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We calculate the multiplicities of all the roots of the “monster Lie algebra”. This gives

an example of a Lie algebra all of whose simple roots and root multiplicities are known and
which is not finite dimensional or an affine Kac-Moody algebra. There seem to be several
similar infinite dimensional Lie algebras, which to a sympathetic eye appear to correspond
to some of the sporadic simple groups.

1 Introduction and notation.
2 Generalized Kac-Moody algebras.
3 The monster Lie algebra.
4 There are no other simple roots.
5 Corollaries.
6 Lie algebras for other simple groups.

1 Introduction

We will prove

Theorem 1. Let II25,1be the 26 dimensional even unimodular Lorentzian lattice, and let
ρ be a Weyl vector for some choice of simple roots of its reflection group W (so ρ has
norm 0). We define the monster Lie algebra M to be the generalized Kac-Moody algebra
with root lattice II25,1whose simple roots are the simple roots of W , together with the
positive multiples of ρ, each with multiplicity 24. Then any nonzero root r ∈ II25,1 of M
has multiplicity p24(1− r2/24), which is the number of partitions of 1− r2/2 into parts of
24 colours.

This is equivalent to the following “denominator formula”.

eρ
∏

r∈Π+

(1− er)p24(1−r2/2) =
∑
w∈W
n∈Z

det(w)τ(n)ew(nρ)

where τ(n) is the Ramanujan tau function, and Π+ is the set of vectors of II25,1which are
either positive multiples of ρ or have negative inner product with ρ.

We give a brief outline of the proof of theorem 1. In section 3 we construct a Lie algebra
M from the Lorentzian lattice II25,1using vertex algebras. The “no ghost” theorem ([11])
allows us to calculate the multiplicities of the roots of M , which are as given in theorem
1, and also allows us to prove that M is a generalized Kac-Moody algebra . We can find
the real simple roots of M by using Conway’s theorem ([8]) which describes the reflection
group of the lattice II25,1, and we show that the positive multiples of ρ are simple roots
of multiplicity 24.

To complete the proof of theorem 1 we have to show that M has no other simple
roots. To do this we examine both sides of the “denominator formula” of M . We can
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evaluate one side of this by using Hecke operators, and it turns out to be a sort of modular
form. The other side of the denominator formula is a sum of terms of the form qn times
a modular form, where n is proportional to the norm of r + ρ for some simple root r. By
looking at the asymptotic behaviour of both sides at the cusp 0 we prove that all the n’s
must be 0, which can be used to show that there are no other simple roots and proves
theorem 1.

Section 5 contains a number of corollaries of theorem 1; for example any 25 dimensional
unimodular positive definite lattice must have a root. In section 6 we give some not very
convincing evidence for the existence of some more Lie algebras similar to the monster Lie
algebra M associated to some of the other sporadic simple groups.

The results we use here can be found in the following places. The results about
vertex algebras we use are taken from Borcherds [1], and proofs of these have recently
been written up by Lepowsky, Frenkel and Meurman in their book [15]. The no ghost
theorem is proved in Goddard and Thorn [11] and in Frenkel [14]. We use some standard
results about Kac-Moody algebras which can all be found in Kac’s book [13], and the
results about generalized Kac-Moody algebras that we need are in Borcherds [2] and [3]
and are summarized in section 2. The results about the geometry of the Leech lattice Λ
and the Lorentzian lattice II25,1that we need can be found either in the original papers
by Conway, Parker, and Sloane, most of which are reprinted in the book [9] by Conway
and Sloane, or in [5]. Finally the results on modular forms, Hecke operators and theta
functions that we use can be found in any book on modular forms, for example Serre [17]
or Gunning [12].

Remark. The multiplicities p24(1+n) of the roots of the monster Lie algebra are given
by Rademacher’s formula ([16, Chapter 15])

p24(1 + n) = 2πn−13/2
∑
k>0

I13(4π
√

n/k)
k

∑
0≤h,h′<k

hh′≡−1 mod k

e2πi(nh+h′)/k

where I13(z) = −iJ13(iz) is the modified Bessel function of order 13. In particular p24(1+n)
is asymptotic to 2−1/2n−27/4e4π

√
n for large n.

Notation.
Λ is the Leech lattice, the unique 24 dimensional even positive definite lattice with no

roots. Its elements are denoted by λ.
U is the two dimensional even unimodular Lorentzian lattice, so it is spanned by two

norm 0 vectors ρ, ρ′ with inner product -1.
II25,1 is the even 26 dimensional unimodular Lorentzian lattice. We usually write II25,1as

Λ ⊕ U , and write elements of II25,1in the form (λ, m, n), λ ∈ Λ,m, n ∈ Z, and this
element has norm λ2 − 2mn.

ρ is the norm 0 vector (0, 0, 1) of II25,1, so that ρ⊥/ρ is isomorphic to the Leech lattice
Λ.

ρ′ is the vector (0, 1, 0) of II25,1.
M is the monster Lie algebra, whose root lattice is II25,1.

Π+ is the set of positive roots of M , which are the vectors v ∈ II25,1 with v2 ≤ 2, (v, ρ) < 0
together with the positive multiples of ρ.
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ΠS is the collection of simple roots of M counted with multiplicities, which will turn out
to be the norm two vectors of II25,1of height 1 together with 24 copies of each positive
multiple of ρ. The norm 2 vectors of ΠS are the simple roots of the reflection group
of II25,1.

W is the reflection group of II25,1, with typical elements w.
p24(n) is the number of partitions of n into parts of 24 colours, so that

∑
n p24(1 + n)qn =

q−1
∏

n>0(1− qn)−24 = ∆(q)−1 = q−1 + 24 + 324q + 3200q2 + 25650q3 + 176256q4 +
1073720q5 + . . . . These are the multiplicities of roots of the monster Lie algebra M .

τ(n) is the Ramanujan tau function, whose generating function is
∆(q) =

∑
n τ(n)qn = q

∏
n>0(1− qn)24 = q − 24q2 + 252q3 + . . . .

ΘΛ(q) =
∑

λ∈Λ qλ2/2 = 1 + 196560q2 + . . . is the theta function of the Leech lattice.
c(n) are the coefficients of the elliptic modular function j(q)− 720.
j(q) is the elliptic modular function with j(q)− 720 =

∑
n c(n)qn = q−1 + 24 + 196884q +

. . . = ΘΛ(q)/∆(q)
q, τ are complex variables, with q = e2πiτ , |q| < 1, and Im(τ) > 0.

2 Generalized Kac-Moody algebras

We recall the results about generalized Kac-Moody algebras that we need. We will
modify the original definition of generalized Kac-Moody algebras in [2] slightly so that
these algebras are closed under taking universal central extensions, as in [3].

Suppose that aij , i, j ∈ I is a symmetric (possibly infinite) real matrix such that
aij ≤ 0 if i 6= j and such that if aii > 0 then 2aij/aii is an integer for any j. Then the
universal generalized Kac-Moody algebra of this matrix is defined to be the Lie algebra
generated by elements ei, fi, hij for i, j ∈ I satisfying the following relations:

1. [ei, fj ] = hij

2. [hij , ek] = δj
i aikek, [hij , fk] = −δj

i aikfk

3. If aii > 0 then Ad(ei)nej = Ad(fi)nfj = 0, where n = 1− 2aij/aii.
4. If aii ≤ 0, ajj ≤ 0 and aij = 0 then [ei, ej ] = [fi, fj ] = 0.

If aii > 0 for all i ∈ I then this is the same as the Kac-Moody algebra with sym-
metrized Cartan matrix aij . In general these algebras have almost all the good prop-
erties that Kac-Moody algebras have, and the only major difference is that generalized
Kac-Moody algebras are allowed to have imaginary simple roots. We list some of their
properties from [2] and [3].

(1) The element hij is 0 unless the i’th and j’th columns of a are equal. The elements
hij for which the i’th and j’th columns of a are equal form a basis for an abelian subalgebra
H of G, called its Cartan subalgebra. (In the case of Kac-Moody algebras, the i’th and
j’th columns of a cannot be equal unless i = j, so the only nonzero elements hij are those
of the form hii, which are usually denoted by hi.) Every nonzero ideal of G has nonzero
intersection with H. The centre of G is contained in H and contains all the elements hij

for i 6= j. If a is not the direct sum of two smaller matrices, not the 1× 1 zero matrix, and
not the matrix of an affine Kac-Moody algebra, then G modulo its centre is simple.

(2) If a has no zero columns then G is perfect and equal to its own universal central
extension. (This is why we need the elements hij for i 6= j.)
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(3) Suppose we choose a positive integer ni for each i ∈ I. Then we can grade G by
putting deg(ei) = −deg(fi) = ni. The degree 0 piece of G is the Cartan subalgebra H.

(4) G has an involution ω with ω(ei) = −fi, ω(fi) = −ei, called the Cartan involution.
There is an invariant inner product (,) on G such that (ei, fi) = 1 for all i, and it also has
the property that −(g, ω(g)) > 0 whenever g is a homogeneous element of nonzero degree.

(5) There is a character formula for simple highest weight modules Mλ of G with
highest weight λ, which states that

Ch(Mλ)eρ
∏

α∈Π+

(1− eα)mult(α) =
∑

w∈W

det(w)w(eρ
∑
α

ε(α)eα+λ)

The only case of this we need is for the one dimensional module, when it becomes the
denominator formula

eρ
∏

α∈Π+

(1− eα)mult(α) =
∑

w∈W

det(w)w(eρ
∑
α

ε(α)eα)

Here ρ is the Weyl vector (i.e. a vector with (ρ, r) = −r2/2 for all simple roots r),
Π is the set of positive roots α, W is the Weyl group, and ε(α) is (−1)n if α is the sum
of n distinct pairwise perpendicular imaginary simple roots that are all perpendicular to
λ, and 0 otherwise. This formula is still correct if ρ is replaced by a vector which has
inner product −r2/2 with all real simple roots r, because ew(α+ρ)−ρ depends only on the
inner product of ρ with the real simple roots. If G is a Kac-Moody algebra then there are
no imaginary simple roots so the sum over α is 1 and we recover the usual character and
denominator formulas.

We also need the following characterization of generalized Kac-Moody algebras from
[2].

Theorem 2·. A Z-graded Lie algebra G =
⊕

i∈Z Gi is the quotient of a generalized Kac-
Moody algebra graded as in (3) above by a subspace of its centre if and only if it has the
following four properties.

1 G0 ⊂ [G, G]
2 G has an involution ω which acts as -1 on G0 and maps Gi to G−i

3 G has an invariant bilinear form (,) such that Gi and Gj are orthogonal if i 6= −j,
and such that −(g, ω(g)) > 0 if g is a nonzero homogeneous element of G of nonzero
degree.

4 As a module over G0, G is a sum of finite dimensional submodules.

(If condition (1) is omitted it is still easy to describe G, by adding some outer deriva-
tions to a generalized Kac-Moody algebra .)

3 The monster Lie algebra.

We construct a generalized Kac-Moody algebra algebra M , called the monster Lie
algebra, with root lattice II25,1whose root multiplicities are given by the number of parti-
tions of an integer into parts of 24 colours. We find the real simple roots of this algebra by
using Conway’s description of the reflection group of II25,1, and we show that all positive
multiples of ρ are simple roots of multiplicity 24.

In this section we will prove
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Theorem 3. There is a generalized Kac-Moody algebra M with root lattice II25,1such
that the multiplicity of the nonzero vector r ∈ II25,1 is p24(1 − r2/2). The real simple
roots of M are the norm 2 vectors r with (r, ρ) = -1, and the positive multiples of ρ are
simple roots of multiplicity 24.

We will later show that M has no other simple roots.

Lemma 1. There is a Lie algebra M with the following properties.
1. M is graded by II25,1. The piece of degree r ∈ II25,1, r 6= 0 has dimension p24(1 −

r2/2).
2. M has an involution ω, which acts as -1 on II25,1 and on the piece of M of degree

0 ∈ II25,1.
3. M has a contravariant bilinear form (,) such that the pieces of M of degrees i, j ∈ II25,1

are orthogonal if i 6= j and such that (,) is positive definite on the piece of M of degree
i ∈ II25,1 if i 6= 0.

Proof: This Lie algebra was constructed in Borcherds [1]; we briefly recall its con-
struction. Given any nonsingular even lattice L we can can construct its vertex algebra V ,
which is an L-graded vector space with a large number of operations. In particular there
is an action of the Virasoro algebra on it, where the Virasoro algebra is spanned by the
operators 1 and Li, i ∈ Z with the relations

[Li, Lj ] = (i− j)Li+j +
i3 − i

12
dim(L)δi

−j

We let P i be the space of vectors v ∈ V satisfying L0(v) = iv, Ln(v) = 0 if n < 0. Then
one of the results of [1] is that P 1/L1(P 0) can be made into a Lie algebra. The space
V has an involution ω with the property (2) above and an inner product (,) which when
restricted to P 1 is singular on L1(P 0) and defines a contravariant inner product on the
Lie algebra P 1/L1(P0). The pieces of this Lie algebra of degrees i, j ∈ L are orthogonal
unless i = j.

So far this construction can be done for any even lattice. In the special case of a
26 dimensional Lorentzian lattice, the “no ghost” theorem of Goddard and Thorn [11]
implies that if r ∈ L, r 6= 0 then the restriction of the inner product (,) to the degree r
piece of P 1/L1(P 0) is positive semidefinite and the quotient by its kernel has dimension
p24(1 − r2/2). The fact that (,) is contravariant implies that its kernel is an ideal of
P 1/L1(P 0), so if we define M to be the quotient of P 1/L1(P 0) by the kernel of (,), for
L = II25,1, then M has all the properties stated in the lemma. Q.E.D.

Lemma 2. The Lie algebra M is a generalized Kac-Moody algebra .

Proof. If we fix any negative norm vector r of II25,1not perpendicular to any norm 2
vectors, then we can make M into a Z-graded Lie algebra by using the inner product with
r as the degree. All the conditions of theorem 2 are satisfied for M , so M is a generalized
Kac-Moody algebra .

We now fix a primitive norm 0 vector ρ of II25,1which is not perpendicular to any norm
2 vectors. (All such vectors ρ are conjugate under Aut(II25,1).) We choose a fundamental
domain for the reflection group W of II25,1containing ρ.
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Lemma 3. The positive norm simple roots of M are the norm 2 vectors r ∈ II25,1 with
(r, ρ) = −1.

Proof: All norm 2 vectors of II25,1have multiplicity 1, so the positive norm simple
roots of M are just the simple roots of the reflection group of II25,1. This reflection group
was described by Conway [8] who showed that its simple roots are the norm 2 vectors r of
II25,1with (r, ρ) = −1. Q.E.D.

Lemma 4. The positive multiples of ρ are simple roots of multiplicity 24.

Proof. As (ρ, ρ) = 0 and (ρ, r) < 0 for all other simple roots r, no multiple of ρ can
be written as a sum of simple roots, unless all the roots in the sum are perpendicular to
each other. Hence the simple root nω, n > 0 has multiplicity equal to the multiplicity of
the root nω, which is 24. Q.E.D.

4 There are no other simple roots.

We complete the proof of theorem 1 by showing that the Lie algebra M of the previous
section has no other simple roots.

Lemma 1.

eρ
∏

r∈Π+

(1− er)p24(1−r2/2) =
∑

w∈W

det(w)w(
∑
n∈Z

τ(n)enρ −
∑

r∈ΠS ,r2<0

er+ρ)

where Π+ is the set of positive roots of the monster Lie algebra, and ΠS is the collection
of simple roots of the monster Lie algebra, counted with multiplicities.

Proof. We show that this is just the denominator formula of section 2 for the gen-
eralized Kac-Moody algebra M . The vector ρ has inner product −1 = r2/2 with all real
simple roots r by Conway’s theorem (Lemma 3 above), so to prove this is the denominator
formula we have to check that∑

n∈Z

τ(n)enρ −
∑

r∈ΠS ,r2<0

er+ρ = eρ
∑
α

ε(α)eα

where ε(α) is the sum of a term (−1)n for each way of writing α as a sum of n distinct
pairwise perpendicular imaginary simple roots. Two imaginary roots can only be per-
pendicular if they are both of norm 0 and proportional, so if α is not a multiple of ρ
then ε(α) is just the multiplicity of α as a simple root. All positive multiples of ρ have
multiplicity 24 and are perpendicular to each other, so ε(nρ) is the coefficient of qn in∏

n(1− qn)24 = q−1
∑

n τ(n)qn, which proves lemma 1.
We recall that II25,1 = Λ⊕ U , where U is a two dimensional lattice spanned by ρ, ρ′

with ρ2 = ρ′2 = 0, (ρ, ρ′) = −1. We project both sides of the denominator formula from
the group ring of the lattice II25,1onto the group ring of the lattice U , which makes them
easier to calculate. More precisely, we define the projection P from the group ring of
II25,1to the space of Laurent series in p and q by

P (er) = p−(ρ,r)q−(ρ′,r)

so that P applied to each side of the denominator formula is a Laurent series in p and q.
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Lemma 2. If m > 0 then

− log(P (
∏

r∈Π+

(1− er)p24(1−r2/2))) =
∑
m>0

Tm(j(q)− 720)pm + 24
∑
n>0

σ(n)
n

qn

where σ(n) is the sum of the divisors of n, j(q) is the elliptic modular function, and Tm

is a Hecke operator (see Serre [17], especially proposition 12 of chapter VII, section 5). In
particular the coefficient of pm for m > 0 is a modular function of q of level 1.

Proof. The number of vectors of norm 2a of II25,1projecting onto the vector nρ+mρ′

of U is the number of vectors of Λ of norm 2a + 2mn, so the sum of the multiplicities
of the roots of M that project onto nρ + mρ′ ∈ U is equal to the coefficient c(mn) of
ΘΛ(q)

∑
n p24(1+n)qn = j(q)−720 =

∑
n c(n)qn. The left hand side of the formula above

is therefore equal to

− log
∏
m≥0

∏
n∈Z,n>0if m=0

(1− pmqn)c(mn)

=
∑
m≥0

∑
n∈Z,n>0 if m=0

∑
k≥1

c(mn)pmkqnk/k

=
∑
m>0

∑
n∈Z

∑
0<k|(m,n)

1
k

c(
mn

k2
)qnpm +

∑
n>0

∑
0<k|n

1
k

c(0)qn

=
∑
m>0

Tm(
∑
n∈Z

c(n)qn)pm + c(0)
∑
n>0

σ(n)
n

qn

which is equal to the right hand side. Q.E.D.

Lemma 3.
P (eρ

∏
r∈Π+

(1− er)p24(1−r2/2)) = ∆(q)ΘΛ(p)−ΘΛ(q)∆(p)

where
∆(q) = q

∏
n>0

(1− qn)24 =
∑

n

τ(n)qn = q − 24q2 + 252q3 . . .

is the generating function of Ramanujan’s tau function, and

ΘΛ(q) =
∑
λ∈Λ

qλ2/2 = 1 + 196560q2 + . . .

is the theta function of the Leech lattice Λ. In particular the coefficient of pm is a modular
form in q of weight 12 which is holomorphic at all cusps.

Proof. The left hand side is equal to

q exp(log(P (
∏

r∈Π+

(1− er)p24(1−r2/2)))) = q
∏

i

(1− qi)24 exp(−
∑
m>0

pmTm(j(q)− 720))
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by lemma 2, so the coefficient of pm is a modular form of weight 12 and level 1 for any m,
because q

∏
i(1−qi)24 is a modular form of weight 12 and level 1, and each of the functions

Tm(j(q)− 720) is a modular function of level 1.
Therefore if we let F (p, q) stand for the left hand side of the expression above, it has

the properties that the coefficient of pm is a modular form of weight 12 and level 1 for each
m and is zero for m < 0. Moreover F (p, q) = −F (q, p) because it is antisymmetric under
reflection in the root ρ− ρ′ of II25,1. We will show that there is only one function F (p, q)
with these properties whose coefficient of q1p0 is 1, which will prove lemma 3 because
∆(q)ΘΛ(p)−ΘΛ(q)∆(p) also has these properties.

The coefficients must all be modular forms holomorphic at the cusp ∞ because the
coefficient of qnpm is 0 if n < 0 by antisymmetry. We will now repeatedly use the fact that
a holomorphic modular form of weight 12 and level 1 is determined by its coefficients of q0

and q1. The coefficient of p0q0 of F is 0 by antisymmetry and the coefficient of p0q1 is 1
by assumption, so the coefficient of p0qn is determined for all n because the coefficient of
p0 is a modular form of weight 12 and level 1. Similarly the coefficients of p1q0 and p1q1

are -1 and 0 by antisymmetry, so the coefficient of p1qn is determined. Finally for any m
the coefficients of pmq0 and pmq1 are determined by antisymmetry, so the coefficient of
pmqn is determined. This proves lemma 3.

This identifies the left hand side of the denominator formula. We now examine the
right hand side by splitting up the terms into orbits under an action of the Leech lattice.

We define the height ht(r) of a vector r ∈ II25,1 to be −(r, ρ). We prove that there
are no simple roots of negative norm by induction on the height, so we assume that we are
given a positive integer m such that there are no simple roots of negative norm of height
less than m, and we will prove there are none of height m.

Lemma 4.
p−mP (

∑
w∈W,n∈Z

ht(nw(ρ))=m

det(w)τ(n)enw(ρ) −
∑

r∈ΠS ,ht(r)=m

eρ+r)

is a modular form of weight 12 and level 1.

Proof. If r is any simple root of negative norm, then ht(w(r)) > ht(r) for any nontrivial
element w of W . By assumption there are no simple roots of negative norm of height less
than m, so the only way that w(er+ρ) can have height m for some imaginary simple root r
is that either r is a multiple of ρ or w = 1. Therefore the sum in lemma 4 is the coefficient
of pm of ∑

w∈W

det(w)w(
∑
n∈Z

τ(n)enρ −
∑

r∈ΠS ,r2<0

er+ρ)

and lemma 4 now follows from lemmas 1 and 3.

Lemma 5. Recall that II25,1 = Λ ⊕ U . We write vectors of II25,1in the form (v,m, n)
with v ∈ Λ, m ∈ Z and n ∈ Z, and this vector has norm λ2 − 2mn. For each λ ∈ Λ the
map taking (v,m, n) ∈ II25,1 to (v + mλ, m, n + (v, λ) + mλ2/2) is an automorphism of
II25,1, and this defines an action of Λ on II25,1.

Proof: An easy check. (This gives a natural identification of ρ⊥/ρ = Λ with the group
of automorphisms of II25,1which fix ρ and every vector of ρ⊥/ρ.)
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Lemma 6. For any nonzero integer m there are only a finite number of orbits of vectors
of II25,1of some fixed norm and height m under the action of Λ.

Proof: Any vector (v,m, n) ∈ II25,1 of given norm and nonzero height is determined
by v, so by lemma 5 the number of orbits of such vectors under the action of Λ is at most
the order m24 of mΛ/Λ. Q.E.D.

Lemma 7. Suppose that A is any orbit of vectors of II25,1of norm −2n and height m
under the action of Λ. Then

p−mP (
∑
a∈A

ea) = qn/mΘA(q)

where ΘA(q) is a modular form of weight 12 with nonnegative coefficients and “constant
term” m−12 at the cusp 0. (The constant term of a modular form Θ(q) of weight k at the
cusp 0 is the limit of τkΘ(e2πiτ ) as τ tends to 0 along the positive imaginary axis.)

Proof. Let (v,m, (v2/2 + n)/m) be any vector in the orbit A. Then

p−mP (
∑
a∈A

ea) =
∑
a∈A

q−(a,ρ′)

=
∑
λ∈Λ

q−((v+mλ,m,(v2/2+n)/m+(v,λ)+mλ2/2),ρ′)

=
∑
λ∈Λ

qv2/2m+n/m+(v,λ)+mλ2/2

= qn/m
∑
λ∈Λ

qm(λ−v/m)2/2

= qn/mΘA(q)

where ΘA(q) is the theta function of a coset of the lattice
√

mΛ of determinant m24

and is therefore a modular form of weight dim(Λ)/2 = 12 with nonnegative coefficients.
The generalized Jacobi inversion formula (Gunning [12], section 20) states that

ΘA(e2πiτ ) = (−iτ)−12 det(
√

mΛ)
−1/2 ∑

λ∈Λ

e2πi((v,λ)−λ2/2τ)/m

so ΘA(q) has constant term (det(
√

mΛ))−1/2 = m−12 at the cusp 0. Q.E.D.

Lemma 8. The sum ∑
A

qn(A)/mΘA(q)

where the sum is over all orbits A of simple roots of height m, is a modular form of weight
12. Each n(A) is a positive integer equal to −(a + ρ)2/2 = m− a2/2 for a ∈ A and there
are only a finite number of orbits A with any given value of n(A). Each function ΘA(q) is
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a modular form of weight 12 with nonnegative coefficients which has constant term m−12

at the cusp 0.

Proof. This follows from lemmas 4, 6, and 7 because if a is a vector of norm at most
0 with (a, ρ) ≤ 0 which is not a multiple of ρ then (a + ρ)2 < 0.

We now complete the proof of theorem 1 by showing that the sum in lemma 8 must
be empty. We will do this by studying the behaviour of the sum as τ tends to 0 through
values on the positive imaginary axis.

The sum in lemma 8 is a sum of power series with positive coefficients whose formal
sum converges for |q| < 1, so the sum of the power series also converges for |q| < 1. If f(τ)
is a modular form of weight 12 with constant term c at the cusp 0 then

f(τ) = τ−12c + s(τ),

where s(τ) tends to 0 faster than any power of τ as τ tends to 0 along the imaginary axis.
Therefore

τ−12c + s(τ) =
∑
A

m−12(e2πin(A)τ/mτ−12 + sA(τ))

where each term in the sum on the right is nonnegative, and s and sA are functions tending
to zero faster than any power of τ as τ tends to zero along the imaginary axis. In particular
the right hand side is bounded as τ tends to 0, so there are only a finite number of terms
in the sum because each term on the right tends to m−12. Therefore

c−
∑
n>0

m−12r(n)e2πinτ/m

tends to 0 faster than any power of τ as τ tends to 0 along the positive imaginary axis,
where r(n) is the number of orbits A with n(A) = n. All the r(n)’s are nonnegative
integers, so this is impossible unless they are all 0, so there are no simple roots of norm at
most 0 and height m. This proves theorem 1.

5 Corollaries

We deduce several results about the monster Lie algebra and about lattices from our
main result.

Corollary 1. The universal central extension M̂ of the monster Lie algebra M is a II25,1-

graded Lie algebra, and if 0 6= r ∈ II25,1 then the subspace of M̂ of degree r is mapped

isomorphically onto that of M . The subspace of M̂ of degree 0 ∈ II25,1 (i.e. its “Cartan
subalgebra”) can be represented naturally as the sum of a one dimensional space for for
each vector of the Leech lattice and a space of dimension 242 = 576 for each positive
integer.

Proof. This follows from the description of the Cartan subalgebra of the universal
central extension of a generalized Kac-Moody algebra in [3] or section 2 as the sum of a
space of dimension n2 for each simple root of multiplicity n. The monster Lie algebra M
has a real simple root of multiplicity 1 for each vector of the Leech lattice, and a simple
root of multiplicity 24 for each positive multiple of ρ. Q.E.D.

10



Corollary 2.

eρ
∏

r∈Π+

(1− er)p24(1−r2/2) =
∑

w∈W

∑
n∈Z

det(w)τ(n)eω(nρ)

This is just the denominator formula for the generalized Kac-Moody algebra M.

Corollary 3. If r ∈ Π+ then

(r + ρ)2m(r) =
∑

α,β∈Π+

α+β=r

(α, β)m(α)m(β)

where m(r) is defined to be
∑

n>0,n∈Z,r/n∈II25,1
mult(r/n)/n (which is equal to the mul-

tiplicity of r if r is primitive).

This is just the Peterson recursion formula for the multiplicities of the roots of M ,
which is valid for generalized Kac-Moody algebras . Notice that for the Peterson recursion
formula to hold ρ must satisfy (ρ, r) = −r2/2 for all simple roots r (not just the real ones),
which would not be true if M had any simple roots r of negative norm.

Corollary 4. Let N be the subalgebra of the monster Lie algebra M generated by the
elements of M whose degree has norm 2 (so that N is the Kac-Moody subalgebra of M
generated by the real simple roots of N). Then the multiplicity of the root r ∈ II25,1 of
N is at most p24(1 − r2/2), and equality holds whenever r is in the fundamental domain
of W and ht(r) > |r2|.

Proof. The inequality for the multiplicity of r is clear because N is a subalgebra of
M . If r is in the fundamental domain of W , then r has inner product at most 0 with all
simple roots, so it is not possible for r to be the sum of ρ and some other simple roots if
|(r, ρ)| = ht(r) > r2.

Remark. The algebra N is the original “monster Lie algebra” defined by Conway,
Queen and Sloane in [7]. (This definition missed out the norm 0 simple roots of M ,
possibly because algebras with imaginary simple roots had not been studied at the time.)

Remark. The inequality of corollary 4 for the multiplicities of the roots of N was first
proved by Frenkel [14] by showing that the space P 1/L1P

0 of section 3 is a module for N .
The lattice II25,1has 121 orbits of vectors of norm -2, all but 2 of which have multiplicity
324 as roots of N , and has 665 orbits of vectors of norm -4, all but 3 of which have norm
3200 as roots of N .

Recall that in lemma 1 of section 3 we defined some subspaces P i of the space V
consisting of lowest weight vectors of the Virasoro algebra. The elements of the monster Lie
algebra commute with all elements of the Virasoro algebra, considered as endomorphisms
of the space V of section 3, so all the spaces P i are representations of the monster Lie
algebra.

Corollary 5. If i < 0 then the space P i is a sum of highest weight and lowest weight
representations of M .

Proof. The height of any weight of P i, i < 0 cannot be 0 as all its weights have
negative norm. As M is generated by elements of height -1,0 or 1 this means that P i

+ and

11



P i
− are both representations of M , where P i

+ and P i
− are the sums of the elements of P i

whose degrees have positive or negative height. The representation P i
+ has the property

that the norms of its weights are bounded above (by 2i) and its weights all have negative
inner product with all imaginary simple roots of M , so by the results on representations
of generalized Kac-Moody algebras in [2] P i

+ is a sum of lowest weight representations of
M . Similarly P i

− is a sum of highest weight representations.

Corollary 6. Suppose that n is 1 or a prime. Then the height of vectors v of norm −2n
in the fundamental domain of the reflection group of II25,1is a linear function of the theta
function of the lattice v⊥.

Proof. The Peterson recursion formula shows that for primitive vectors of any fixed
negative norm the height is a linear function of the theta functions of the cosets a+ v⊥ for
a in the dual of the lattice v⊥. If n is 1 or a prime then the theta function of any of these
cosets is a linear function of the theta function of the dual of v⊥, which is in turn a linear
function of the theta function of v⊥.

Corollary 7. Let v be a vector of II25,1of negative norm, and suppose for simplicity that
there is no norm 0 vector z such that |(z, v)| < |(v, v)/2|. Let n be the number of norm 0
vectors z with (v, z) = (v, v)/2.

1. If v has norm -2 then its height is (r + 18− 4n)/12.
2. If v has norm -4 then its height is (r + 20− 2n)/8.
3. If v has norm -6 then its height is (r + 20− n)/6.

Proof. These are just special cases of corollary 6.
Remark. If v has inner product -1 with some norm 0 vector of height h then v⊥ is

isomorphic to the sum of a Niemeier lattice and a 1 dimensional lattice, and v has height
2h + 1.

Remark. The results of corollary 7 for vectors of norm -2 and -4 were originally proved
by different methods in [4]. There is a list of the 121 orbits of norm -2 vectors and the 665
orbits of norm -4 vectors of II25,1in [4].

Corollary 8.
1. If L is an even 25 dimensional positive definite lattice of determinant 2 then the

number of roots of L is 6 mod 12 unless L is the sum of a Niemeier lattice and a 1
dimensional lattice.

2. If L is a 25 dimensional unimodular positive definite lattice which is not the sum of
a Niemeier lattice and a one dimensional lattice then the number of norm 2 vectors
plus twice the number of norm 1 vectors is 4 mod 8 (and in particular any such lattice
has roots).

3. If L is a 26 dimensional even, positive definite lattice of determinant 3 with no roots
of norm 6 then the number of roots of L is 0 mod 6.

Proof. This follows from corollary 7 by using the following facts. There is a 1:1 cor-
respondence between orbits of norm -2 vectors of II25,1and even 25 dimensional positive
definite lattices of determinant 2, such that v⊥ is isomorphic to L. There is a 1:1 corre-
spondence between orbits of norm -4 vectors of II25,1and 25 dimensional positive definite
unimodular lattices L such that v⊥ is isomorphic to the sublattice of even vectors of L, and
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the number of norm 1 vectors of L is equal to the number of norm 0 vectors which have
inner product -2 with v. Finally there is a 1:1 correspondence between norm -6 vectors v
of II25,1and roots r of 26 dimensional even positive definite lattices of determinant 3 such
that v⊥ is isomorphic to r⊥. In each case we can work out the theta function of L from
that of v⊥, and this gives the results of corollary 8.

Remark. In [4] there is an algorithm for classifying the even 26 dimensional positive
definite lattices of determinant 3. In particular there is a unique such lattice with no roots,
and its automorphism group is 2 ×3D4(2). There are also unique such lattices with root
systems a3

1, a2, and g2, so the congruence above is best possible.
Finally we have the following completely useless curiosity. (There are presumably

even more curious and useless such formulae for vectors of norms -4, -6,... .)

Corollary 9. Suppose v is a norm -2 vector of II25,1not of height 1 that is in the funda-
mental chamber of the reflection group of II25,1. Then

d(d− 51)/2− number of components of the Dynkin diagram of v⊥

+ number of orbits of R under σ = 324.

Here d is the rank of the Dynkin diagram of v⊥, R is the set of simple roots of the reflection
group of II25,1which have inner product−1 with v, and σ is minus the opposition involution
of v⊥, which acts on the set R.

Proof. In [4] it is shown that the left hand side of this is the multiplicity of the root
v of M , so corollary 9 follows from theorem 1.

6 Lie algebras for other simple groups.

There appear to be many other non affine Kac-Moody algebras similar to the one
in this paper, many of which seem to be associated in a rather obscure way to many
of the other sporadic simple groups in the monster. In [6] it is shown that if G is any
finite subgroup of Conway’s group Aut(Λ), then the lattice ΛG of vectors fixed by G has
many of the properties of Λ. In particular if it has no roots then the reflection group of
the Lorentzian lattice ΛG ⊕ U has a norm 0 Weyl vector ρ. This suggests the following
question.

Problem. Let G be a finite subgroup of Aut(II25,1) fixing ρ ∈ II25,1, and let L be the
Lorentzian lattice of vectors fixed by G. Is there a “nice” Lie algebra with root lattice L?
In particular, some experiments suggest the following conjecture.

Conjecture. Let g be an element of M24 ⊂ Aut(Λ) of order h with cycle shape 124,
1828, 1636, 1454, 12223262, 1373, 12112, 112171141, 113151151, or 11231. Let Λg be the
lattice of vectors of Λ fixed by g and let L be the Lorentzian lattice Λg ⊕U . If g has cycle
shape 1n12n2 . . . let ∆g(q) be the modular form η(q)n1η(2q)n2 . . . =

∑
n τg(n)qn.

Then we conjecture that
1 Λg has no roots. By the results of [6] this implies that the reflection group of L has a

norm 0 Weyl vector ρ (i.e., ρ has inner product −(r2/2) with every simple root r of
the reflection group).

2 The modular form ∆g(q) has multiplicative coefficients and is the cusp form of smallest
weight for the normalizer Γ0(h)+ of the subgroup Γ0(h) of PGL+

2 (Q).
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3 Let Mg be the generalized Kac-Moody algebra whose real simple roots are those of
the reflection group of L, and whose imaginary simple roots are the multiples nρ
of ρ, with multiplicity equal to the number of fixed points of gn, so that ∆g(q) =
q
∏

n(1− qn)mult(nρ). Define pg by
∑

pg(n)qn = 1/∆g(q). Then the root r of L has a
multiplicity given by some expression involving pg, possibly∑

d|h,(r,L)

pg(−r2/d)

where the sum is over all positive integers d dividing both h and all the numbers
(r, s), s ∈ L. This seems to be the simplest expression that gives the correct multi-
plicity for positive roots, multiples of ρ, and II25,1. It does not work if g is one of the
elements of M24 of cycle shape 142244 or 12214182.
Conway and Norton [10] showed that there was a natural correspondence between

automorphisms of Λ and certain conjugacy classes in the monster simple group, and these
elements of the monster often have centralizers which are almost sporadic simple groups.
For example, the elements of M24 of cycle shapes 124, 1828, 1636, 1454 and 1373 correspond
in this way to the monster, the baby monster, the Fischer group Fi′24, the Harada Norton
group, and the Held group. This suggests that the Lie algebras associated to these elements
of M24 might be connected in some way to these simple groups. However, there is no known
direct connection even between the monster Lie algebra and the monster simple group.

There also seems to be an interesting Lie superalgebra. Let U be the nonintegral
lattice spanned by two vectors ρ, ρ′ with ρ2 = ρ′2 = 0, (ρ, ρ′) = −1/2, and let L be the
direct sum of U and the E8 lattice. We define a generalized Kac-Moody superalgebra
whose root lattice is L by letting its real simple roots be the norm 1 vectors r of L with
(ρ, r) = −1/2, and letting its imaginary simple roots be the positive multiples of ρ, each
with multiplicity 8, where the even multiples of ρ are even roots, and the odd multiples of
ρ are odd (or “super”) roots. Then we conjecture that the multiplicity of a nonzero root
r ∈ L is the coefficient of q(1−r2)/2 in the modular form

q1/2
∏
i>0

(1− qi)−8(1 + qi−1/2)8.

of level 2. This modular form has the same relation to the theta functions of odd unimodu-
lar lattices as ∆(q) has to the theta functions of even unimodular lattices. If we could prove
that there was some generalized Kac-Moody superalgebra with these root multiplicities,
then it would follow from an argument similar to the proof of theorem 1 that its simple
roots are just the ones above.
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