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We show that the moduli space of complex Enriques surfaces is an affine variety with
a copy of the affine line removed. We do this by using the denominator function of a
generalized Kac-Moody superalgebra (associated with superstrings on a 10-dimensional
torus) to construct a non-vanishing section of an ample line bundle on the moduli space.
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1. Introduction.

The moduli space D0 of Enriques surfaces is known to be the quotient D of a 10-
dimensional hermitian symmetric space Ω by a discrete group OM (Z), with a divisor Hd

removed. The symmetric space Ω has a OM (Z)-line bundle P over it such that the sections
of Pn are essentially automorphic forms of weight n. The line bundle P is ample on D and
some power defines an embedding of D = Ω/OM (Z) into projective space, which makes
D, and hence D0, into a quasiprojective variety. We will prove

Theorem 1.1. The moduli space D0 is a quasiaffine variety.

To prove this we will show that the ample bundle P 4 is trivial when restricted to the
complement of the divisor Hd, so that the trivial bundle over the moduli space is ample
and therefore the moduli space is quasiaffine (and not just quasiprojective). Sections of P 4

are essentially the same as automorphic forms of weight 4, so to show that P 4 is trivial we
construct an automorphic form Φ (theorem 3.2) of weight 4 on the hermitian symmetric
space Ω which has a zero of order 1 along the divisors Hd and has no other zeros. This
automorphic form Φ then defines a trivialization of P 4 restricted to the moduli space D0.

The function Φ is constructed in [B92] as a twisted denominator function of the fake
monster Lie algebra, associated to an automorphism of order 2 of the Leech lattice fixing
an 8-dimensional subspace. The fact that Φ is an automorphic form should follow from a
generalization of the results of [B95] from the level 1 case covered there to higher levels.
As this generalization has not yet been done, we prove that Φ is an automorphic form (in

∗ Supported by NSF grant DMS-9401186.

1



section 3) by an ad hoc argument using the fact that Φ can be written as either an infinite
product or an infinite sum. We then show that Φ has no zeros other than the hyperplanes
Hd.

It is not hard to describe precisely how D0 differs from an affine variety: it is an affine
variety with a copy of the affine line C1 removed. This follows from the description of
the Baily-Borel compactification of D given by Sterk in [S, 4.5, 4.6, 4.7]. For the readers
convenience we briefly recall Sterk’s results. The Baily-Borel compactification consists of
D together with 2 points corresponding to the 2 orbits of primitive isotropic vectors in M ,
and two 1-dimensional pieces isomorphic to C and C∗ corresponding to the two orbits of
primitive isotropic rank 2 sub-lattices of M . The closure of the divisor Hd of D contains
one of the points and the 1-dimensional component C. The complement of the closure of
Hd is an affine variety, and this affine variety is just the union of D0, a copy of C∗, and a
point. The copy of C∗ is constructed as the quotient of the upper half plane by the group
Γ0(2) = {

(
ab
cd

)
∈ SL2(Z)|c ≡ 2 mod 0} and the point is then just one of the cusps, so the

union of C∗ and this point is just a copy of the affine line C. Hence the moduli space D0

is an affine variety with a copy of the affine line C removed.
I. Dolgachev pointed out to me that the form constructed in theorem 3.2 might be

one case of an infinite family of forms as follows. Let R denote one of the following four
division algebras R,C,H,O of real, complex, Hamiltonian, or Cayley numbers. Let Sn(R)
denote Hermitian n× n matrices with entries in R and let Sn(R)+ be the cone of positive
definite matrices. Consider the tube domain Sn(R) + iSn(R)+. Except when R = O and
n > 3 it is a symmetric bounded domain. When n = 2, R = O we get the domain Ω
whose quotient D with a divisor Hd removed parameterizes Enriques surfaces. Let Γ(R)
be the arithmetic group Sp(2n,Z) (R = R), GL(2n,Z[i]) (R = C), SU(2n,OH) (R = H),
OM (Z) (R = O, n = 2). There might be a similar Γ-modular form on each of these spaces.
The complement of its zeroes should be the period space of a family of (possibly non simply
connected) Calabi-Yau manifolds of dimension n. The existence of a such a form is known
for n = 2, R 6= H. If R = R, S2(R) + iS2(R)+ is the 3-dimensional Siegel space Z2, and
the family is the family of Kummer surfaces. In the case C, the domain S2(C)+ iS2(C)+is
4-dimensional of type I2,2

∼= IV4 and the family is the family of K3-surfaces which are
nonsingular models of branched covers of the plane ramified over the union of six lines (see
[M] for the construction of the corresponding form). The case R = O is theorem 3.2. If n
is arbitrary and R = C Dolgachev conjectures that the family is the family of Calabi-Yau
n-folds which are obtained by a resolution of double covers of Pn branched along 2n + 2
hyperplanes in general position.

Kondo [K] has recently proved that the moduli space of Enriques surfaces is rational.
It is also possible to construct automorphic forms related to the moduli spaces of

polarized K3 surfaces using similar methods (as A. Todorov suggested to me). For example,
the form constructed in example 4 of section 16 of [B95] associated with the Dynkin diagram
E7 is an automorphic form for the group OII2,18⊕〈−2〉(R) which vanishes exactly on the
hyperplanes of norm −2 vectors, and is very closely related to the moduli space of K3
surfaces with a polarization of degree 2.

I thank I. Dolgachev, A. Torodov, N. I. Shepherd-Barron, and the referee for explaining
moduli spaces of K3 and Enriques surfaces to me and for suggesting several improvements
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and corrections.

Notation and terminology.

All varieties are defined over the complex numbers. The bilinear forms on lattices
have the opposite signs to those in [B95]; this is because the sign conventions in algebraic
geometry are the opposite of those in the theory of Lorentzian lattices.

′ If M is a lattice then M ′ means the dual of M .
+ If G is a subgroup of OM (Z) then G+ is the subgroup of G of elements not inter-

changing the two components of Ω.
c(n)

∑
n c(n)qn = η(τ)−8η(2τ)8η(4τ)−8.

C An open solid cone in L⊗R.
C The complex numbers.

∆(τ) = η(τ)24.
d A norm −2 vector of M .

D The complex space Ω/OM (Z).
D0 The moduli space of Enriques surfaces, which is D with the divisor Hd removed.

E4(τ) = 1 + 240
∑

m>0,n>0 m3qmn.
E8 The E8 lattice. If n is an integer then E8(n) means E8 with the values of the bilinear

form multiplied by n.
η(τ) = q1/24

∏
n>0(1− qn).

Φ An automorphic form of weight 4.
f(τ) = η(τ)−8η(2τ)8η(4τ)−8.

Γ1 The subgroup of OM (Z) generated by reflections of R2 and by −1.
Γ2 The subgroup of OM (Z) generated by reflections of R0 ∪R2 and by −1.
Γ3 A finite index subgroup of OM (Z) defined in lemma 2.5.
Hd The points of Ω which are orthogonal to the norm −2 vector d ∈ M .

=(y) The imaginary part of y.
IIm,n The even unimodular Lorentzian lattice of dimension m + n and signature m− n.

I5 A modified Bessel function.
L The lattice E8(−2)⊕ II1,1. The element (v,m, n) ∈ L with v ∈ E8(−2), m,n ∈ Z has

norm v2 + 2mn.
λ A vector in L′.

M The lattice L ⊕ II1,1(2). The element (v,m, n) ∈ M with v ∈ L, m,n ∈ Z has norm
v2 + 4mn.

µ A vector in L.
m,n Integers.

OM (Z) The group of all automorphisms of the lattice M .
Π+ The set of positive vectors of L, i.e., the vectors which have positive inner product

with ρ or are positive multiples of ρ.
q e2πiτ

Q The rational numbers.
ρ, ρ′ The norm 0 vectors ρ = (0, 0, 1) and ρ′ = (0, 1, 0) of the lattice E8(−2)⊕ II1,1.

r A norm −2 vector of M .
R0, R2 The sets of norm −2 vectors of M which have inner product 0 or 2 with u.
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S The surface of points y ∈ iC with (y, y) = −1.
τ A complex number with positive imaginary part.
u The norm 0 vector (0, 0, 1) ∈ L⊕ II1,1(2) = M .
v A vector of L.

W The reflection group of the lattice L = E8(−2)⊕ II1,1 generated by the reflections of
norm −2 vectors.

χ A homomorphism of OM (Z)+ to {±1} taking reflections of norm −2 vectors to −1
and reflections of norm −4 vectors to 1.

y A vector in L⊗R + iC.
Ψ(y) = Φ(y + (ρ− ρ′)/2).

Ω The hermitian symmetric space (with 2 components) associated with the lattice M ,
consisting of all points ω ∈ P (M ⊗C) such that (ω, ω) = 0 and (ω, ω̄) > 0.

2. The lattice M and the moduli space of Enriques surfaces.

In this section we recall some facts about the moduli space of Enriques surfaces, and
the associated lattice and symmetric space. Many of these results can be found in [B-P-V
chapter VIII].

We define the lattice M to be L ⊕ II1,1(2), where L = E8(−2) ⊕ II1,1, E8 is the E8

lattice, and II1,1 is the 2-dimensional even indefinite unimodular lattice. If L is any lattice
and n is an integer then L(n) means L with the bilinear form multiplied by n. We write
vectors of M = L⊕II1,1(2) as (v,m, n) with v ∈ L, m,n ∈ Z, so that this vector has norm
v2 + 4mn. Similarly we write vectors of L = E8(−2)⊕ II1,1 as (v,m, n) with v ∈ E8(−2),
m,n ∈ Z, so that this vector has norm v2 + 2mn. The norm 0 vector u of M is defined to
be the vector (0, 0, 1) ∈ M , and similarly we define ρ = (0, 0, 1) ∈ L and ρ′ = (0, 1, 0) ∈ L.
We write OM (Z) for the automorphism group of the lattice M . We will say that a vector
of a lattice has even type if it has even inner product with all vectors, and we will say
it has odd type otherwise. There are two orbits of primitive norm 0 vectors of M under
OM (Z), which can be distinguished by whether they have even or odd type. There are
also two orbits of primitive norm 0 vectors in L which can be distinguished in the same
way.

We define the hermitian symmetric space Ω of M to be the set of vectors ω ∈ P (M⊗C)
such that (ω, ω) = 0 and (ω, ω̄) > 0 (where P means the projective space of a vector space).
The space Ω has two components, and we write OM (Z)+ for the subgroup of index 2 of
OM (Z) of elements that do not exchange these two components. There is a second model
for Ω which we will use in section 3. The positive norm vectors of L ⊗R form two open
cones, and we choose one of them and call it C. Then one of the two components of Ω can
be identified with L ⊗R + iC by identifying the point v ∈ L ⊗R + iC with the point of
Ω represented by (v, 1/2,−v2/2) ∈ M ⊗C.

Any automorphism of M ⊗ R induces an automorphism of Ω, and if it does not
exchange the two components of Ω this induces an automorphism of L⊗R+iC. We describe
these automorphisms in a few cases which we will need later. If σ is an automorphism
of M = L ⊕ II1,1(2) fixing all vectors of II1,1 then it induces an automorphism of L and
hence of L ⊗ R + iC in the obvious way. If λ ∈ L′ then there is an automorphism of
M taking (v,m, n) to (v + 2mλ, m, n − (v, λ) −mλ2), and the induced automorphism of
L⊗R+ iC takes y to y + λ. Finally reflection in the hyperplane of the vector (0, 1,−1/2)
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of M ⊗Q takes (v, 1/2,−v2/2) to (v,−v2, 1/4) and therefore induces the automorphism
of L⊗R + iC taking y to −y/2(y, y).

Remark. The group OM (Z) seems to be defined slightly differently from the group Γ in
[B-P-V] but it follows from [N remark 1.15] that these two groups are the same. Similarly
proposition VIII.20.6 of [B-P-V] states that there are finitely many equivalence classes of
norm −2 vectors of M under OM (Z), but it follows from [N] (or from lemma 2.3 below) that
there is in fact only one orbit of norm −2 vectors. In particular the divisor

⋃
d Hd/OM (Z)

on Ω/OM (Z) is irreducible, and not just a finite union of irreducible divisors.
If d is a norm −2 vector of M we write Hd for the divisor of points of Ω represented

by points orthogonal to d. Then it follows from 20.5, 21.2, 21.4, of [B-P-V VIII], or from
[N, 1.14] that the moduli space of Enriques surfaces is

D0 =
(
Ω\(

⋃
d

Hd)
)
/OM (Z).

In the rest of this section we prove some auxiliary results about the subgroups of
OM (Z) generated by various subsets.

Lemma 2.1. Suppose that v is a vector in L⊗Q but not in the dual L′ of L, and suppose
that x is any real number. Then we can find a vector µ ∈ L with µ2 ≡ 2 mod 4 such that
|(µ− v)2 − x| < 2.

Proof. As v is not in L′ we can find a primitive norm 0 vector ρ of L of odd type
such that (ρ, v) is not an integer. This is because the primitive norm 0 vectors of odd
type span L. As OL(Z) acts transitively on such norm 0 vectors we can assume that
ρ = (0, 0, 1) ∈ E8(−2)⊕ II1,1. Then v = (λ, a, b) with a not an integer. We will find some
µ of the form µ = (0,m, n) ∈ II1,1, with m and n both odd so that µ2 ≡ 2 mod 4. So we
have to find odd integers m and n satisfying |(µ−v)2−x| = |λ2 +2(a−m)(b−n)−x| < 2.
As a is not an integer we can find some odd m with 0 < |a−m| < 1. Then whenever we
add 2 to n we change 2(a −m)(b − n) by a nonzero number less than 4, so we can chose
some odd integer n so that 2(a−m)(b− n) is at a distance of less than 2 from any given
real number x− λ2. This proves lemma 2.1.

Lemma 2.2. Suppose that R2 is the set of norm −2 vectors of M having inner product 2
with u = (0, 0, 1), and Γ1 is the subgroup of OM (Z) generated by the reflections of vectors
of R2 and the automorphism −1. Then any vector r ∈ M is conjugate under Γ1 to a vector
of the form (v,m, n) ∈ M with either m = 0 or v/m ∈ L′ and m > 0.

Proof. We can assume that r = (v,m, n) has the property that |(r, u)| = |2m| is
minimal among all conjugates of r under Γ1. If m = 0 we are done, so we can assume that
m 6= 0, and we wish to show that v/m ∈ L′.

Suppose that v/m 6∈ L′. By lemma 2.1 we can find a vector µ ∈ L with |(µ− v/m)2 +
(−4n/m − v2/m2)| < 2 and µ2 ≡ 2 mod 4. But if we calculate the inner product (r′, u),
where r′ is the reflection of r in the hyperplane of (µ, 1, (−µ2 − 2)/4) ∈ R2, we find that
(r′, u) has absolute value |(r′, u)| = |(r, u + 2(µ, 1, (−µ2 − 2)/4))| = |m((µ − v/m)2 +
(−4n/m − v2/m2))| < |2m| = |(r, u)|, which is not possible because we assumed that
|(r, u)| = |2m| was minimal. Hence v/m ∈ L′. We can obviously then assume that m > 0
by using the automorphism −1. This proves lemma 2.2.
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We write R0 or R2 for the sets of norm −2 vectors of M which have inner products 0
or 2 with u. We let Γ1 be the group generated by −1 and by the reflections of elements of
R2, and we let Γ2 be the group generated by −1 and the reflections of elements of R0∪R2.

Lemma 2.3. Any norm −2 vector of M is conjugate to an element of R0 ∪R2 under the
group Γ1. In particular the group Γ2 is the group generated by −1 and the reflections of
all norm −2 vectors of M .

Proof. Put r = (v,m, n), so that by lemma 2.2 we can assume that either m = 0 or
v/m ∈ L′ and m > 0. If m = 0 then r is orthogonal to u so this case is trivial.

Now suppose that v/m ∈ L′ (so that (v/m, v/m) ∈ Z) and m > 0. Then −2 = (r, r) =
m2(v/m, v/m)+ 4mn is divisible by (m2, 4m), so m = 1. Hence r = (v, 1, n) is an element
of R2. This proves lemma 2.3.

Remark. Lemma 2.3 can be used to give an elementary proof of Namikawa’s result [N,
2.13] that OM (Z) acts transitively on the norm −2 vectors of M , which implies that the
complement of D0 in D is an irreducible divisor. This can be done by noting that R0 and
R1 are acted on transitively by the groups in (1) and (2) of lemma 2.4, and then showing
that there is some automorphism of M (e.g., reflection in a norm −4 vector) mapping some
vector of R0 into R1.

Lemma 2.4. Two primitive norm 0 vectors z and z′ of M of even type are in the same
orbit of Γ2 if and only if they are congruent mod 2M . In particular there are only a finite
number of orbits of such norm 0 vectors under Γ2.

Proof. By lemma 2.3 the group Γ2 is the group generated by −1 and all reflections
of norm −2 vectors and hence is normal in OM (Z). We can find a norm 0 vector u ∈ 2M ′

such that (u, z) 6≡ 0 mod 4 because z is primitive, and as Γ2 is normal in OM (Z) we may
assume that u = (0, 0, 1). Any conjugate of z under Γ2 is congruent to z mod 2M and
therefore has inner product with u not divisible by 4, and in particular is not orthogonal
to u. By lemma 2.2 this implies that we may assume that z = (mv,m, n) for some v ∈ L′,
m > 0. As z has norm 0, we see that m2v2 = −4mn, so mv2 = −4n as m 6= 0. The vector
2v is in L, so if m is divisible by some odd number p then z/p ∈ M . As m = (z, u)/2 is
odd and z is primitive this shows that m = 1.

Hence we can assume that z = (v, 1, n) and z′ = (v′, 1, n′) with v ≡ v′ mod 2L. If r
is a norm −2 vector of L then the products of the reflections of (r, 0, 0) and (r, 0, 1) is the
automorphism taking (v, 1, n) to (v + 2r, 1, n − (v, r) + 2). The lattice L is generated by
its norm −2 vectors r, so these automorphisms can be used to map z to z′. This proves
lemma 2.4.

Lemma 2.5. The group Γ3 generated by the following sets of automorphisms has finite
index in OM (Z)+.
(1) The automorphisms in OL(Z)+ (extended to automorphisms of M by letting them

act trivially on II1,1(2)).
(2) The group of automorphisms taking (v,m, n) to (v + 2mλ, m, n − (v, λ) − mλ2) for

λ ∈ L′. This is the group of all automorphisms of M fixing u and all vectors of M/〈u〉.
(3) An automorphism given by reflection of a norm −2 vector r of M which has inner

product 2 with u. (The group in (2) above acts transitively on the set of such norm
−2 vectors r, so it does not matter which we choose.)
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(4) The automorphism −1.

Proof. The group generated by the automorphisms in (1) and (2) above is the group
of all automorphisms in OM (Z)+ that fix the primitive norm 0 vector u of even type, so
to prove that Γ3 has finite index in OM (Z)+ it is sufficient to show that there are only a
finite number of orbits under Γ3 of primitive norm 0 vectors of even type. But Γ3 contains
Γ2 because the group of automorphisms in (2) acts transitively on the set of norm −2
vectors having inner product 2 with u and the group of automorphisms in (1) contains all
reflections of vectors of R0, and by lemma 2.4 Γ2 has only a finite number of orbits on the
set of primitive norm 0 vectors of even type. This proves lemma 2.5.

Unfortunately the group Γ3 generated by the transformations above is not the whole
group OM (Z)+, and this means that the proof that Φ is an automorphic form for OM (Z)+

in section 3 has to be indirect. For example, the transformations above all preserve the
set of vectors in M of even type whose inner product with u is not divisible by 4, and it is
easy to see that u is not in this set but is conjugate to a vector in this set under reflection
in a norm −4 vector having inner product −2 with u.

3. Construction of the automorphic form Φ.

In this section we construct the automorphic form Φ of weight 4 for OM (Z)+ on one
of the two components of Ω whose zeros are exactly the divisors orthogonal to norm −2
vectors of M . We will construct Φ as a function on L⊗R + iC.

We start by recalling from [B92 section 14, example 3] the twisted denominator formula
for an automorphism of the monster Lie algebra coming from an involution of the Leech
lattice with an 8-dimensional fixed subspace and using it to define Φ. Unfortunately there
are 2 misprints the formulas given there: the final term in the first formula on page 442
should be (−1)m+n|pg((1−r2)/2)|, and the factor q1/2 in the next line should not be there.
It should also be noted that the sign conventions for Lorentzian lattices in [B92] are the
opposite to those used here. With these changes the twisted denominator formula is

Φ(y) =
∑

w∈W

det(w)e2πi(ρ,w(y))
∏
n>0

(1− e2πin(ρ,w(y)))(−1)n8

= e2πi(ρ,y)
∏

r∈Π+

(1− e2πi(r,y))(−1)(r,ρ−ρ′)c((r,r)/2)

where the first equality is the definition of Φ and the second equality only holds in the
region of convergence of the infinite product (see the remark after lemma 3.1). The vector
y is an element of L⊗C with =(y) ∈ C, where C is the positive open cone in L⊗R. The
group W is the subgroup of OL(Z) generated by the reflections of the norm −2 vectors of
L (and has infinite index in the full reflection group of L). It is also the Weyl group of
the fake monster Lie superalgebra. The vectors ρ and ρ′ are the norm zero vectors (0, 0, 1)
and (0, 1, 0) of L = E8(−2)⊕ II1,1, and ρ is also the Weyl vector of the fake monster Lie
superalgebra. The set Π+ is the set of positive roots of the fake monster Lie superalgebra,
which consists of all nonzero vectors (v,m, n) of norm at least −2 such that m > 0 or
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m = 0 and n > 0. The numbers c(n) are the coefficients of

f(τ) =
∑

n

c(n)qn

= η(τ)−8η(2τ)8η(4τ)−8

= q−1(1 + q)8(1− q2)−8(1 + q3)8 · · ·
= q−1 + 8 + 36q + 128q2 + 402q3 + 1152q4 + 3064q5 + O(q6)

Lemma 3.1. The sequence log(c(n)) is asymptotic to 2π
√

n.

Proof. The circle method (see [R]) gives an asymptotic expansion for the coeffi-
cients c(n) of any meromorphic modular form of negative weight with no poles in the
upper half plane in terms of the poles at cusps. The dominant term in this asymptotic
expansion for f(τ) comes from the pole of order 1/4 of f(τ) at the cusp 0, given by
τ4f(−1/τ) = 16η(τ)−8η(τ/2)8η(τ/4)−8 = 16q−1/4 + · · ·. This shows that c(n) is asymp-
totic to πn−5/2I5(2π

√
n) where I5 is a modified Bessel function (see [B95 lemma 5.3]). As

I5(x) is asymptotic to ex/
√

2πx we get the result stated in the lemma by taking logs. This
proves lemma 3.1.

In particular this implies that the infinite product for Φ converges whenever y has an
imaginary part in the open region bounded by the hypersurface S of points y ∈ iC with
(y, y) = −1/2 (see the proof of lemma 3.3 below).

Remark. It is easy to check lemma 3.1 by computing a few cases numerically; for
example, the values of πn−5/2I5(2π

√
n) for n = −1, 0, 1, 2, 3, 4, 5 are 1.17, 8.01, 35.59,

128.02, 402.80, 1151.95, and 3062.48, which can be compared with the values of the c(n)’s
given above.

Theorem 3.2. The function Φ(y) is an automorphic form on L⊗R+ iC with respect to
the discrete subgroup OM (Z)+ and the character χ of OM (Z)+ (defined below).

The proof of this theorem will take most of the rest of this section. We first note
the following two obvious transformation laws for Φ, which follow immediately from the
definition of Φ. If σ ∈ OL(Z)+ then

Φ(σ(y)) = χ(σ)Φ(y)

where χ is a character of OL(Z)+ taking reflections of norm −2 vectors to −1 and taking
reflections of norm −4 vectors to 1. If λ ∈ L′ then

Φ(y + λ) = Φ(y).

The next lemma is essentially a special case of theorem 5.1 of [B95].

Lemma 3.3. If we define Ψ(y) = Φ(y +(ρ− ρ′)/2) then Ψ(y) vanishes whenever y lies on
the surface S ⊂ iC of points y0 ∈ iC with (y0, y0) = −1/2.

Proof. We can assume that y0 ∈ i(L ⊗ Q) because rational points are dense
in S. If y0 is a point in S ∩ i(L ⊗ Q) then we look at the function g(τ) =
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− log(Ψ(τy0/i)) exp(−2πτ(ρ, y0)), defined for =(τ) large. This can be expanded as a power
series g(τ) =

∑
n∈Q a(n)qn in some rational power of q = e2πiτ .

First we show that the coefficients of g are non negative. If we look at the infinite
product expansion

Ψ(y) = −e2πi(ρ,y)
∏

r∈Π+

(1− (−1)(r,ρ−ρ′)e2πi(r,y))(−1)(r,ρ−ρ′)c((r,r)/2)

we can see that all the Fourier coefficients a(r) of − log(−Ψ(y)/e2πi(ρ,y)) =
∑

r a(r)e2πi(r,y)

are non negative. This is because if r is a primitive vector then the Fourier coefficients
a(nr) (n > 0) are given by the Fourier coefficients of

− log
∏
m>0

(1− e2πim(r,y))c((mr,mr)/2)

if (r, ρ− ρ′) is even, and by

− log
∏
m>0

(1− (−1)me2πim(r,y))(−1)mc((mr,mr)/2)

=− log
∏

m>0,m odd

(1− e2πim(r,y))c((mr,mr)/2)

− log
∏

m>0,m even

(1− e2πim(r,y))c((mr,mr)/2)−c((mr/2,mr/2)/2)

if (r, ρ−ρ′) is odd, and in both cases we see that all the Fourier coefficients are nonnegative
because 0 ≤ c(n) ≤ c(4n) for any n. This implies that the coefficients in the series for g
are non negative because g is the restriction of − log(−Ψ(y)/e2πi(ρ,y)) to a line so that its
coefficient a(n) are given by a(n) =

∑
(r,y0)=n a(r).

By using lemma 3.1 we can check that lim supn→+∞ log(a(n))/n = 2π. We get 2π
as an upper bound for the lim sup because in the sum a(n) =

∑
(r,y0)=n a(r) the number

of terms is bounded by a polynomial (of degree 9) in n, and in each term (r, r) is at
most n2/|y2

0 | = 2n2, and a(r) is not much bigger than c((r, r)/2), whose log is about
2π

√
(r, r)/2 ≤ 2πn by lemma 3.1. We can prove that 2π is a lower bound for the lim sup

in a similar way, by observing that all the coefficients a(r) are positive so that a(n) is
bounded below by the largest of them, and that there are infinitely many n such that the
largest a(r) in the sum is very roughly e2π

√
(n2/|y2

0 |)/2 = e2πn. Therefore the series for g
has radius of convergence |q| = lim sup |a(n)|−1/n = e−2π.

Hence g has a singularity at e2πiτ = q = e−2π because a power series with non negative
coefficients with radius of convergence e−2π has a singularity at e−2π. (This is why we
have to replace Φ by Ψ: the coefficients of − log(Φ(y)/e2πi(ρ,y)) do not all have the same
sign.) This means that g(τ) = − log(Ψ(τy0/i) exp(−2πτ(ρ, y0))) has a singularity at τ = i,
so that log(Ψ(y)) has a singularity at y = y0. However Ψ(y) is holomorphic at y = y0, so
the only way that log(Ψ(y)) can have a singularity at y = y0 is if Ψ vanishes at y0. This
shows that Ψ vanishes on the surface S and proves lemma 3.3.

The main step in the proof of theorem 3.2 is the proof of the following extra transfor-
mation law for Φ (or rather for Ψ).
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Lemma 3.4.
Ψ(−y/2(y, y)) = −16(y, y)4Ψ(y).

Proof. It is sufficient to prove this for purely imaginary values of y because then the
result is true for all y by analytic continuation. The cone iC has a pseudo-Riemannian
metric induced by the bilinear form on L⊗R and has an associated wave operator given
by the Laplacian of its pseudo-Riemannian metric. On the space iC, Ψ is a solution of
the wave equation because each of the terms exp((w(nρ), y)) in the sum defining Φ is a
solution of the wave equation (as each of the vectors w(nρ) has norm 0). This implies that
(y, y)10/2−1Ψ(−y/16(y, y)) is also a solution of the wave equation by the transformation of
the wave operator under the conformal transformation y → −y/2(y, y) of iC. (For this spe-
cial conformal transformation this is easy to check directly as it is just the fact that if Ψ(y)
is any solution to the wave equation in n dimensions then so is (y, y)n/2−1Ψ(−y/c(y, y)) for
any positive constant c. The quickest way to prove this is to choose orthogonal coordinates
so that y = (x1, . . . , xn) and calculate ( ∂2

∂x2
1

+ · · · + ∂2

∂x2
n−1

− ∂2

∂x2
n
)(y, y)n/2−1Ψ(−y/c(y, y))

explicitly to show that it vanishes at y. Because of the invariance of everything under
Lorentzian transformations, it is only necessary to check vanishing at points y of the form
(0, . . . , 0, r).)

Now we check that that −16(y, y)4Ψ(−y/2(y, y)) and Ψ(y) both have the same partial
derivatives of order at most 1 on the surface S. They both vanish on S by lemma 3.3
and therefore have the same constant term, and for the same reason their first partial
derivatives in any direction tangent to S both vanish, so it is only necessary to check that
they have the same first partial derivatives in the direction normal to S. But if Ψ is any
smooth function on iC whose partial derivative normal to S at a point s ∈ S is x, then
Ψ(−y/2(y, y)) has a partial derivative normal to S at s of −x. (This follows by restricting
Ψ to the line through 0 and s and using the elementary fact that if a differentiable function
h is defined for positive reals y then the derivatives of h(y) and −h(y/2y2) = −h(1/2y) are
equal at y = 1/

√
2.) The function −2(y, y) is 1 on S, so the partial derivative normal to

S of (−2(y, y))nΨ(−y/2(y, y)) is −x for any integer n because Ψ(−y/2(y, y)) vanishes for
y ∈ S. Hence −16(y, y)4Ψ(−y/2(y, y)) and Ψ(y) both have the same partial derivatives of
order at most 1 on the surface S. These two functions both satisfy the wave equation and
have the same partial derivatives of order at most 1 on the non characteristic surface S,
so by the uniqueness part of the Cauchy-Kovalevsky theorem they must be equal on iC.
This proves lemma 3.4.

Lemma 3.5. Φ is an automorphic form of weight 4 for the finite index subgroup Γ3 of
OM (Z) (defined in lemma 2.5).

Proof. Lemma 3.4 shows that Ψ transforms like an automorphic form under reflection
in the norm −2 vector (0, 1,−1/2) of M ⊗Q (which is not in M). We obtain Ψ from Φ by
applying the automorphism of M ⊗Q taking (v,m, n) to (v + 2λm, m, n − (v, λ) − λ2m)
where λ = (ρ − ρ′)/2 ∈ L ⊗ Q. This automorphism takes (0, 1,−1/2) to the norm −2
vector (ρ − ρ′, 1, 0) ∈ L. Hence Φ transforms like an automorphic form under reflection
in the norm −2 vector (ρ − ρ′, 1, 0) having inner product 2 with u. We have therefore
verified that Φ transforms an automorphic under all the transformations of lemma 2.5,
which proves lemma 3.5.
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Lemma 3.6. The form Φ vanishes (to order 1) along all the divisors of norm −2 vectors
of M .

Proof. We know by lemma 2.3 that any norm 2 vector is conjugate to a vector in
either R0 or R2, and the groups in (1) and (2) of lemma 2.5 act transitively on these two
sets, so it is sufficient to prove that Φ vanishes along the divisors of one vector in R0 and
one vector in R2. But Φ vanishes along the divisor of the vector (ρ − ρ′, 1, 0) ∈ R2 by
lemma 3.3 (see the proof of lemma 3.5), and Φ vanishes along the hyperplane orthogonal
to any vector in R0 because the functional equation Φ(σ(y)) = χ(σ)Φ(y) implies that Φ
changes sign under reflection in this hyperplane. This proves lemma 3.6.

Lemma 3.7. There exists an automorphic form of weight 16632/2 for the lattice II2,10 =
E8(−1)⊕II1,1⊕II1,1 whose zeros are exactly the hyperplanes of norm −4 vectors of II2,10.

Proof. The meromorphic modular form

E4(τ)5/∆(τ)2 − 1248E4(τ)2/∆(τ) = q−2 + 16632 + O(q)

has weight −4 and level 1 and no poles on the upper half plane, so applying theorem 10.1
of [B95] shows the existence of an automorphic form with the required properties. This
proves lemma 3.7.

Lemma 3.8. The only zeros of Φ lie on the hyperplanes of norm −2 vectors of M .

Proof. The group II2,10/2II2,10 has order 212 and its elements have a well defined
norm mod 4. Under the group OII2,10(Z) its elements split into 3 orbits: the zero element,
an orbit of size 211− 25 = 2016 of elements of norm congruent to 2 mod 4, and an orbit of
size 211 +25−1 = 2079 of nonzero elements whose norm is congruent to 0 mod 4. We note
that every norm −4 vector v of II2,10 gives a unique norm 0 mod 4 nonzero element v of
II2,10/2II2,10, and this partitions the norm −4 vectors of II2,10 into 2079 disjoint classes.

For each of the 2079 nonzero vectors of norm 0 mod 4 in II2,10/2II2,10, an inverse
image of this vector in II2,10 together with 2II2,10 generates a copy of M(2). For each
of these 2079 copies of M(2) we take a copy of the form Φ corresponding to it (with
its argument rescaled by a factor of

√
2) and we multiply these 2079 automorphic forms

together to get a function Θ. (It is not yet clear that Θ is uniquely defined by this, because
we have not yet proved that Φ is an automorphic form for the whole of OM (Z)+, but this
does not matter.) By lemma 3.5 Θ is an automorphic form for some finite index subgroup
of OII2,10(Z) of weight 4 × 2079. The hyperplane of any norm −4 vector v of II2,10 is a
zero of the factor of Φ corresponding to the vector v ∈ II2,10/2II2,10 (which corresponds
to a norm −2 vector in the copy of M), so Θ vanishes on all the hyperplanes of all norm
−4 vectors of II2,10. Therefore we can divide Θ by the automorphic form of lemma 3.7
to obtain an automorphic form of weight 4× 2079− 16632/2 = 0 which is holomorphic at
cusps by the Koecher boundedness principle. This quotient must therefore be a constant,
so it has no zeros, and therefore the form Θ has no zeros other than those corresponding
to norm −4 vectors of II2,10. But this implies that Φ has no zeros other than those
corresponding to norm −2 vectors of M , otherwise these would give rise to other zeros of
Θ. This proves lemma 3.8.
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We can now complete the proof of theorem 3.2. By the Koecher boundedness principle
an automorphic form on Ω is determined up to multiplication by a constant by its zeros
on Ω, because if f and g are two forms with the same zeros then f/g and its inverse g/f
are both automorphic forms so they must both be constant. The transform of Φ under
any element of OM (Z)+ has the same zeros as Φ because the zeros of Φ just correspond
to the norm −2 vectors of M . Hence the transform of Φ under any element of OM (Z) is
equal to Φ multiplied by some nonzero constant. This proves theorem 3.2.

Remark: The proof that Φ has no extra zeros relies on a strange numerical coincidence.
If we assume that Φ is an automorphic form for the group OM (Z)+ then we can give a more
conceptual proof of this as follows. (Unfortunately the proof that Φ is an automorphic
form for OM (Z)+ uses the fact that Φ has no extra zeros, so this argument is of no use
unless someone finds a different proof that Φ is automorphic under OM (Z)+!) By theorem
5.1 of [B95] any zero of Φ must be the hyperplane of some primitive vector v of M (which
is a subset of the hermitian symmetric space called a rational quadratic divisor in [B95]).
We have to prove that v has norm −2. By lemma 3.9 below there is some primitive norm 0
vector orthogonal to v. As Φ transforms like an automorphic form under OM (Z)+, we can
assume that this is the norm zero vector u. But then the divisor of v intersects the region
of convergence of the infinite product defining Φ, which is only possible if it is a zero of
one of the factors in the infinite product. But the only factors in the infinite product with
zeros are those of the form 1− exp(2πi(x, y)) with x a vector of norm −2. This shows that
v is a vector of norm −2 and hence shows that the zeros of Φ are exactly the hyperplanes
of norm −2 vectors of M .

Lemma 3.9. Any vector of M is orthogonal to a conjugate of u under OM (Z).

Proof. The lattice M contains a 2-dimensional primitive isotropic sublattice U such
that every vector in U has even type, so that every primitive vector in U is conjugate to
u under OM (Z)+. As U has dimension greater than 1, there is some primitive vector in U
orthogonal to v, which has the required properties. This proves lemma 3.9.

Remark. It is not true that any vector is conjugate under the group Γ3 to a vector
orthogonal to u; for example, this is not true for a vector of even type having inner product
with u not divisible by 4. It is also not true that any vector v of M is orthogonal to a
primitive isotropic vector u of odd type. In fact it is not hard to check that if v has this
property then v has norm (v, v) divisible by 4. The proof of lemma 3.9 breaks down for this
case because lattices U in the other orbit of 2-dimensional primitive isotropic sublattices
still have some primitive vectors of even type.
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