove that
(, )0 is almost positive definite, and that G is simple provided that certain conditions are
satisfied.

Proposition 2.1. Every positive root r in Q is conjugate under the Weyl group to a
simple real root or a positive root in the Weyl chamber.

Proof. We can assume that any positive root which is a conjugate of r has height at
least equal to that of r. If r is not in the Weyl chamber, then there is a simple real root
s with (r, s) > 0 so that the reflection r′ of r in the hyperplane of s has height less than
r. By the assumption on r, r′ must be a negative root, so r must be the simple root s.
Q.E.D.

Proposition 2.2. A positive root r in the Weyl chamber of Q is isotropic (i.e., has norm
0) if and only if its support is affine or a root of norm 0. (The support of a positive root
r is the set of simple roots appearing in the expression of r as a sum of simple roots.)

Proof. We can write r =
∑

kiri with ki > 0 and ri some set of simple roots. As
(ri, r) ≤ 0 and (r, r) = 0 we must have (ri, r) = 0 for all i. If all the ri’s are real
the proposition follows from Kac [3] Proposition 5.7, while if some ri is imaginary then
(ri, rj) ≤ 0 for all j, so (ri, rj) = 0 for all j, which implies that r = ri as the support of r
is connected. Q.E.D.

Now we prove an important inequality for the roots of Q.
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Proposition 2.3. If r =
∑

kiri is in the Weyl chamber of Q, where the ki’s are positive
integers and the ri’s are some simple roots, then (r, r) ≤ 2(ρ, r) with equality if and only
if (ri, ri) ≤ 0, (ri, rj) = 0 for i 6= j, and (ri, ri) = 0 when ki > 1.

Proof. 2(ρ, r)− (r, r) =
∑

ki(ri, ri − r). If ri is real then (ri, ri) > 0 and (ri,−r) ≥ 0
so ki(ri, ri− r) > 0. If ri is imaginary then r− ri is a sum of simple roots and so has inner
product at most 0 with ri, hence ki(ri, ri − r) ≥ 0. Hence 2(ρ, r) ≥ (r, r) and if equality
holds then all the ri’s are imaginary and (ri, ri − r) = 0 for all i. r − ri is a sum of some
simple roots including all the rj ’s for j 6= i and ri if ki > 1, and ri has inner product at
most 0 with all these simple roots, so (ri, rj) = 0 if i 6= j or if ki > 1. Conversely if the
ri’s and ki’s satisfy these conditions it is obvious that (r, r) = 2(ρ, r). Q.E.D.

Corollary 2.4. If r is a positive root then (r, r) ≤ 2(ρ, r) with equality if and only if r is
simple.

Proof. If r is imaginary then r is in the Weyl chamber so the result follows from 2.3
because the support of r is connected. If r is real and positive then we can keep on strictly
reducing (ρ, r) by reflections in the Weyl group while keeping r positive, until r is a simple
root when (r, r) = 2(ρ, r), so that (r, r) < 2(ρ, r) if r is not simple. Q.E.D.

Corollary 2.5. The contravariant inner product (, )0 is positive definite on the weight
space of r if r is nonzero.

Proof.∗ The proof in Kac [3, 11.7] carries over to G because 2(ρ, r) > (r, r) if r is a
positive root that is not simple. Q.E.D.

Corollary 2.6. Any nonzero graded ideal of G has nonzero intersection with the Cartan
subalgebra.

Proof. We can assume that the graded ideal has a nonzero homogeneous element in
the weight space of some positive root of minimum possible height; it is easy to check that
such an element has inner product 0 with all elements of G, which contradicts 2.5. Q.E.D.

Remark. This implies that the definition of GKM algebras by means of generators
and relations is essentially the same as the definition given by Kac for arbitrary matrices.
(The center and outer derivations may be different.)

Corollary 2.7. Suppose that H is spanned by the hi’s, there is no element of H perpen-
dicular to all the hi’s, and the hi’s cannot be divided into two nonempty orthogonal sets.
Then G is either simple or the quotient of the derived algebra of an affine Kac-Moody
algebra by its center.

Proof. This follows from 2.6 and exercise 4.10 of Kac [3].

3. A Characterization of GKM Algebras.

In this section we show that GKM algebras are essentially the same as graded algebras
with an “almost positive definite” contravariant bilinear form. We will later use this to
construct examples of GKM algebras.

∗ This proof is not complete; see the third edition of Kac [3] for a complete proof.
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Let G be a GKM algebra generated by its Cartan subalgebra H and the elements
ei and fi, and let si be a collection of positive integers such that only a finite number
of the si’s are equal to any given positive integer. We grade G by putting deg(H) = 0,
deg(ei) = −deg(fi) = si. Recall that G has a Cartan involution ω with ω(ei) = −fi and
a contravariant bilinear form (, )0 defined by (x, y)0 = −(x, ω(y)). G has the following
properties:

(1) G is graded as the direct sum of Gm for m integral. G0 is abelian and Gm is finite
dimensional if m is nonzero.

(2) G has an invariant bilinear form (, ) such that Gm and Gn are orthogonal unless
m = −n.

(3) G has an involution ω which is −1 on G0 and which maps Gm into G−m.
(4) The contravariant bilinear form (x, y)0 := −(x, ω(y)) is positive definite on Gm if

m is nonzero.
We now prove the converse.

Theorem 3.1. If G is a Lie algebra satisfying (1) to (4) above and K is the kernel of (, ),
then K is in the center of G and G/K is a GKM algebra.

Proof. If k is in the kernel K of (, ) then it is in G0 and so commutes with all elements
of G0 as G0 is abelian. If g is in Gm for m nonzero then ([k, g], h) = (k, [g, h]) = 0 for all h,
so [k, g] = 0 as (, )0 is non-degenerate on Gm. Hence k is in the center of G. From now on
we can assume that (, ) is nondegenerate and we have to prove that G is a GKM algebra.

We take G0 to be the Cartan subalgebra H of G. For positive m we let Em be the
subspace of Gm perpendicular under (, )0 to the subalgebra of G generated by Gn for 0 <
n < m. Em is invariant under G0, and because G0 is abelian and (, )0 is contravariant and
positive definite we can find a basis of vectors for Em that are orthogonal and eigenvectors
for G0. We let the set of ei’s be the union of these bases for all the Em’s, and we define
fi = −ω(ei) and hi = [ei, fi]. We now have to check that the inner products (hi, hj) satisfy
the conditions for a SCM, and that the e’s, f ’s and h’s satisfy the defining relations for a
GKM algebra.

We check that [ei, fj ] = 0 if i and j are not equal. We can assume that deg(ei) ≥
deg(fj), and then ([ei, fj ], x)0 = (ei, [ej , x])0 = 0 for all x in Gi−j , so [ei, fj ] = 0 as (, )0 is
nonsingular.

We check that [h, ei] = (h, hi)ei for h in H. We have [h, ei] = xei for some real x as ei is
an eigenvector of H, and x = x(ei, ei)0 = ([h, ei], ei)0 = ([h, ei], fi) = (h, [ei, fi]) = (h, hi).
Similarly [h, fi] = −(h, hi)fi.

G is therefore some quotient of the algebra Ĝ, where Ĝ is constructed from the ele-
ments hi of H and elements ei, fi satisfying the relations (1), (2), and (3) of Section 1. We
now prove that 2(ρ, r)− (r, r) is positive for any nonsimple positive root of G by quoting
some results from Kac [3]. By adapting the proof of theorem 11.7(a) of Kac [3] we find
that for any positive root r and any x in the root space of r we have

(2(ρ, r)− (r, r))(x, x)0 =
∑

([xi, x], [xi, x])0,

where the sum is over elements xi which are the union of a set of orthogonal bases for all
the root spaces corresponding to roots −s, for all positive roots s smaller than r. (Theorem
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11.7 of Kac [3] is only stated to be true for Kac-Moody algebras, but the proof of the part
of it that we need only uses the fact that G is the quotient of an algebra Ĝ satisfying the
relations (1), (2) and (3) of Section 1.) If r is not simple and x is nonzero then [xi, x] is
nonzero for some i, so this sum is positive as (, )0 is positive definite on Gm for m nonzero.
This implies that 2(ρ, r) − (r, r) is positive whenever r is a nonsimple positive root of G.
We will deduce the remaining relations of G from this fact and the representation theory
of SL2.

If i 6= j then [fi, ej ] = 0, so [ei, ej ] cannot be 0 unless (hi, hj) = 0 by the representation
theory of the Lie algebra isomorphic to SL2 generated by fi and ei. Hence if (hi, hj) is
nonzero then h = hi + hj is a root of G and 2(ρ, h)− (h, h) = −2(hi, hj), so (hi, hj) < 0.
If (hi, hj) = 0 then h = hi + hj is not a root because 2(ρ, h) − (h, h) = 0, so [ei, ej ] = 0,
and similarly [fi, fj ] = 0.

Finally suppose that hi is a real simple root, and let hj be any other simple root.
For large n, h = hj − nhi satisfies 2(ρ, h) − (h, h) < 0 and so is not a root. We apply
the representation theory of the SL2 Lie algebra spanned by ei, fi, and hi to its module
generated by ej , and find that this implies hj − nhi = hj + 2hi(hj , hi)/(hi, hi) for some
nonnegative integer n, and (Adei)n+1(ej) = 0. This proves that (hi, hj) is a SCM and that
ei, fi, and H satisfy all the relations for a GKM algebra. Q.E.D.

4. Lowest Weight Modules.

We describe the lowest weight modules of GKM algebras and show that they have
a positive definite contravariant bilinear form if and only if their lowest weights satisfy
certain conditions. In this case we give a set of defining relations for these modules and
prove a generalization of the Kac-Weyl character formula for them.

We let r be an element of the dual H ′ of H and define M(r) to be the module
generated by an element v with the relations h(v) = r(v)v for h in H and fi(v) = 0.
M(r) is then a free module over the algebra generated by the ei’s on the generator v. Any
nonzero quotient L(r) of M(r) has a unique contravariant bilinear form (, ) such that v
has norm 1. (This is denoted by H(, ) in Kac [3].) The weights of L(r) are elements of
the affine space r + Q. If s1 and s2 are in this space, then expressions like (s1, s2) and
(s1, ρ) are not necessarily defined, so we fix an arbitrary value for (r, r) and (r, ρ), and
define (s1, s2) := (s1, s2 − r) + (s1 − r, r) + (r, r), (s, ρ) := (s − r, ρ) + (r, ρ). Similarly
we fix an arbitrary value for (ρ, ρ) so that expressions like (s1 − ρ, s2 − ρ) are defined.
The arbitrary values for (r, ρ) and (ρ, ρ) we have chosen will always turn out to cancel
each other out so it does not matter what they are. The Weyl group acts on r + Q by
wi(r + q) = r + q − 2(r + q, r)ri/aii.

Proposition 4.1. Suppose that the bilinear form (, ) on some quotient L(r) of M(r) is
positive definite. Then on L(r)

(1) (r, hi) is at most 0 for all i, and if (r, hi) = 0 then ei(v) = 0.
(2) If hi is real then −2(r, hi)/(hi, hi) is equal to some nonnegative integer n, and

en+1
i (v) = 0.

Proof. By Kac [3,11.7] the positive definiteness of (, ) implies that (r−ρ)2−(s−ρ)2 > 0
whenever s is a weight of L(r) not equal to r. The proof that this implies (1) and (2) of
the proposition is almost exactly the same as the proof of the last part of 3.1. Q.E.D.
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Now we assume that r and L(r) satisfy (1) and (2) above, and show that (, ) is positive
definite on L(r). (2) implies that the set of weights of L(r) (which is a subset of the affine
space r + Q) is invariant under the Weyl group. We now prove some inequalities for the
weights of L(r) similar to the inequalities of Section 2 for the roots of G. We let s, s1, and
s2 denote weights of L(r).

Proposition 4.2. (r, r)−(s1, s2) ≥ 0, and equality implies that s1 = s2 and s1 is conjugate
to r under the Weyl group. (For Kac-Moody algebras this is proved in Kac [3, 11.4(a)].)

Proof. By acting on s1 and s2 with the Weyl group we can assume that (s1, hi) is
at most 0 for all real simple roots hi. Then (r, s1 − r) and (s1, s2 − r) are both at most
0 because r and s1 have inner product at most 0 with all simple roots, and si − r is a
sum of simple roots. Their sum is 0 by assumption, so they are both 0 which implies that
(r, hi) = 0 for all simple roots hi in the support of s1 − r. By condition (1) above this
implies that s1 = r, and the condition (s1, s2− r) = 0 then implies that s2 = r in the same
way. Q.E.D.

Proposition 4.3. (r − ρ)2 − (s− ρ)2 is at least 0, and equal to 0 only if s = r. (See Kac
[3,11.4(b)].)

Proof. We can act on s by elements of the Weyl group, each time strictly increasing
(s− ρ)2, until (s, hi) ≤ 0 for all real simple roots hi, so we can assume that (s, hi) ≤ 0 for
all real simple roots hi. If s is not r then let hi be one of the simple roots in the support of
s− r. We have (hi, r + s− 2ρ) = (hi, r) + (hi, s− hi) ≤ 0 as s− hi is a sum of r and some
simple roots. Hence (s− r, s + r − 2ρ) ≤ 0 which is equivalent to (r − ρ)2 − (s− ρ)2 ≥ 0.
Equality implies that (hi, r) = 0 for any hi in the support of s − r, which implies that
s = r by (1). Q.E.D.

Corollary 4.4. The contravariant bilinear form (, ) on L(r) is positive definite.

Proof. This follows from 4.3 and the proof of 11.7 in Kac [3].

Corollary 4.5. If r satisfies (1) and (2) and L(r) is defined to be the lowest weight module
satisfying the relations (1) and (2) then L(r) is simple.

Proof. This follows from 4.4. Q.E.D.
Now we find a formula for the character of L(r) when r satisfies (1) and (2). By

following the argument in Kac [3,10.4] we find that

e−ρCh(L(r))
∏

(1− eh)mult(h) =
∑

cse
s−ρ, (3)

where both sides are antisymmetric under the Weyl group, the cs’s are integers, the product
is over all positive roots h of G, and the sum on the right is over some weights s such that
(r − ρ)2 − (s − ρ)2 = 0 and s ≥ r (i.e., s is equal to r plus a sum of simple roots). We
let S be the sum of the terms on the right for which s − ρ is in the Weyl chamber (i.e.,
(s− ρ, hi) ≤ 0 for all real simple roots hi).
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If s− ρ is in the Weyl chamber then we write s = r +
∑

kiri for some simple roots ri

and positive integers ki. We have (r − ρ)2 − (s− ρ)2 = 0, so∑
ki(ri, r) +

∑
ki(ri, s− 2ρ) =

∑
ki(ri, r + s− 2ρ)

= (s− r, r + s− 2ρ)

= (s− ρ)2 − (r − ρ)2

= 0

For all i, (ri, r) ≤ 0 by the assumption on r. If ri is real then (ri, s− 2ρ) < (ri, s− ρ) ≤ 0
as s − ρ is in the Weyl chamber. If ri is imaginary then (ri, s − 2ρ) = (ri, s − ri) ≤ 0 as
s− ri is equal to r plus some simple roots.

Hence none of the terms ki(ri, r) and ki(ri, s − 2ρ) is positive, so they must all be
0 as their sum is 0. In particular all the ri’s must be imaginary and must have inner
product 0 with r. We also have (ri, s − ri − r) = (ri, s − 2ρ) = 0 and s − ri − r is equal
to

∑
kjrj + (ki − 1)ri, so kjrj and (ki − 1)ri have inner product 0 with ri, so (ri, rj) = 0

unless ri = rj and ki = 1.
Hence for any term sse

s−ρ in S, s is of the form r+
∑

kiri, where the ki’s are positive
integers, all the ri’s are imaginary and have inner product 0 with r, and (ri, rj) = 0 if
i 6= j or ki ≥ 2. Any such s lies in the Weyl chamber, so s − ρ lies in the interior of the
Weyl chamber, hence the right-hand side of (3) is equal to

∑
ε(w)w(S). To complete the

proof of the character formula we now evaluate S by computing the terms of the left-hand
side of (3) that contribute to S.

If er+
∑

kiri is a term of ChL(r) then some ri has nonzero inner product with r, hence
the only terms of the form er+

∑
kiri−ρ of the right-hand side of (3) in S are those coming

from
e−ρer

∏
(1− eh)multh. (4)

If (ri, rj) = 0 for i 6= j then the coefficient of e
∑

kiri+r−ρ in (4) is easily seen to be 0 if
some ki is greater than 1, and (−1)n otherwise, where n is the number of simple roots ri

in
∑

kiri. Hence we find that
S = er−ρ

∑
ε(s)es,

where the sum is over all sums of simple roots s. Here the sign ε(s) is defined by
ε(s) = (−1)n is s is the sum of n distinct pairwise perpendicular imaginary simple roots
perpendicular to r, and ε(s) = 0 otherwise. Putting everything together shows that

ChL(r) = eρ
∑
w

ε(w)w(S)/
∏
α

(1− eα)multα,

where S is given above. Note that if r is not perpendicular to any imaginary simple roots
(e.g., if there are no such roots) then S = er−ρ and the formula for ChL(r) is identical to
the usual Kac-Weyl formula.

Remark. In this formula for ChL(r), the right hand side does not change if ρ is
replaced by any vector having inner products (ri, ri)/2 with all real simple roots ri.
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Remark. The Peterson recursion formula (Kac [3, Ex. 11.12]) for the multiplicities of
roots of G and the Freudenthal recursion formula for the multiplicities of roots of lowest
weight modules (Kac [3, Ex. 11.14]) can be proved in just the same way that they are
proved for Kac-Moody algebras.

5. Examples.

We describe four ways of constructing GKM algebras: from SCM’s, from Lorentzian
lattices of dimension at most 10, from even Lorentzian lattices of dimension at most 26,
and from diagram automorphisms of Kac-Moody algebras.

The most obvious way of constructing GKM’s is to find any matrix satisfying the
conditions of an SCM and write down then generators and relations for the corresponding
GKM algebra. I do not know of any interesting algebras found like this except for a few
Kac-Moody algebras.

A second way to construct GKM algebras is as the fixed points of a diagram auto-
morphism of a Kac-Moody algebra. More generally we have:

Theorem 5.1. The subalgebra of a GKM algebra G with nonsingular Cartan subalgebra
fixed by a finite group A of diagram automorphisms is a GKM algebra with nonsingular
Cartan subalgebra.

(A diagram automorphism is one that preserves the Cartan subalgebra, permutes the
ei’s and permutes the fi’s in the same way.)

Proof. As the group A is finite we can grade G as in 3.1 in such a way that the grading
is preserved by A. Any diagram automorphism commutes with the Cartan involution ω, so
the fixed point subalgebra GA satisfies the conditions (1) to (4) of Theorem 3.1. The fixed
subspace of the Cartan subalgebra is nonsingular as the fixed subspace of any nonsingular
inner product space under a finite group is nonsingular. Hence by Theorem 3.1, GA is a
GKM algebra.

Remark. GA will usually have an infinite number of imaginary simple roots even if G
has none. The real simple roots of GA are easy to describe: they correspond to the orbits
of A on the Dynkin diagram of G which are Dynkin diagrams of the form An

1 or An
2 .

For any even lattice R there is a Lie algebra A with “root lattice” R such that the
dimension of the weight space of any nonzero element r of R is pd−1(1− 1

2r2)−pd−1(−r2),
where d is the dimension of R and pd−1 is the number of partitions with d− 1 colors. See
Borcherds [1] for details. The real vector space H spanned by R is an abelian subalgebra
of A which is self centralizing if R is nonsingular. A has an involution ω acting as −1 on
R and an invariant bilinear form (, ) extending that of R.

If R is Lorentzian we chose an element r in R of negative norm which is not per-
pendicular to any norm 2 vectors of R and grade A by letting the weight space of A
corresponding to s in R have degree (r, s). H is then the subalgebra of A of elements of
degree 0. The “no ghost” theorem (Goddard and Thorn [4]) implies that the bilinear form
(, )0 is positive definite on any weight space other than H if the dimension of R is at most
25, so that by Theorem 3.1 A is a GKM algebra. If R has dimension exactly 26 then the no
ghost theorem implies that (, )0 is positive semidefinite and its kernel in the weight space
corresponding to r has codimension p24(1 − 1

2r2) if r is nonzero. Hence A has a graded
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ideal such that the quotient B of A by this ideal is a GKM algebra such that the weight
space corresponding to r in R has dimension p24(1− 1

2r2).
The most interesting example of such an algebra is got by taking R to be the 26-

dimensional even unimodular Lorentzian lattice II25,1. The real simple roots of the cor-
responding algebra B generate the “monster Lie algebra” and are the simple roots of the
reflection group of R which were described by Conway [2]. He showed that II25,1 has a
norm 0 vector ρ such that the simple roots of the reflection group are just the norm 2
vectors of R which have inner product −1 with ρ, and these are the real simple roots of
B. (More precisely they are the images of the simple roots of B under the natural map
from the root lattice to R.) The norm 0 simple roots of B are not difficult to find: they
are the positive multiples of ρ, each with multiplicity 24 (or more precisely there are 24
simple roots mapping onto each positive multiple of ρ). I have not been able to find any
negative norm simple roots of B; I have checked that there are no simple roots mapping
onto r in R for all vectors r of norm −2 or −4 and most vectors of norm −6. (R has 121
orbits of norm −2 vectors and 665 orbits of norm −4 vectors, but any vector of R can be
the image of several different roots of B.)

There is a similar construction using Lorentzian lattices R of dimension d at most 10
instead of even Lorentzian lattices of dimension at most 26. (Borcherds [1].) In this case
the multiplicity of the root r of the GKM algebra constructed from R is p′d−1((1−r2)/2)−
p′d−1(−r2/2) if d is at most 9, and p′8((1− r2)/2) if d is 10. Here p′d(n) is the coefficient of
xn in ∏

i

(1− xi)−d(1 + xi−1/2)d.

The most interesting case of this is got by taking R to be the 10-dimensional odd unimod-
ular Lorentzian lattice I9,1. R has a norm 0 vector 2ρ such that the real simple roots of
the GKM algebra A of R are the norm 1 vectors of R which have inner product −1 with
2ρ, and the norm 0 simple roots are the positive multiplicities of 2ρ, each with multiplicity
8. (The real simple roots are the simple roots of the reflection group of R generated by
the reflections in hyperplanes perpendicular to norm 1 vectors.)

The algebra A has many simple roots of negative norm, unlike the corresponding
algebra for II25,1 which appears to have no roots of negative norm. To obtain an algebra
which has no roots of negative norm, we define the monster Lie superalgebra B to be the
following GKM superalgebra:

(1) The root system of B is the (nonintegral) lattice generated by R and ρ, with R+ρ
the roots of the “super” part of B.

(2) The real simple roots of B are those of A. The imaginary simple roots of B all
have norm 0 and are the positive multiples of ρ each with multiplicity 8, and they are
“superroots” if the are odd multiples of ρ.

Some calculations I have done, together with the analogy between the monster Lie
algebra and the monster Lie superalgebra, suggest the conjecture that the root r of B has
multiplicity p′8((1− r2)/2). Note that if r2 is even, then by one of Jacobi’s identities this
is equal to the coefficient of x1−(1/2)r2

in

8
∏

i

(1− xi)−8(1 + xi)8.
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This conjecture implies that the Lie algebra part of B is isomorphic to A.
Nearly everything about GKM algebras can be generalized with little difficulty to

GKM superalgebras by copying the ways for generalizing Kac-Moody algebras to Kac-
Moody superalgebras.
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