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The study of automorphism groups of unimodular Lorentzian lattices In,1 was started

by Vinberg. These lattices have an infinite reflection group (if n ≥ 2) and Vinberg showed
that the quotient of the automorphism group by the reflection groups was finite if and only
if n ≤ 19. Conway and Sloane rewrote Vinberg’s result in terms of the Leech lattice Λ,
showing that this quotient (for n ≤ 19) was a subgroup of ·0 = Aut(Λ). In this paper we
continue Conway and Sloane’s work and describe Aut(In,1) for n ≤ 23. In these cases there
is a natural complex U associated to In,1, whose dimension is the virtual cohomological
dimension of the “non-reflection part” Gn of Aut(In,1), and which is a point if and only if
n ≤ 19. For n = 20, 21, and 22 the group Gn is an amalgamated product of 2 subgroups
of ·0, while G23 is a direct limit of 6 subgroups of ·0. The group G24 seems to be much
more complicated (although it would probably be just about possible to describe it). We
also have a few results about Gn for large n; for example, if n is at least 18 and congruent
to 2, 3, 4, 5, or 6 mod 8 then Aut(In,1) is a nontrivial amalgamated product. We find a
few new lattices whose reflection group has finite index in the automorphism group; for
example, the even sublattice of I21,1 of determinant 4.

1. Definitions.

In this section we summarize some standard definitions and results that we will use.
Many of the results can be found in Serre [5] or Bourbaki [2].

We say that a group G acting on a set fixes a subset S if every element of G maps S
into S.

A lattice L is a finitely generated free Z-module with an integer valued bilinear form,
written (x, y) for x and y in L. The type of a lattice is even (or II) if the norm x2 = (x, x)
of every element x of L is even, and odd (or I) otherwise. If L is odd then the vectors
in L of even norm form an even sublattice of index 2 in L. L is called positive definite,
Lorentzian, nonsingular, etc. if the real vector space L⊗R is.

If L is a lattice then L′ denotes its dual in L ⊗ R; i.e. the vectors of L ⊗ R which
have integral inner products with all elements of L. The dual L′ contains L and if L is
nonsingular then L′/L is a finite abelian group whose order is called the determinant of
L. (If L is singular we say it has determinant 0.) The lattice L is called unimodular if
its determinant is 1. If S is any subset of L then S⊥ is the sublattice of elements of L
orthogonal to S.

Even unimodular lattices of a given signature and dimension exist if and only if there
is a real vector space with that signature and dimension and the signature is divisible by
8. Any two indefinite unimodular lattices with the same type, dimension, and signature
are isomorphic. Im,n and IIm,n (m ≥ 1, n ≥ 1) are the unimodular lattices of dimension
m + n, signature m− n, and type I or II.

A vector v in a lattice L is called primitive if v/n is not in L for any n > 1. A root of
a lattice L is a primitive vector r of L such that reflection in the hyperplane r⊥ maps L
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to itself. This reflection maps v in L to v− 2r(v, r)/(r, r). Any vector r in L of norm 1 or
2 is a root.

If L is unimodular then there is a unique element c in L/2L such that (c, v) ≡ v2 mod 2
for all v in L. The vector c or any inverse image of c in L is called a characteristic vector
of L, and its norm is congruent to the signature of L mod 8.

We now summarize some definitions and basic properties of finite root systems. “Root
system” will mean “root system all of whose roots have norm 2” unless otherwise stated,
so we only consider components of type an, dn, e6, e7, e8. We use small letters xn to stand
for spherical Dynkin diagrams. The types e3, e4, e5 are the same as a2a1, a4, and d5. The
types d2 and d3 are the same as a2

1 and a3.
The norm 2 vectors in a positive definite lattice A form a root system which we call

the root system of A. The hyperplanes perpendicular to these roots divide A ⊗ R into
regions called Weyl chambers. The reflections in the roots of A generate a group called
the Weyl group of A, which acts simply transitively on the Weyl chambers of A. Fix
one Weyl chamber D. The roots ri which are perpendicular to the faces of D and which
have inner product at most 0 with the elements of D are called the simple roots of D.
(These have opposite sign to what are usually called the simple roots of D. This is caused
by the irritating fact that the usual sign conventions for positive definite lattices are not
compatible with those for Lorentzian lattices. With the convention we use something is
in the Weyl chamber if and only if it has inner product at most 0 with all simple roots,
and a root is simple if and only if it has inner product at most 0 with all simple roots not
equal to itself.)

The Dynkin diagram of D is the set of simple roots of D. It is drawn as a graph with
one vertex for each simple root of D and two vertices corresponding to the distinct roots
r, s are joined by −(r, s) lines. (If A is positive definite then two vertices are always joined
by 0 or 1 lines. We will later consider the case that A is Lorentzian and then its Dynkin
diagram may contain multiple bonds, but these are not the same as the multiple bonds
appearing in bn, cn, f4, and g2.) The Dynkin diagram of A is a union of components of
type an, dn, e6, e7 and e8. The Weyl vector ρ of D is the vector in the vector space spanned
by roots of A which has inner product −1 with all simple roots of D. It is in the Weyl
chamber D and is equal to half the sum of the positive roots of D, where a root is called
positive if its inner product with any element of D is at least 0. A tip of a spherical Dynkin
diagram is one of the points of weight 1. The number of tips of an, dn (n ≥ 3), e6, e7, e8

is n, 3,2,1,0. The tips of a connected Dynkin diagram R are in natural 1:1 correspondence
with the nonzero elements of the group A′/A, where A is the lattice generated by R.

The automorphism group of A is a split extension of its Weyl group by N , where N
is the group of automorphisms of A fixing D. This group N acts on the Dynkin diagram
of D and Aut(A) is determined by its Dynkin diagram R, the group N , and the action of
N on R. There is a unique element i of the Weyl group taking D to −D, and −i is called
the opposition involution of D and is denoted by σ or σ(D). The element σ fixes D and
has order 1 or 2. (Usually −σ is called the opposition involution.)

If A is Lorentzian or positive semidefinite then we can still talk about its root system
and A still has a fundamental domain D for its Weyl group and a set of simple roots. A
may or may not have a Weyl vector.
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We now describe the geometry of Lorentzian lattices and its relation to hyperbolic
space.

Let L be an (n + 1)-dimensional Lorentzian lattice (so L has signature n− 1). Then
the vectors of L of zero norm form a double cone and the vectors of negative norm fall
into two components. The vectors of norm −1 in one of these components form a copy of
n-dimensional hyperbolic space Hn. The group Aut(L) is a product Z2 ×Aut+(L), where
Z2 is generated by −1 and Aut+(L) is the subgroup of Aut(L) fixing each component of
negative norm vectors. See Vinberg [8] for more details.

If r is any vector of L of positive norm then r⊥ gives a hyperplane of Hn and reflection
in r⊥ is an isometry of Hn. If r has negative norm then r represents a point of Hn and if
r is nonzero but has zero norm then it represents an infinite point of Hn.

The group G generated by reflections in roots of L acts as a discrete reflection group
on Hn so we can find a fundamental domain D for G which is bounded by reflection
hyperplanes. The group Aut+(L) is a split extension of this reflection group by a group of
automorphisms of D.

Finally we recall Conway’s calculation of Aut+(II25,1); see Conway [3] or Borcherds
[1]. If Λ is the Leech lattice then II25,1 is isomorphic to the set of all points (λ, m, n) with
λ in Λ, and m, n integers, with the norm given by (λ, m, n)2 = λ2 − 2mn. If w = (0, 0, 1)
then the roots of II25,1 which have inner product −1 with w are the points (λ, 1, 1

2λ2 − 1)
which form a set of simple roots of a fundamental domain D of the reflection group of
II25,1, so that Aut+(II25,1) is a split extension of the reflection group by Aut(D), and
Aut(D) is isomorphic to the group ·∞ of affine automorphisms of Λ, which is in turn a
split extension of Z24 by Conway’s group ·0 = Aut(Λ).

2. Notation.

We define notation for the rest of this paper. L is II25,1, with fundamental domain
D and Weyl vector w. We identify the simple roots of D with the affine Leech lattice Λ.

R and S are two sublattices of II25,1 such that R⊥ = S, S⊥ = R, and R is positive
definite and generated by a nonempty set of simple roots of D. The Dynkin diagram of R
is the set of simple roots of D in R and is a union of a’s, d’s, and e’s. The finite group
R′/R is naturally isomorphic to S′/S (in more than one way) because II25,1 is unimodular,
and subgroups of R′/R correspond naturally to subgroups of S′ containing S (in just one
way). We fix a subgroup G of R′/R and write T for the subgroup of S′ corresponding to
it, so that an element s of S′ is in T if and only if it has integral inner product with all
elements of G. It is T that we will be finding the automorphism group of in the rest of
this paper. For each component Ri of the Dynkin diagram of R the nonzero elements of
the group 〈Ri〉′/〈Ri〉 can be identified with the tips of Ri, and R′/R is a product of these
groups. Any automorphism of D fixing R acts on the Dynkin diagram of R and on R′/R,
and these actions are compatible with the map from tips of R to R′/R. In particular we
can talk of the automorphisms of D fixing R and G. We will also write R for the Dynkin
diagram of R. We write x′ for the projection of any vector x of II25,1 into S.

Example. Λ contains a unique orbit of d25’s; let R be generated by a dn (n ≥ 2)
contained in one of these d25’s. (N.B.: Λ contains two classes of d16’s and d24’s.) Then
R⊥ = S is the even sublattice of I25−n,1 and R′/R has order 4. We can choose G in R′/R
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to have order 2 in such a way that T is I25−n,1. We will use this to find Aut(Im,1) for
m ≤ 23.

We write Aut(T ) for the group of automorphisms of T induced by automorphisms
of II25,1. This has finite index in the group of all automorphisms of T and is equal to
this group in all the examples of T we give. This follows from the fact that if g is an
automorphism of T fixing S and such that the automorphism of T/S it induces is induced
by an automorphism of R (under the identification of G with S′/S) then g can be extended
to an automorphism of II25,1.

3. Some automorphisms of T .

The group of automorphisms of D fixing (R, G) obviously acts on T . In this section
we construct enough other automorphisms of T to generate Aut(T ) and in the next few
sections we find how these automorphisms fit together. Recall that Λ is the Dynkin diagram
of D and R is a spherical Dynkin diagram of Λ.

Let r be any point of Λ such that r ∪ R is a spherical Dynkin diagram and write
R′ for R ∪ r. If g′ is any element of ·∞ such that σ(R′)g′ fixes r and R then we define
an automorphism g = g(r, g′) of II25,1 by g = σ(R)σ(R′)g′. (Recall that σ(X) is the
opposition involution of X, which acts on the Dynkin diagram X and acts as −1 on X⊥.)
These automorphisms will turn out to be a sort of generalized reflection in the sides of a
domain of T .

Lemma 3.1.
(1) If g = g(r, g′) fixes the group G then g restricted to T is an automorphism of T . g

fixes R and G if and only if σ(R′)g′ does.
(2) g fixes the space generated by r′ and w′ and acts on this space as reflection in r′⊥.
(3) If g′ = 1 then g acts on T as reflection in r′⊥. (g′ can only be 1 if σ(R′) fixes r.)

Proof. Both σ(R) and σ(R′)g′ exchange the two cones of norm 0 vectors in L and fix
R, so g fixes both the cones of norm 0 vectors and R and hence fixes R⊥ = S. If g also
fixes G then it fixes T as T is determined by G and S. σ(R) acts as −1 on G and fixes R,
so g fixes R and G if and only if σ(R′)g′ does. This proves (1).

σ(R′)g′ fixes r and R and so fixes r′. σ(R) acts as −1 on anything perpendicular to
R, and in particular on r′, so g(r′) = [σ(R)σ(R′)g′](r′) = −r′. If v is any vector of L fixed
by g′ and v′ is its projection into T , then g(v) = σ(R)σ(R′)v so that g(v) − v is in the
space generated by R′ and hence g(v′)− v′ is in the space generated by r′. As g(r′) = −r′,
g(v′) is the reflection of v′ in r′⊥. In particular if v = w or g′ = 1 then g′ fixes v so g acts
on v′ as reflection in r′⊥. This proves (2) and (3). Q.E.D.

Lemma 3.2.
(0) The subgroup of ·∞ = Aut(D) fixing (R, G) maps onto the subgroup of Aut+(T )

fixing w′.
(1) If σ(R′) fixes (R, G) then g(r, 1) acts on T as reflection in r′⊥ and this is an automor-

phism of T .
(2) If σ(R′) does not fix (R, G) then we define a map f from a subset of Aut(D) to Aut(T )

as follows:
If h in Aut(D) fixes all points of R′ then we put f(h) = h restricted to T .
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If h′ in Aut(D) acts as σ(R′) on R′ then we put f(h′) = g(r, h′) restricted to T .
(This is a sort of twisted reflection in r′⊥.)

Then the elements on which we have defined f form a subgroup of Aut(D) and f is an
isomorphism from this subgroup to its image in Aut(T ). f(h) fixes r′⊥ and w′ while
f(h′) fixes r′⊥ and acts on w′ as reflection in r′⊥. (So f(h) fixes the two half-spaces
of r′⊥ while f(h′) exchanges them.)

Proof. Parts (0) and (1) follow from 3.1.
If h in Aut(D) fixes all points of R′ then it certainly fixes all points of R and G and

so acts on T . h also fixes w and w′.
If h′ acts as σ(R′) on R′ then σ(R′)g′ fixes all points of R, so by 3.1(1), g(r, h′) is an

automorphism of T , and by 3.1(2), g(r, h′) maps w′ to the reflection of w′ in r′⊥. (There
may be no such automorphisms g′, in which case the lemma is trivial.) It is obvious that
f is defined on a subgroup of Aut(D), so it remains to check that it is a homomorphism.

We write h, i for elements of Aut(D) fixing all points of R′ and h′, i′ for elements
acting as σ(R′). All four of these elements fix R′ and so commute with σ(R′). h, i,
σ(R′)h′, and σ(R′)i′ fix R and so commute with σ(R). σ(R)2 = σ(R′)2 = 1. Using these
facts it follows that

f(hi) = hi = f(h)f(i)
f(hi′) = σ(R)σ(R′)hi′ = hσ(R)σ(R′)i′ = f(h)f(i′)
f(h′i) = σ(R)σ(R′)h′i = f(h′)f(i)
f(h′i′) = h′i′

= σ(R)2σ(R′)2h′i′

= σ(R)2σ(R′)h′σ(R′)i′

= σ(R)σ(R′)h′σ(R)σ(R′)i′

= f(h′)f(i′)

so f is a homomorphism. Q.E.D.

4. Hyperplanes of T .

We now consider the set of hyperplanes of T of the form r′⊥, where r is a root of
II25,1 such that r′ has positive norm. These hyperplanes divide the hyperbolic space of T
into chambers and each chamber is the intersection of T with some chamber of II25,1. We
write D′ for the intersection of D with T .

In the section we will show that D′ is often a sort of fundamental domain with finite
volume. It is rather like the fundamental domain of a reflection group, except that it has
a nontrivial group acting on it, and the automorphisms of T fixing sides of D′ are more
complicated than reflections.

Lemma 4.1. D′ contains w′ in its interior and, in particular, is nonempty.

Proof. To show that w′ is in the interior of D′ we have to check that no hyperplane
r⊥ of the boundary of D separates w and w′, unless r is in R. r is a simple root of D with
−(r, w) = 1 so it is enough to prove that (r, ρ) ≥ 0, where ρ = w − w′ is the Weyl vector
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of the lattice generated by R. −ρ is a sum of simple roots of R, so (r, ρ) ≥ 0 whenever r
is a simple root of D not in R because all such simple roots have inner product ≤ 0 with
the roots of R. This proves that w′ is in the interior of D′. Q.E.D.

Lemma 4.2. The faces of D′ are the hyperplanes r′⊥, where r runs through the simple
roots of D such that r ∪R is a spherical Dynkin diagram and r is not in R. In particular
D′ has only a finite number of faces because R is not empty.

Proof. The faces of D′ are the hyperplanes r′⊥ for the simple roots r of D such that
r′⊥ has positive norm, and these are just the simple roots of D with the property in 4.2.
D′ has only a finite number of faces because the Leech lattice (identified with the Dynkin
diagram of II25,1) has only a finite number of points at distance at most

√
6 from any

given point in R. Q.E.D.

Lemma 4.3. If R does not have rank 24 (i.e., T does not have dimension 2) then D′ has
finite volume.

Proof. D′ is a convex subset of hyperbolic space bounded by a finite number of
hyperplanes, and this hyperbolic space is not one dimensional as T is not two dimensional,
so D′ has finite volume if and only if it contains only a finite number of infinite points. R
is nonempty so it contains a simple root r of D. The points of D′ at infinity correspond to
some of the isotropic subspaces of II25,1 in r⊥ and D. The hyperplane r⊥ does not contain
w as (r, w) = −1, so the fact that D′ contains only a finite number of infinite points follows
from 4.4 below (with V = r⊥). Q.E.D.

Lemma 4.4. If V is any subspace of II25,1 not containing w then V contains only a finite
number of isotropic subspaces that lie in D.

Proof. Let II25,1 be the set of vectors (λ, m, n) with λ in Λ, m and n integers, with
the norm given by (λ, m, n)2 = λ2 − 2mn. We let w be (0, 0, 1) so that the simple roots
are (λ, 1, λ2/2 − 1). As V does not contain w there is some vector r = (v,m, n) in V ⊥

with (r, w) 6= 0, i.e., m 6= 0. We let each norm 0 vector z = (u, a, b) which is not a
multiple of w correspond to the point u/a of Λ ⊗ Q. If z lies in V then (z, r) = 0, so
(u/a − v/m)2 = (r/m)2, so u/a lies on some sphere in Λ ⊗ Q. If z is in D then u/a has
distance at least

√
2 from all points of Λ (i.e., it is a “deep hole”), but as Λ has covering

radius
√

2 these points form a discrete set so there are only a finite number of them on
any sphere. Hence there are only a finite number of isotropic subspaces lying in V and D.
Q.E.D.

Remark. If w is in V then the isotropic subspaces of II25,1 in V and D correspond to
deep holes of Λ lying on some affine subspace of Λ ⊗Q. There is s universal constant n0

such that in this case V either contains at most n0 isotropic subspaces in D or contains an
infinite number of them. If w is not in V then V can contain an arbitrarily large number
of isotropic subspaces in D.

5. A complex.

We have constructed enough automorphisms to generate Aut(T ), and the problem is
to fit them together to give a presentation of Aut(T ). We will do this by constructing a
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contractible complex acted on by Aut(T ). For example, if this complex is one dimensional
it is a tree, and groups acting on trees can often be written as amalgamated products.

Notation. We write Aut+(T ) for the group of automorphisms of T induced by
Aut+(II25,1). Dr is a fundamental domain of the reflection subgroup of Aut+(T ) con-
taining D′. The hyperbolic space of T is divided into chambers by the conjugates of all
hyperplanes of the form r′⊥ for simple roots r of D.

Lemma 5.1. Suppose that for any spherical Dynkin diagram R′ containing R and one
extra point of Λ there is an element of ·∞ acting as σ(R′) on R′. Then Aut+(T ) acts
transitively on the chambers of T and Aut(Dr) acts transitively on the chambers of T in
Dr.

Proof. By lemma 3.2 there is an element of Aut+(T ) fixing any face of D′ correspond-
ing to a root r of D and mapping D′ to the other side of this face. Hence all chambers of
T are conjugates of D′. Any automorphism of T mapping D′ to another chamber in Dr

must fix Dr, so Aut(Dr) acts transitively on the chambers in Dr. Q.E.D.
Dr is decomposed into chambers of T by the hyperplanes r′⊥ for r a root of II25,1.

We will write U for the dual complex of this decomposition and U ′ for the subdivision of
U . U has a vertex for each chamber of Dr, a line for each pair of chambers with a face
in common, and so on. U ′ is a simplicial complex with the same dimension as U with an
n-simplex for each increasing sequence of n + 1 cells of U . U is not necessarily a simplicial
complex and need not have the same dimension as the hyperbolic space of T ; in fact it will
usually have dimension 0, 1, or 2. For example, if Dr = D′ then U and U ′ are both just
points.

Lemma 5.2. U and U ′ are contractible.

Proof. U is contractible because it is the dual complex of the contractible space Dr.
(Dr is even convex.) U ′ is contractible because it is the subdivision of U . Q.E.D.

Theorem 5.3. Suppose that Aut(Dr) acts transitively on the maximal simplexes of U ′,
and let C be one such maximal simplex. Then Aut(Dr) is the sum of the subgroups of
Aut(Dr) fixing the vertices of C amalgamated over their intersections.

Proof. By 5.2, U ′ is connected and simply connected. C is connected and by assump-
tion is a fundamental domain for Aut(Dr) acting on U ′. By a theorem of Macbeth (Serre
[6, p. 31]) the group Aut(Dr) is given by the following generators and relations:

Generators: An element ĝ for every g in Aut(Dr) such that C and g(C) have a point
in common.

Relations: For every pair of elements (s, t) of Aut(Dr) such that C, s(C), and u(C)
have a point in common (where u = st) there is a relation ŝt̂ = û.

Any element of Aut(Dr) fixing C must fix C pointwise. This implies that C and g(C)
have a point in common if and only if g fixes some vertex of C, i.e., g is in one of the
groups C0, C1, . . . which are stabilizers of the vertices of C, so we have a generator ĝ for
each g that lies in (at least) one of these groups. There is a point in all of C, s(C), and
u(C) if and only if some point of C, and hence some vertex of C, is fixed by s and t. This
means that we have a relation ŝt̂ = û exactly when s and t both lie in some group Ci. This
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is the same as saying that Aut(Dr) is the sum of the groups Ci amalgamated over their
intersections. Q.E.D.

Example. If C is one dimensional then Aut(Dr) is the free product of C0 and C1

amalgamated over their intersection. If the dimension of C is not 1 then Aut(Dr) cannot
usually be written as an amalgamated product of two nontrivial groups.

6. Unimodular lattices.

In this section we apply the results of the previous section to find the automorphism
group of Im,1 for m ≤ 23.

Lemma 6.1. Let X be the Dynkin diagram an (1 ≤ n ≤ 11), dn (2 ≤ n ≤ 11), en

(3 ≤ n ≤ 8), or a2
2 which is contained in Λ. Then any automorphism of X is induced by an

element of ·∞. If X is an an (1 ≤ n ≤ 10), dn (2 ≤ n ≤ 25, n 6= 16 or 24), en (3 ≤ n ≤ 8),
or a2

2 then ·∞ acts transitively on Dynkin diagrams of type X in Λ.

Proof. A long, unenlightening calculation. See section 9. Q.E.D.
Remark. ·∞ acts simply transitively on ordered a10’s in Λ. There are two orbits

of d16’s and d24’s (see section 9 and example 2 of section 8) and many orbits of an’s for
n ≥ 11.

Notation. We take R to be a dn contained in a d25 for some n with 2 ≤ n ≤ 23. If
R is d4 we label the tips of R as x, y, z in some order, and if R is dn for n 6= 4 we label
the two tips that can be exchanged by an automorphism of R as x and y. If n = 3 or
n ≥ 5 we label the third tip of R as z. We let G be the subgroup of 〈R′〉/〈R〉 of order 2
which corresponds to the tip z if n ≥ 3 and to the sum of the elements x and y if n = 2.
An automorphism of R fixes G if n 6= 4 or if n = 4 and it fixes z. The lattice S = R⊥ is
isomorphic to the even sublattice of I25−n,1. We let T be the lattice corresponding to G
that contains S, so that T is isomorphic to I25−n,1.

Lemma 6.2. Any root r of V such that r∪R is a spherical Dynkin diagram is one of the
following types:
Type a: r ∪R is dna1 (i.e., r is not joined to any point of R.) r′ is then a norm 2 vector

of T .
Type d: r is joined to z if n ≥ 3 or to x and y if n = 2, so that r ∪R is dn+1. r′ has norm

1.
Type e: r is joined to just one of x or y, so that r ∪R is en+1. 2r′ is then a characteristic

vector of norm 8− n in T .

Proof. Check all possible cases. Q.E.D.
In particular if r is of type a or d, or of type e with n = 6 or 7, then r′ (or 2r′) has

norm 1 or 2 and so is a root of T . Note that in these cases σ(R ∪ r) fixes R and z and
therefore G, so by 3.2(2), r′⊥ is a reflection of T . In the remaining four cases (r of type e
with 2 ≤ n ≤ 5) σ(r ∪R) does not fix both R and G.

Corollary 6.3. If n ≥ 6 then then reflection group of T = I25−n,1 has finite index in
Aut(T ). Its fundamental domain has finite volume and a face for each root r of Λ such
that r ∪R is a spherical Dynkin diagram.

Proof. This follows from the fact that all walls of D′ give reflections of T so D′ is a
fundamental domain for the reflection group. By 4.3, D′ has finite volume. Q.E.D.
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Remarks. The fact that a fundamental domain for the reflection group has finite
volume was first proved in Vinberg [8] for n ≥ 8 and in Vinberg and Kaplinskaja [9]
for n = 6 and 7 (i.e., for I18,1 and I19,1). Conway and Sloane [4] show implicitly that
for n ≥ 6 the non-reflection part of Aut(T ) is the subgroup of ·∞ fixing R and their
description of the fundamental domain of the reflection group in these cases is easily
seen to be equivalent to that in 6.3. I18,1 and I19,1 have a “second batch” of simple
roots of norm 1 or 2; from 6.2 we see that this second batch consists of the roots which
are characteristic vectors and they exist because of the existence of e8 and e7 Dynkin
diagrams. The non-reflection group of I20,1 is infinite because of the existence of e6 Dynkin
diagrams and the fact that the opposition involution of e6 acts non-trivially on the e6.
(dim(I20,1) = 1 + dim(II25,1) + dim(e6).)

From now on we assume that n is 2, 3, 4, or 5. Recall that Dr is the fundamental
domain of the reflection group of T containing D and U is the complex which is the dual
of the complex of conjugates of D in Dr.

Lemma 6.4. Aut(Dr) acts transitively on the vertices of U .

Proof. This follows from 6.1 and 5.1. Q.E.D.

Lemma 6.5. If n = 3, 4, or 5 then U is one dimensional and if n = 2, then U is two
dimensional. (By the remarks after 6.3, U is zero dimensional for n ≥ 6.)

Proof. Let s and t be simple roots of Λ such that s ∪R and t ∪R are en+1’s, so that
s′⊥ and t′⊥ give two faces of D′ inside Dr. Suppose that these faces intersect inside Dr.
We have s′2 = t′2 = 2− n/4, (s′, t′) ≤ 0, and r = s′ + t′ lies in T (as 2s′ and 2t′ are both
characteristic vectors of T and so are congruent mod 2T ). r′2 cannot be 1 or 2 as then the
intersection of s′⊥ and t′⊥ would lie on the reflection hyperplane r⊥, which is impossible
as we assumed that s′⊥ and t′⊥ intersected somewhere in the interior of Dr. Hence

3 ≤ r2 = (s′ + t′)2 ≤ 2(2− n/4) ≤ 2(2− 2/4) = 3

so r2 = 3, n = 2, and (s′, t′) = 0.
If n = 3, 4, or 5 this shows that no two faces of D′ intersect in the interior of Dr, so

the graph whose vertices are the conjugates of D′ in Dr such that two vertices are joined
if and only if the conjugates of D′ they correspond to have a face in common is a tree. As
it is the 1-skeleton of U , U must be one dimensional.

If n = 2 then it is possible for s′⊥ and t′⊥ to intersect inside Dr. In this case they
must intersect at right angles, so U contains squares. However, in this case s and t cannot
be joined to the same vertex of R = a2

1, and in particular it is not possible for three faces of
D′ to intersect inside Dr, so U is two dimensional. (Its two-dimensional cells are squares.)
Q.E.D.

If X is a Dynkin diagram in Λ we will write G(X) for the subgroup of ·∞ fixing X. If
X1 ⊂ X2 ⊂ X3 · · · is a sequences of Dynkin diagrams of Λ we write G(X1 ⊂ X2 ⊂ X3 · · ·)
for the sum of the groups G(Xi) amalgamated over their intersections.
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Theorem 6.6. The non-reflection part of Aut+(T ) = Aut+(I25−n,1) is given by

G(d5 ⊂ e6) if n = 5,

G(d∗4 ⊂ d5) if n = 4 (where d∗4 means that one of the tips of the d4 is labeled),

G(a3 ⊂ a4) if n = 3,

G(a2
1 ⊂ a1a2 ⊂ a2

2) if n = 2.

Proof. By 6.4, Aut(Dr) acts transitively on the vertices of U . Using this and 6.1 it
is easy to check that it acts transitively on the maximal flags of U , or equivalently on the
maximal simplexes of the subdivision U ′ of U . For example, if n = 5 this amounts to
checking that the group G(d5) acts transitively on the e6’s containing a d5.

By 5.3 the group Aut(Dr) is the sum of the groups fixing each vertex of a maximal
simplex C of U ′ amalgamated over their intersections. By 3.2 the subgroup of Aut(Dr)
fixing the vertex D′ of U can be identified with G(R) = G(dn) and the subgroup fixing a
face of D′ can be identified with G(en+1) for the en+1 corresponding to this face. These
groups are the groups fixing two of the vertices of C, and if n = 2 it is easy to check
that the group fixing the third vertex can be identified with G(a2

2). Hence Aut(Dr) is
G(dn ⊂ en+1) if n = 3, 4, or 5 (where if n = 4 we have to use a subgroup of index 3 in
G(d4)), and G(d2 ⊂ e3 ⊂ a2

2) if n = 2. Q.E.D.
Examples. n = 5: Aut(I20,1) The domain D′ has 30 faces of type a, 12 of type d, and

40 of type e. Aut(D′) is Aut(A6) of order 1440 (where A6 is the alternating group of order
360). Aut(Dr) is

Aut(A6) ∗H (S3 o Z2),

where S3 o Z2 = G(e6) is a wreathed product and has order 72. H is its unique subgroup
of order 36 containing an element of order 4. (Warning: Aut(A6) contains two orbits of
subgroups isomorphic to H. The image of H in Aut(A6) is not contained in a subgroup of
Aut(A6) isomorphic to S3 oZ2.) Aut(Dr) has Euler characteristic 1/1440 + 1/72− 1/36 =
−19/1440.

n = 4: Aut(I21,1). D′ has 42 faces of type a, 56 of type d, and 112 of type e. Aut(D′)
is L3(4) · 22. Aut(Dr) is

L3(4).22 ∗M10 Aut(A6).

Aut(A6) has 3 subgroups of index 2, which are S6, PSL2(9), and M10. Aut(Dr) has Euler
characteristic −11/28.32.7.

n = 3: Aut(I22,1). D′ has 100 faces of type a, 1100 of type d, and 704 of type e.
Aut(D′) is HS.2, where HS is the Higman-Sims simple group, and Aut(Dr) is

HS.2 ∗H H.2

where H is PSU3(5) of order 24.32.53.7. Its Euler characteristic is 3.13/210.55.7.11.
n = 2: Aut(I23,1). D′ has 4600 faces of type a, 953856 of type d, and 94208 of type e.

Aut(D′) is ·2× 2, where ·2 is one of Conway’s simple groups. Aut(Dr) is the direct limit
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of the groups
·2× 2 = G(a2

1)
↗ ↖

McL ← PSU4(3) → PSU4(3).2
↓ ↓ ↓

G(a1a2) = McL.2 ← PSU4(3).2 → PSU4(3) ·D8 = G(a2
2)

McL is the McLaughlin simple group and D8 is the dihedral group of order 8. The direct
limit is generated by ·2× 2 and an outer automorphism of McL; the PSU4(3)’s are there
to supply one additional relation. The Euler characteristic of Aut(Dr) is the sum of the
reciprocals of the orders of the groups in the center and the vertices of the diagram above
minus the sum of the reciprocals of the groups on the edges (see Serre [7]), which is
3191297/220.36.53.7.11.23.

Remark. For n = 2, 3, 4, 5, or 7 the number of faces of D′ of type e is (24/(n −
1)− 1)212/(n−1), which is 23 · 212, 11 · 26, 7 · 24, 5 · 23, or 3 · 22. For n = 6 this expression
is 20.06 . . . and there are 20 faces of type e. Table 3 of Conway and Sloane [4] gives the
number of faces of type a and d of Im,1 for m ≤ 23.

7. More about In,1.

Here we give more information about In,1 for 20 ≤ n ≤ 23. In the tables in Conway and
Sloane [4] the heights of the simple roots they calculate appear to lie on certain arithmetic
progressions; we prove that they always do. We then prove that the dimension of the
complex U is the virtual cohomological dimension of the non-reflection part of Aut(In,1).

Notation. D is a dn of Λ contained in a d25. Let C be the sublattice of all elements
of T = I25−n,1 which have even inner product with all elements of even norm. C contains
2T with index 2 and the elements of C not in 2T are the characteristic vectors of T . w′ is
the projection of w into T and Dr is the fundamental domain of the reflection group of T
containing w′.

Lemma 7.1. Suppose 2 ≤ n ≤ 5 Then all conjugates of w′ in Dr are congruent mod
2n−2C. (If n ≥ 6 then Dr = D′ so there are no other conjugates of w′ in Dr.)

Proof. It is sufficient to prove that any two conjugates of w′ which are joined as
vertices of the graph of Dr are congruent mod2n−2C because this graph is connected, and
we can also assume that one of these vertices is w′ because Aut(Dr) acts transitively on
its vertices. Let w′′ be a conjugate of w′ joined to w′.

w′′ is the reflection of w′ in some hyperplane e⊥, where e is a characteristic vector of
T of norm 8− n, so e is in C. Therefore

w′′ = w′ − 2(w′, e)e/(e, e).

e = 2r′ for a vector r of Λ such that r ∪ R is an en+1 diagram. The
projections of r and w into the lattice In containing R are ( 1

2 , 1
2 , . . . , 1

2 ) and
(0, 1, . . . , n − 1), which have inner product (n − 1)n/4. Hence (w′, r′) = (w, r) −
(inner product of projections of w and r into 〈R〉) = −1− (n− 1)n/4, so

−2(w′, e)/(e, e) = (4 + (n− 1)n)/(8− n).

For 2 ≤ n ≤ 5 the expression on the right is equal to 2n−2, so w′ and w′′ are congruent
mod 2n−2C. Q.E.D.
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Theorem 7.2. Suppose n = 2, 3, 4, or 5 and let r be a simple root of the fundamental
domain Dr of T = I25−n,1.

If r2 = 1 then (r, w′) ≡ −n mod 2n−2.
If r2 = 2 then (r, w′) ≡ −1 mod 2n−1.

Proof. (r, w′) = (s′, w′′) for some conjugate w′′ of w in Dr and some simple root s′ of
I25−n,1 that is the projection of a simple root s of D into I25−n,1. By 7.1, w′ is congruent
to w′′ mod 2n−2C so (r, w′) is congruent to (s′, w′) mod 2n−2 if r2 = 1 and mod 2n−1

if r2 = 2 (because elements of C have even inner product with all elements of norm 2).
(s′, w′) is equal to (s, w)−(inner product of projections of s and w into R), which is −1 if
s′ has norm 2 and −1− (n− 1) if s′ has norm 1. Q.E.D.

This explains why the heights of the simple roots for Im,1 with 20 ≤ n ≤ 23 given in
table 3 of Conway and Sloane [4] seem to lie on certain arithmetic progressions.

Now we show that the dimension of the complex U is the virtual cohomological di-
mension of Aut(Dr).

Lemma 7.3. The cohomological dimension of any torsion free subgroup of Aut(Dr) is at
most dim(U).

Proof. Any such subgroup acts freely on the contractible complex U . Q.E.D.

Corollary 7.4. The virtual cohomological dimension of Aut(Dr) is equal to dim(U).

Proof. Aut(Dr) contains torsion-free subgroups of finite index, so by 7.3 the v.c.d.
of Aut(Dr) is at most dim(U). For n ≤ 5, Aut(Dr) is infinite and so has v.c.d. at least
1, while for n = 2. Aut(Dr) contains subgroups isomorphic to Z2 (because there are 22-
dimensional unimodular lattices whose root systems generate a vector space of codimension
2) so Aut(Dr) has v.c.d. at least 2. Q.E.D.

Lemma 7.3 implies that Aut(Dr) contains no subgroups of the form Zi with i >
dim(U), and this implies that if L is a (24 − n)-dimensional unimodular lattice then the
space generated by roots of L has codimension at most dim(U). This can of course also
be proved by looking at the list of such lattices. (Vinberg used this in reverse: he showed
that the non-reflection part of Aut(Im,1) was infinite for m ≥ 20 from the existence of 19-
dimensional unimodular lattices with root systems of rank 18. There are two such lattices,
with root systems a11d7 and e3

6; they are closely related to the two Niemeier lattices a11d7e6

and e4
6 containing an e6 component.)

8. Other examples.

We list some more examples of (not necessarily unimodular) Lorentzian lattices with
their automorphism groups.

Example 1. R is an e8 in Λ so that T is II17,1. The fundamental domain D′ of the
reflection group has finite volume and its Dynkin diagram is the set of points of Λ not
connected to e8, which is a line of 17 points with 2 more points joined onto the 3rd and
15th points. This diagram was found in Vinberg [8].

Example 2. Similarly if R is one of the d16’s of Λ not contained in a d17 then T is
II9,1 and the points of Λ not joined to R form an e10 which is the Dynkin diagram of II9,1.

Example 3. All e7’s of Λ are conjugate; if R is one of them then T is the 19-dimensional
even Lorentzian lattice of determinant 2. There are 3+21 roots r for which r ∪ R is a
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spherical Dynkin diagram and these 24 points are arranged as a ring of 18 points with an
extra point joined on to every third point. The three roots joined to the e7 correspond to
norm 2 roots r of T with r⊥ unimodular, while the other 21 roots correspond to norm 2
roots of T such that r⊥ is not unimodular. The non-reflection part of Aut+(T ) is S3 of
order 6 acting in the obvious way on the Dynkin diagram.

Example 4. Let R be the unique orbit of e6’s in Λ. Then T is the 20-dimensional
even Lorentzian lattice of determinant 3. D′ is a fundamental domain for the reflection
group of T and has 12 + 24 faces, coming from 12 roots of norm 6 and 24 of norm 2. The
non-reflection group of Aut+(T ) is a wreath product S3 oZ2 of order 72. (Remark added in
1998: this example was first found by Vinberg in “The two most algebraic K3 surfaces”,
Math. Ann. 265 (1983), no. 1, 1–21.)

Example 5. R is d4 and T is the even sublattice of I21,1 so that T has determinant 4.
The domain D′ is a fundamental domain for the reflection group of T and has 168 walls
corresponding to roots of norm 4 and 42 walls corresponding to roots of norm 2. Aut(D) is
isomorphic to L3(4).D12 of order 28.33.5.7. T is a 22-dimensional Lorentzian lattice whose
reflection group has finite index in its automorphism group; I do not know of any other
such lattices of dimension ≥ 21. (Remark added in 1998: Esselmann recently proved in
“Über die maximale Dimension von Lorentz-Gittern mit coendlicher Spiegelungsgruppe”,
Number Theory 61 (1996), no. 1, 103–144, that the lattice T is essentially the only
example of a Lorentzian lattice of dimension at least 21 whose reflection group has finite
index in its automorphism group.) T is contained in three lattices isomorphic to I21,1 each
of whose automorphism groups has index 3 in Aut(T ). However the reflection groups of
these lattices do not have finite index in their automorphism groups.

Example 6. R is a1 and T is the 25-dimensional even Lorentzian lattice of determinant
2. This time D′ is not a fundamental domain for the reflection group. It has 196560 faces
corresponding to norm 2 roots and 16773120 faces perpendicular to norm 6 vectors (which
are not roots). However, the simplicial complex of T is a tree so Aut(D′) is (·0)∗(·3) (2×·3),
i.e., it is generated by ·0 and an element t of order 2 with the relations that t commutes
with some ·3 of ·0. D′ has finite volume but if any of its 16969680 faces are removed the
resulting polyhedron does not!

9. The automorphism groups of high-dimensional Lorentzian lattices.

Notation. L is II8n+1,1 (n ≥ 1) and D is a fundamental domain of the reflection group
of L.

X is the Dynkin diagram of D. In this section we will show that if 8n ≥ 24 then
Aut(L) acts transitively on many subsets of X, and use this to generalize some of the
results of the previous sections to higher dimensional lattices.

Lemma 9.1. Let R be a spherical Dynkin diagram. Suppose that whenever R′ is a
spherical Dynkin diagram in X which is isomorphic to R plus one point r there is an
element g of Aut(D) such that gσ(R′) fixes R (resp. fixes all points of R).

For any map f : R 7→ X we construct (M,f ′, C), where
M is the lattice f(R)⊥,
f ′ is the map from R′/R to M ′/M such that f(r) ≡ −f ′(r) mod L for r in R′/R,
C is the cone of M contained in the cone of L containing D.
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If f1, f2 are two such maps then the images f1(R), f2(R) (resp. f1 and f2) are
conjugate under Aut(L,D) if the two pairs (M1, f

′
1, C1), (M2, f

′
2, C2) are isomorphic.

Proof. It is sufficient to show that a triple (M,f ′, C) determines f(R) (resp. f) up
to conjugacy under Aut(L,D). Given M and f ′ we can recover L as the lattice generated
by R⊕M and the elements r⊕ f ′(r) for r in R′. We have a canonical map from R to this
L, so we have to show that the Weyl chamber D of L is determined up to conjugacy by
elements of the group fixing R and M (resp. fixing M and fixing all points of R.) This
Weyl chamber is determined by its intersection with R and M , and its intersection with
R is just the canonical Weyl chamber of R. Its intersection with M is in the cone C and
is in some Weyl chamber of the norm 2 roots of M . All such Weyl chambers of M in C
are conjugate under automorphisms of L fixing M and all points of R, so we can assume
that the intersection with M is contained in some fixed Weyl chamber W of M .

By 3.1 and the assumption on R all the Weyl chambers of L whose intersection with
M is in W are conjugate under the group of automorphisms of L fixing R (resp. fixing all
points of R) and hence (M,f ′, C) determines f(R) (resp. f). Q.E.D.

Corollary 9.2. If R is e6, e7, e8, d4, or dm (m ≥ 6) then two copies of R in X are conjugate
under Aut(D) if and only if their orthogonal complements are isomorphic lattices.

Proof. If R′ is any Dynkin diagram containing R and one extra point then σ(R′)
fixes R. The result now follows from 9.1. Q.E.D.

Remark. If L is II9,1 or II17,1 then Aut(D) is not transitive on d5’s. σ(e6) does not
fix the d5’s in e6.

Lemma 9.3. Aut(D) is transitive on e8’s. The simple roots of D perpendicular to an
e8 form the Dynkin diagram of II8n−7,1 and the subgroup of Aut(D) fixing the e8 is
isomorphic to the subgroup of Aut(II8n−7,1) fixing a Weyl chamber.

Proof. The transitivity on e8’s is in 9.2. The rest of 9.3 follows easily. Q.E.D.

Lemma 9.4. If 8n ≥ 24 then for any e6 in X there is an element of Aut(D) inducing
σ(e6) on it.

Proof. By 9.2, Aut(D) is transitive on e6’s so it is sufficient to prove it for one e6.
It is true form 8n = 24 by calculation and using 9.3 it follows by induction for 8n > 24.
Q.E.D.

Theorem 9.5. Classification of dm’s in X.
(1) Aut(D) acts transitively on e6’s e7’s, and e8’s in X. if 8n ≥ 24 then for any e6 there

is an element of Aut(D) inducing the nontrivial automorphism of this e6.
(2) For any m with 4 ≤ m ≤ 8n + 1 there is a unique orbit of dm’s in X such that d⊥m is

not unimodular, unless m = 5 and 8n = 8 or 16. Any automorphism of such a dm is
induced by an element of Aut(D) if and only if m ≤ 8n− 13.

(3) For any m with 16 ≤ 8m ≤ 8n there is a unique orbit of d8m’s such that d⊥8m is
unimodular, and these are the only d’s whose orthogonal complement is unimodular.
There is no element of Aut(D) inducing the nontrivial automorphism of d8m.

Proof. Part (1) follows from 9.2 and 9.4 because there is only one isomorphism class
of lattices of the form e⊥i for i = 6, 7, 8. From 9.4, 9.2, and 9.1 it follows that two dm’s of X
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are conjugate under Aut(D) if and only if their orthogonal complements are isomorphic,
unless m = 5 and n ≤ 2. d⊥m is either the even sublattice of I8n+1−m,1, or m is divisible
by 8 and d⊥m is II8n+1−m,1. In the second case we must have m ≥ 16 because if m was 8
the Dynkin diagram of (II8n+1−m,1)⊥ would be e8 and not d8. This shows that there is
one orbit of dm’s unless 8|m, m ≥ 16 or m = 5, n ≤ 2 in which case there are two orbits.

If d⊥m is unimodular then dm is contained in an even unimodular sublattice of L, and
there are no automorphisms of this lattice acting non-trivially on dm, so there are no
elements of Aut(D) inducing a nontrivial automorphism of dm.

If d⊥m is not unimodular then there is an element of Aut(D) inducing a nontrivial
automorphism of dm if and only if there is an automorphism of the Dynkin diagram of
I8n+1−m,1 acting non-trivially on M ′/M , where M is the sublattice of even elements of
I8n+1−m,1. There is no such automorphism of Ik for k ≤ 13 and there is such an automor-
phism for k = 14, so there is an element of Aut(D) inducing a nontrivial automorphism
of dm for m = 8n− 13 and there is no such element if m ≥ 8n− 12. If m < 8n− 13 then
our dm is contained in a d8n−13 so there is still a nontrivial automorphism of dm induced
by Aut(D). Finally, if m = 4 and 8n ≥ 24 then as in the proof of 9.4 we see that there
is some d4 such that Aut(D) induces all automorphisms of d4. As Aut(D) is transitive on
d4’s, this is true for any d4. Q.E.D.

Lemma 9.6. If 2 ≤ m ≤ 11 and 8n ≥ 24 then for any am in L there is an element of
Aut(D) inducing the nontrivial automorphism of am.

Proof. This is true for 8n = 24 by calculation. There is an element of Aut(D) acting
as σ(am) on am if and only if there is an automorphism of the Weyl chamber of the lattice
M = a⊥m which acts as −1 on M ′/M . The lattice M is isomorphic to N ⊕ en−3

8 , where N
is a⊥m for some am in II25,1 and N has an automorphism of its Weyl chamber, so M has
one too. Hence for m ≤ 11 there is an element of Aut(D) inducing σ(am) on am. Q.E.D.

Corollary 9.7. If 8n ≥ 24 and m ≤ 10 then Aut(D) is transitive on am’s in D.

Proof. It follows from 9.6 and 9.5 that if R′ is any spherical Dynkin diagram in X
containing am and one extra point (so R′ is am+1, dm+1, em+1, or ama1) then there is
an element g of Aut(D) such that gσ(R′) fixes am. Hence by 9.1, Aut(D) is transitive on
am’s. Q.E.D.

Corollary 9.8. If n ≥ 20 and n ≡ 4, 5 or 6 mod 8 then the non-reflection part of Aut(In,1)
can be written as a nontrivial amalgamated product.

Proof. The results of this section show that the analogue of 6.1 is true for II8i+1,1

for 8i ≥ 24. This is all that is needed to prove the analogue of 6.6. Q.E.D.
(If n ≥ 23 then the group cannot be written as an amalgamated product of finite

groups.)
Remark. If n ≥ 10 and n ≡ 2 or 3 mod 8 and G is the subgroup of Aut(In,1) generated

by the reflections of non-characteristic roots, then Aut(In,1)/G is a nontrivial amalgamated
product.
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