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We define a remarkable Lie algebra of infinite dimension, and conjecture that it may
be related to the Fischer-Griess Monster group.

The idea was mooted in [C-N] that there might be an infinite-dimensional Lie algebra
(or superalgebra) L that in some sense “explains” the Fischer-Griess ‘Monster” group M .
In this chapter we produce some candidates for L based on properties of the Leech lattice
described in [C-S]. These candidates are described in terms of a particular Lie algebra L∞
of infinite rank.

We first review some of our present knowledge about these matters. It was proved by
character calculations in [C-N, p. 317] the centralizer C of an involution of class 2A in the
Monster group has a natural sequence of modules affording the head characters (restricted
to C). In [K], V. Kac has explicitly constructed these as C-modules. Now that Atkin,
Fong and Smith [F], [S] have verified the relevant numerical conjectures of [C-N] for M , we
know that these modules can be given the structure of M -modules. More recently, Frenkel,
Lepowsky, and Meurman [F-L-M] have given a simple construction for the monster along
these lines, but this sheds little light on the conjectures.

Some of the conjectures of [C-N] have analogs in which M is replaced by a compact
simple Lie group, and in particular by the Lie group E8. Most of the resulting statements
have now been established by Kac and others. However, it seems that this analogy with
Lie groups may not be as close as one would wish, since two of the four conjugacy classes of
elements of order 3 in E8 were shown in [Q] to yield examples of modular functions neither
of which are the Hauptmodul for any modular group. This disproves the conjecture made
on p. 267 of [K], and is particularly distressing since it was the Hauptmodul property that
prompted the discovery of the conjectures in [C-N], and it is this property that gives those
conjectures almost all their predictive power.

The properties of the Leech lattice that we shall use stem mostly from the facts about
“deep holes” in that lattice reported in [C-S Chapter 23]. Let w = (0, 1, 2, 3, . . . , 24 | 70).
The main result of [C-S Chapter 26] is that the subset of vectors r in II25,1 for which
r · r = 2, r · w = −1 (the “Leech roots’) is isometric to the Leech lattice, under the
metric defined by d(r, s)2 = norm(r − s). The main result of [C-S Chapter 27] is that
Aut(II25,1) is obtained by extending the Coxeter subgroup generated by the reflections in
these Leech roots by its group of graph automorphisms together with the central inversion
−1. It is remarkable that the walls of the fundamental region for this Coxeter group
(which correspond one-for-one with the Leech roots) are transitively permuted by the
graph automorphisms, which form an infinite group abstractly isomorphic to the group of
all automorphisms of the Leech lattice, including translations.

Vinberg [V] shows that for the earlier analogs II9,1 and II17,1 of II25,1 the fundamental
regions for the reflection subgroups have respectively 10 and 19 walls, and the graph
automorphism groups have orders 1 and 2. For the later analogs II33,1, . . . , there is no
“Weyl vector” like w, so it appears that II25,1 is very much a unique object.
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We can use the vector w to define a root system in II25,1. If v ∈ II25,1 then we
define the height of v by −v · w, and we say that v is positive or negative according as
its height is positive or negative. We now define a Kac-Moody Lie algebra L∞, of infinite
dimension and rank, as follows: L∞ has three generators e(r), f(r), h(r) for each Leech
root r, and is presented by the following relations:

[e(r), h(s)] = r · s e(r) ,

[f(r), h(s)] = −r · s f(r),
[e(r), f(r)] = h(r),
[e(r), f(s)] = 0,

[h(r), h(r)] = 0 = [h(r), h(s)],

e(r) {ad e(s)}1−r·s = 0 = f(r) {ad f(s)}1−r·s,

where r and s are distinct Leech roots. (We have quoted these relations from Moody’s
excellent survey article [M]. Moody supposes that the number of fundamental roots is
finite, but since no argument ever refers to infinitely many fundamental roots at once, this
clearly does not matter. See also [K89].)

Then we conjecture that L∞ provides a natural setting for the Monster, and more
specifically that the Monster can be regarded as a subquotient of the automorphism group
of some naturally determined subquotient algebra of L∞.

The main problem is to “cut L∞ down to size’. Here are some suggestions. A rather
trivial remark is that we can replace the Cartan subalgebra H of L∞ by the homomorphic
image obtained by adding the relations

c1 h(r1) + c2 h(r2) + . . . = 0

for Leech roots r1, r2, . . ., whenever c1, c2, . . . are integers for which

c1r1 + c2r2 + . . . = 0 .

A more significant idea is to replace L∞ by some kind of completion allowing us to
form infinite linear combinations of the generators, and then restrict to the subalgebra
fixed by all the graph automorphisms. The resulting algebra, supposing it can be defined,
would almost certainly not have any notion of root system.

Other subalgebras of L∞ are associated with the holes in the Leech lattice, which are
either “deep” holes or “shallow” holes (see [C-S Chapter 23]).

(i) By [C-S Chapter 23], any deep hole corresponds to a Niemeier lattice N , which has
a Witt part which is a direct sum of root lattices chosen from the list An (n = 1, 2, . . .),
Dn (n = 4, 5, . . .), E6, E7 and E8. Only 23 particular combinations arise, and we
shall take A11D7E6 as our standard example. The graph of Leech roots contains a finite
subgraph which is the disjoint union of extended Dynkin diagrams corresponding to these
Witt components W of N , and so our algebra L∞ has a subalgebra L[N ] which is a direct
sum of the Euclidean Lie algebras E(W ) corresponding to those components (see [K89]).
For example, L∞ has a subalgebra
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E(A11) + E(D7) + E(E6) .

Each such subalgebra of L∞ can be extended to a larger subalgebra L∗(N) having
one more fundamental root, corresponding to a “glue vector’ of the appropriate hole (see
[C-S Chapter 25]). In the corresponding graph, the new node is joined to a single special
node in each component. The graph for L∗[A11D7E6] is shown in Figure 30.1 of [C-S]. (A
special node of a connected extended Dynkin diagram is one whose deletion would result
in the corresponding ordinary diagram.) These hyperbolic algebras L∗[N ], having finite
rank, are certainly more manageable than L∞ itself. Since the 23 Niemeier lattices yield
23 constructions for the Leech lattice ([C-S Chapter 25]), it is natural to ask if we can
obtain 23 different constructions for the Monster using the Lie algebras L[N ] or L∗[N ].

(ii) Each shallow hole in the Leech lattice (see [C-S Chapter 24]) corresponds to a
maximal subalgebra of L∞ of finite rank.

We are making various calculations concerning L∞ (finding the multiplicities of certain
roots via the Weyl-MacDonald-Kac formula, etc.). It is worth noting that these calculations
are facilitated by the remarkable recent discovery that the Mathieu group M12 is generated
by the two permutations

t 7→ |2t| , t 7→ 11− t (mod 23) ,

of the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, where |x| denotes the unique y in this set for
which y ≡ ±x (mod 23). (See [C-S Chapter 11]. This discovery arose from the study
of properties of various standard playing-card shuffles. We have noticed that there are
many other elements of M12 which have simple formulae in this “card numbering”, for
example t 7→ | t3 |.) The simplest transformation (see [C-S Chapter 28]) between the
usual Euclidean coordinates for the Leech lattice and its Lorentzian coordinates uses this
description of M12.
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subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973),
pp. 323–348. Oxford Univ. Press, Bombay, 1975.

Remark added 1998: The Lie algebra of this paper is indeed closely related to the
monster simple group. In order to get a well behaved Lie algebra it turns out to be
necessary to add some imaginary simple roots to the “Leech roots”. This gives the fake
monster Lie algebra, which contains the Lie algebra of this paper as a large subalgebra.
See “The monster Lie algebra”, Adv. Math. Vol. 83, No. 1, Sept. 1990, for details (but
note that the fake monster Lie algebra is called the monster Lie algebra in this paper).
The term “monster Lie algebra” is now used to refer to a certain “Z/2Z-twisted” version
of the fake monster Lie algebra. The monster Lie algebra is acted on by the monster
simple group, and can be used to show that the monster module constructed by Frenkel,
Lepowsky, and Meurman satisfies the moonshine conjectures; see “Monstrous moonshine
and monstrous Lie superalgebras”, Invent. Math. 109, 405-444 (1992).
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