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The main result of Borcherds [1] states that graded Lie algebras with an “almost
positive definite” contravariant bilinear form are essentially the same as central extensions
of generalized Kac-Moody algebras. In this paper we calculate these central extensions.
Ordinary Kac-Moody algebras have nontrivial centers when the Cartan matrix is singular;
generalized Kac-Moody algebras turn out to have some “extra” center in their universal
central extensions whenever they have simple roots of multiplicity greater than 1, and in
particular the dimension of the Cartan subalgebra can be larger than the number of rows
of the Cartan matrix.

1. Statement of results.

The main result of this paper states that, roughly speaking, graded Lie algebras
with an “almost positive definite” contravariant bilinear form are the same as a sort of
generalization of Kac-Moody algebras. More precisely,

Theorem 1. Suppose that G is a real Lie algebra. Then condition (2) implies (1), and
(1) implies (2) if dimGi <∞ for all i.
(1) G has a grading G = ⊕iGi with G0 ⊂ [G, G], an involution ω which maps Gi to G−i

and is −1 on G0, and an invariant bilinear form (, ) such that (a, b) = 0 if a and b
have different degrees and such that (a,−ω(a)) > 0 if a is a nonzero element of Gi

for i 6= 0. In addition G is a sum of one dimensional eigenspaces of G0; this follows
from the other conditions if the spaces Gi, i 6= 0, are finite dimensional. We can
summarize these conditions roughly by saying that G is a graded Lie algebra with an
almost positive definite contravariant bilinear form.

(2) There is a symmetric matrix aij , i, j ∈ I, such that aij ≤ 0 if i 6= j, and such that if
aii > 0 then 2aij/aii is an integer for any j. Some central extension of G is given by
the following generators and relations.

Generators:
Elements ei, fi, hij for i, j ∈ I.
Relations:
[ei, fj ] = hij .

[hij , ek] = δj
i aikek, [hij , fk] = −δj

i aikfk.
If aii > 0 then Ad(ei)nej = 0 = Ad(fi)nfj , where n = 1− 2aij/aii.
If aii ≤ 0, ajj ≤ 0 and aij = 0 then [ei, ej ] = 0 = [fi, fj ].

The subalgebra G0 must be abelian because the automorphism ω acts as −1 on it. If
aii > 0 for all i then the conditions of (2) are equivalent to the defining relations for the
Kac-Moody algebra with symmetrized Cartan matrix a (with hii = hi). If we allow aii to
be non-positive but add the condition that hij = 0 if i 6= j then we obtain the relations for
“generalized Kac-Moody algebras” as in Borcherds [1]. In any case, hij is 0 unless the ith
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and jth columns of a are equal, and is in the center of G unless i = j, so the Lie algebra
above is a central extension of a generalized Kac-Moody algebra.

Theorem 3.1 of Borcherds [1] implies that any Lie algebra satisfying the conditions
of (1) above is a central extension of a generalized Kac-Moody algebra. Because of this,
Theorem 1 follows almost immediately from the following theorem, which we prove in
Section 2 of this paper.

Theorem 2. Suppose that G is the Lie algebra defined in part (2) of Theorem 1. The
subalgebra of G generated by the elements hij is abelian and has a basis consisting of the
elements hij for i, j ∈ I such that the ith and jth columns of A are the same. If a has no
zero columns then G is perfect and equal to its own universal central extension.

In particular we recover the well-known result that ordinary Kac-Moody algebras are
their own universal central extensions, because in this case it is not possible for two columns
of the symmetrized Cartan matrix to be equal.

It is easy to extend most of the results of Borcherds [1] about generalized Kac-Moody
algebras, such as the generalized Kac-Weyl formula for characters of highest weight mod-
ules, to these central extensions of generalized Kac-Moody algebras.

Example. The monstrous generalized Kac-Moody algebra G [2] has as root lattice
the even 26 dimensional unimodular Lorentzian lattice L = II25,1, and if r is a nonzero
element of L then r has multiplicity p24(1 − r2/2), which is the number of partitions of
1 − r2/2 into parts of 24 colors. This lattice has a certain norm 0 “Weyl vector” ρ, and
the simple roots of G are given by
(1) All norm 2 vectors of L which have inner product −1 with ρ. These are the real simple

roots of G.
(2) All positive integral multiples of ρ, each with multiplicity 24. These are the norm 0

simple roots of G.
Therefore the universal central extension Ĝ of G has a Cartan subalgebra which is the

sum of
(1) A one dimensional space for each real simple root of G.
(2) A 242 = 576 dimensional space for each positive integer.

The center of Ĝ has index 26 in the Cartan subalgebra, and the quotient of Ĝ by its
center is simple.

Remark. It is possible to define generalized Kac-Moody superalgebras, and many
theorems about generalized Kac-Moody algebras can be generalized to generalized Kac-
Moody superalgebras, provided we make a few changes such as replacing the involution ω
by an element of order 4 whose square is 1 on even elements of the superalgebra and −1 on
odd elements. Theorem 1 generalizes to superalgebras provided we make all the “usual”
changes to get from algebras to superalgebras, and also add to part (2) of Theorem 1 the
condition that G has no odd real simple roots. There are many finite dimensional simple
superalgebras satisfying this condition.

2. Proofs.

In this section we give the proof of Theorem 2, which consists mainly of checking that
the Lie algebra in (2) of Theorem 1 is its own universal central extension if it is perfect.

We start by showing that a simpler Lie algebra is its own universal central extension.
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Theorem 3. Let aij be any real matrix with no zero columns and let G be the Lie algebra
given by the following generators and relations.

Generators:
ei, fi, hij , i, j ∈ I.

Relations:
[ei, fj ] = hij ,

[hijek] = δj
i aikek, [hijfk] = −δj

i aikfk.
Then G is perfect and is equal to its own universal central extension.

Proof. It is obvious that G is perfect and that hij is in the center of G if i 6= j. Also,

aijhjk = [aijej , fk] = [[hii, ej ], fk] = [hii, [ej , fk]]− [ej , [hii, fk]]
= [hii, hjk] + [ej , aikfk] = [hii, hjk] + aikhjk.

If j = k this implies that [hii, hjj ] = 0, so all the h’s commute with each other. If j 6= k
this then implies that hjk = 0 unless the jth and kth columns of a are equal.

Let e′i, f
′
j , h

′
ij be elements of the universal central extension Ĝ of G mapping onto

ei, fj , hij . We repeatedly use the fact that if the images of two elements x′ and y′ commute
in G, then [x′, y′] is in the center of Ĝ. Then [h′ii, [h

′
jje

′
k]] = [h′jj , [h

′
ii, e

′
k]] because [h′ii, h

′
jj ]

is in the center of Ĝ. Therefore

ajk[h′ii, e
′
k] = [h′ii, [h

′
jj , e

′
k]] = [h′jj , [h

′
ii, e

′
k]] = aik[h′jj , e

′
k].

For any i with aik nonzero we can form the element [h′ii, e
′
k]/aik of Ĝ; this does not depend

on i by the equality above and maps onto ek in G. We may therefore assume that e′k
is equal to this element so that aike′k = [h′ii, e

′
k] for all i and may likewise assume that

aikf ′k = −[h′ii, f
′
k]. Finally we may redefine h′ij = [e′i, f

′
j ]. We wish to show that these

new elements satisfy the relations of G, and the only relations which are not part of their
definition are that the elements h′jl commute with e′k and f ′k if j 6= l. If we choose i with
aik 6= 0 then this follows from

aik[h′jl, e
′
k] = [h′jl, [h

′
ii, e

′
k]] = [h′ii, [h

′
jl, e

′
k]] = 0,

the last equality holding because [h′jl, e
′
k] is in the center of Ĝ. This shows that Ĝ contains

elements satisfying the relations of G, so that the extension Ĝ splits. Therefore G is its
own universal central extension and Theorem 3 is proved.

Remark. The Lie algebra in Theorem 3 is the universal central extension of a Lie
algebra associated to the matrix a in Kac [3], and is equal to this Lie algebra when all
columns of a are different, which is always the case for ordinary Kac-Moody algebras.

Corollary. Let G be the Lie algebra of Theorem 3 and let H be any ideal of G. The the
universal central extension of G/H is G/[G, H], and in particular if H = [G, H] then G/H
is its own universal central extension.

Proof. This is true for any perfect Lie algebra G which is its own universal central
extension. The pullback of G → G/H and the universal central extension of G/H is a
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perfect central extension of G and hence equal to G, so the map from G to G/H factors
through the universal central extension of G/H. It is easy to see that this implies that the
universal central extension of G/H is G/[G, H]. This proves the corollary.

We can now give the proof of the second part of Theorem 2. If G is the Lie algebra of
Theorem 1 and H is its ideal generated by some elements of the form Ad(ei)nej , Ad(fi)nfj ,
[ei, ej ], and [fi, fj ] as in Theorem 1, then by the corollary we only have to check that
H = [G, H]. The element Ad(ei)n(ej) is in [G, H] because [hii,Ad(ei)nej ] = (naii −
aij)Ad(ei)nej and naii − aij is nonzero because aii > 0, aij ≤ 0. The element [ei, ej ]
is in [G, H] when aii ≤ 0, ajj ≤ 0, aij = 0 because if we choose any k with aki 6= 0
then [hkk, [ei, ej ]] = (aki + akj)[ei, ej ] and aki + akj is nonzero because aki < 0, akj ≤ 0.
Similarly the elements of the forms Ad(fi)nfj and [fi, fj ] are in [G, H], and this proves
the second part of Theorem 2.

Finally we have to prove the first part of Theorem 2, the only nontrivial part of which
is to prove that the h’s are linearly independent. In particular we show that the elements
hij are nonzero if the ith and jth columns of a are the same, so the central extensions we
have constructed are nontrivial.

Theorem 4. Let a be any matrix (possibly with some zero columns) and let G be the
Lie algebra with the generators and relations of Theorem 3. Then the subalgebra of G
generated by the h’s is abelian and has a basis consisting of the elements hij for i, j ∈ I
such that the ith and jth columns of a are equal. If these columns are not equal then
hij = 0.

Proof. This proof is a slight modification of the one in Kac [3] for the case of Kac-
Moody algebras. The only nontrivial thing to check is that the h’s are linearly independent,
which we show by constructing sufficiently many “lowest weight” representations of G. We
let the space V be the universal associative algebra generated by elements ei, and let ei

act on V by left multiplication. We choose any real numbers bij with bij = 0 unless the
ith and jth columns of a are equal, and define operators hij on V such that hij(1) = bij1
and

[hij , ek] = δj
i aikek for all i, j, k. (1)

Similarly we can define operators fj on V such that fj(1) = 0 and

[fj , ei] = −hij for all i, j, k. (2)

This will give a representation of G provided that the relation [hijfk] = −δk
i aikfk is

satisfied, and if it is this will prove the theorem because we will have constructed enough
representations of G on which elements of the Cartan subalgebra act non-trivially. The
operator [hij , hkl] commutes with all the e’s and vanishes on 1, so it is 0 on V , and for
the same reason hij is 0 when the ith and jth columns of a are different because bij = 0.
From the relations (1) and (2) we find that

[[hij , fk] + δj
i aikfk, el] = [hij , [fk, el]]− [fk, [hij , el]]− δj

i aikhlk

= −[hij , hlk] + δj
i ailhlk − δj

i aikhlk,
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which is 0 because hlk is 0 unless aik = ail. Hence [hij , fk] + δj
i aikfk is 0 on V because it

vanishes on 1 and commutes with the e’s. This proves Theorem 4.
Theorem 2 follows from this in the same way that the corresponding theorem is proved

for Kac-Moody algebras, as in Kac [3].
Remark. If the ith and jth columns of a are equal then the Lie algebra G of Theorem 1

has an outer derivation h defined by [h, ei] = ej , [h, ej ] = −ei, [h, ek] = 0 if k 6= i, j, [h, fi] =
fj , [h, fj ] = −fi, [h, fk] = 0 if k 6= i, j. If a has n equal columns then these derivations
generate an action of the orthogonal group On(R) on G. These outer derivations do not
always commute with the elements of the Cartan subalgebra.

Errata. There is a mistake in the statement of Theorem 5.1 of Borcherds [1]: the
phrase “nonsingular SCM” should twice be replaced by “nonsingular bilinear form on the
Cartan subalgebra”. Line 15 on page 502 should read “follows from (4).” Line −4 on page
502 should read “... with all real simple roots.” Proposition 2.2 should read “A positive
root...”.
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