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Abstract

These are preliminary rather scrappy notes that have not yet been
proofread. Many of the sections, especially the latter ones, are still incom-
plete, contain many errors, and need a lot of further work. You have been
warned. For updated versions go to http://math.berkeley.edu/~reb.

These are notes for a Lie Groups course Math 261AB, 2011-2012. The
course philosophy is that this is a service course, so I will emphasize
applications of Lie groups to other areas, and will concentrate more on
discussing examples than on giving complete proofs. Some of the sections
are based on some lectures I gave a few years ago, and I have used the
TeX files of notes for these lectures written by Hanh Duc Do, An Huang,
Santiago Canez, Lilit Martirosyan, Emily Peters, Martin Vito-Cruz, An-
ton Geraschenko (many of whose TeX macros I have reused), and Sevak
Mkrtchyan.
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1 Examples

A typical example of a Lie group is the group GL2(R) of invertible 2 by 2
matrices, and a Lie group is defined to be something that resembles this. Its
key properties are that it is a smooth manifold and a group and these structures
are compatible. So we define a Lie group to be a smooth manifold that is also a
group, such that the product and inverse are smooth maps. All manifolds will
be smooth and metrizable unless otherwise stated.

We start by trying to list all Lie groups.

Example 1 Any discrete group is a 0-dimensional Lie group.

This already shows that listing all Lie groups is hopeless, as there are too
many discrete groups. However we can split a Lie group into two: the component
of the identity is a connected normal subgroup, and the quotient is discrete.
Although a complete description of the discrete part is hopeless, we can go
quite far towards classifying the connected Lie groups.

Example 2 The real numbers under addition are a 1-dimensional commutative
Lie group. Similarly so is any finite dimensional real vector space under addition.
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Example 3 The circle group S1 of all complex numbers of absolute value 1 is
a Lie group, also abelian.

We have essentially found all the connected abelian Lie groups: they are
products of copies of the circle and the real numbers. For example, the non-
zero complex numbers form a Lie group, which (via the exponential map and
polar decomposition) is isomorphic to the product of a circle and the reals.

Example 4 The general linear group GLn(R) is the archetypal example of a
non-commutative Lie group. This has 2 components as the determinant can be
positive or negative. Similarly we can take the complex general linear group.

The classical groups are roughly the subgroups of general linear groups that
preserve bilinear or hermitian forms. The compact orthogonal groups On(R)
preserve a positive definite symmetric bilinear form on a real vector space. We
do not have to restrict to positiver definite forms: in special relativity we get
the Lorentz group O1,3(R) preserving an indefinite form. The symplectic group
Sp2n(R) preserves a symplectic form and is not compact. The unitary group
Un preserves a hermitian form on Cn and is compact as it is a closed subgroup
of the orthogonal group on R2n. Again we do not have to restrict to positive
definite Hermitian forms, and there are non-compact groups Um,n preserving
|z1|2 + · · ·+ |zm|2 − z2

m+1 − · · · .
There are many variations of these groups obtained by tweaking abelian

groups at the top and bottom. We can kill off the abelian group at the top
of many of them by taking matrices of determinant 1: this gives special linear,
special orthogonal r groups and so on. (“Special” usually means determinant
1). Alternatively we can make the abelian group at the top bigger: the general
symplectic group GSp is the group of matrices that multiply a symplectic form
by a non-zero constant. We can also kill off the abelian group at the bottom
(often the center) by quotienting out by it: this gives projective general linear
groups and so on. (The word “projective” usually means quotient out by the
center, and comes from the fact that the projective general linear group acts
on projective space.) Finally we can make the center bigger by taking a central
extension. For example, the spin groups are double covers of the special orthog-
onal groups. The spin group double cover of SO3(R) can be constructed using
quaternions.

Exercise 5 If z = a+ bi+ cj + dk is a quaternion show that zz is real, where
z = a − bi − cj − dk. Show that z 7→ |z| =

√
zz is a homomorphism of groups

from non-zero quaternions to positive reals. Show that the quaternions form
a division ring; in other words check that every non-zero quaternion has an
inverse.

Exercise 6 Identify R3 with the set of imaginary quaternions bi + cj + dk.
Show that the group of unit quaternions S3 acts on this by conjugation, and
gives a homomorphism S3 7→ SO3(R) whose kernel has order 2.

A typical example of a solvable Lie group is the group of upper triangular
matrices with nonzero determinant. (Recall that solvable means the group can
be split into abelian groups.) It has a subgroup consisting of matrices with 1s
on the diagonal: this is a typical example of a nilpotent Lie group. (Nilpotent

2



means that if we keep killing the center we eventually kill the whole group. We
will see later that a connected Lie group is nilpotent if all elements of its lie
algebra are nilpotent matrices: this is where the name “nilpotent” comes from.)

Gsol ⊆



∗ ∗

. . .

∗
0 ∗


 Gnil ⊆




1 ∗
. . .

1
0 1




Exercise 7 Check that these groups are indeed solvable and nilpotent.

Exercise 8 Show that any finite group of prime-power order pn is nilpotent,
and find a non-abelian example of order p3 for any prime p. (Hint: show that
any conjugacy class not in the center has order divisible by p, and deduce that
the center has order divisible by p unless the group is trivial.)

Exercise 9 The Moebius group consists of all isomorphisms from the complex
unit disk to itself: z 7→ (az + b)/(cz + d) with ad − bc = 1, a = d, b = c.
Show that this is the group PSU1,1. Similarly show that the group of conformal
transformations of the upper half plane is PSL2(R). Since the upper half plane
is isomorphic to the unit disc, we see that the groups PSU1,1 and PSL2(R) are
isomorphic. This illustrates one of the confusing things about Lie groups: there
are a bewildering number of unexpected isomorphisms between them in small
dimensions.

Exercise 10 Show that there is a (nontrivial!) homomorphism from SL2(R) to
the group O2,1(R), and find the image and kernel. (Consider the action of the
group SL2(R) on the 3-dimensional symmetric square S2(R2) and show that
this action preserves a quadratic form of signature (2, 1).)

Klein claimed at one point that geometry should be identified with group
theory: a geometry is determined by its group of symmetries. (This fails for
Riemannian geometry.) For example, affine geometry consists of the properties
of space invariant under the group of affine transformations, projective geometry
is properties of projective space invariant under projective transformations, and
so on. The group of affine transformations in n dimensions is a semidirect
product Rn.GLn(R). This can be identified with the subgroup of GLn+1 fixing a
vector (sometimes called the mirabolic subgroup). For example, in 1-dimension
we get a non-abelian 2-dimensional Lie group of transformations x 7→ ax + b
with a 6= 0.

What does a general Lie group look like? In general, a Lie group G can be
broken up into a number of pieces as follows.

As we mentioned earlier,the connected component of the identity, Gconn ⊆ G,
is a normal subgroup, and G/Gconn is a discrete group.

1 −→ Gconn −→ G −→ Gdiscrete −→ 1

so this breaks up a Lie group into a connected subgroup and a discrete quotient.
The maximal connected normal solvable subgroup of Gconn is called the solv-

able radical Gsol. Recall that a group is solvable if there is a chain of subgroups
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Gsol ⊇ · · · ⊇ 1, where consecutive quotients are abelian. Lie’s theorem tells
us that some cover of Gsol is isomorphic to a subgroup of the group of upper
triangular matrices.

Since Gsol is solvable, Gnil := [Gsol, Gsol] is nilpotent, i.e. there is a chain
of subgroups Gnil ⊇ G1 ⊇ · · · ⊇ Gk = 1 such that Gi/Gi+1 is in the center of
Gnil/Gi+1. In fact, Gnil must be isomorphic to a subgroup of the group of upper
triangular matrices with ones on the diagonal. Such a group is called unipotent.

Every normal solvable subgroup of Gconn/Gsol is discrete, and therefore in
the center (which is itself discrete). We call the pre-image of the center G∗.
Then G/G∗ is a product of simple groups (groups with no normal subgroups).

So a general Lie group has a chain of normal subgroups that are triv-
ial,nilpotent, solvable, connected, or the whole group, such that the quotients
are nilpotent, abelian, almost a product of simple groups, and discrete.

Example 11 Let G be the group of all shape-preserving transformations of
R4 (i.e. translations, reflections, rotations, and scaling). It is sometimes called
R4 ·GO4(R). The R4 stands for translations, the G means that we can multiply
by scalars, and the O means that we can reflect and rotate. The R4 is a normal
subgroup. In this case, we have

Gconn/Gsol

= SO4(R)



R4 ·GO4(R) = G

R4 ·GO+
4 (R) = Gconn

R4 · R× = G∗

R4 · R+ = Gsol

R4 = Gnil

G/Gconn = Z/2Z

Gconn/G∗ = PSO4(R)(
' SO3(R)× SO3(R)

)
G∗/Gsol = Z/2Z

Gsol/Gnil = R+

where GO+
4 (R) is the connected component of the identity (those transforma-

tions that preserve orientation), R× is scaling by something other than zero, and
R+ is scaling by something positive. Note that SO3(R) = PSO3(R) is simple.

SO4(R) is “almost” the product SO3(R) × SO3(R). To see this, consider
the associative (but not commutative) algebra of quaternions, H. Since qq̄ =
a2 + b2 + c2 + d2 > 0 whenever q 6= 0, any non-zero quaternion has an inverse
(namely, q̄/qq̄). Thus, H is a division algebra. Think of H as R4 and let S3 be
the unit sphere, consisting of the quaternions such that ‖q‖ = qq̄ = 1. It is easy
to check that ‖pq‖ = ‖p‖ ·‖q‖, from which we get that left (right) multiplication
by an element of S3 is a norm-preserving transformation of R4. So we have
a map S3 × S3 → O4(R). Since S3 × S3 is connected, the image must lie
in SO4(R). It is not hard to check that SO4(R) is the image. The kernel is
{(1, 1), (−1,−1)}. So we have S3 × S3/{(1, 1), (−1,−1)} ' SO4(R).

Conjugating a purely imaginary quaternion by some q ∈ S3 yields a purely
imaginary quaternion of the same norm as the original, so we have a homomor-
phism S3 → O3(R). Again, it is easy to check that the image is SO3(R) and
that the kernel is ±1, so S3/{±1} ' SO3(R).

So the universal cover of SO4(R) (a double cover) is the Cartesian square
of the universal cover of SO3(R) (also a double cover). Orthogonal groups in
dimension 4 have a strong tendency to split up like this. Orthogonal groups
tend to have these double covers.
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Exercise 12 Let G be the (parabolic) subgroup of GL4(R) of matrices whose
lower left 2 by 2 block of elements are all zero. Decompose G in an analogous
way to the example above.

So to classify all connected Lie groups we need to find the simple ones, the
unipotent ones, and find how the simple ones can act on the unipotent ones.
One might guess that the easiest part of this will be to find the unipotent ones,
as these are just built from abelian ones by taking central extensions. However
this turns out to be the hardest part, and there seems to be no good solution.
The simple ones can be classified with some effort: we will more or less do
this in the course. Over the complex numbers the complete list is given by the
following Dynkin diagrams (where the subscript in the name is the number of
nodes):

An • − • − · · · − • − •
Bn • − • − · · · − • ⇒ •
Cn • − • − · · · − • ⇐ •

Dn • − • − · · · − • −
•
|
• − •

E6 • − • −
•
|
• − • − •

E7 • − • − • −
•
|
• − • − •

E8 • − • − • − • −
•
|
• − • − •

F4 • −• ⇒ • − •
G2 •V •

These Dynkin diagrams are pictures of the Lie groups with the following mean-
ing. Each dot is a copy of SL2. Two dots are disconnected if the corresponding
SL2s commute, and are joined by a single line if they “overlap by one matrix
element”. Double and triple lines describe more complicated ways they can in-
teract. For each complex simple Lie group there are a finite number of simple
real Lie groups whose complexification is the complex Lie group, and we will
later use this to find the simple Lie groups.

For example, sl2(R) 6' su2(R), but sl2(R) ⊗ C ' su2(R) ⊗ C ' sl2(C).
By the way, sl2(C) is simple as a real Lie algebra, but its complexification is
sl2(C)⊕ sl2(C), which is not simple.

Dynkin diagrams also classify lots of other things: 3-dimensional rotation
groups, finite crystallographic reflection groups, du Val singularities, Macdon-
ald polynomials, singular fibers of elliptic surfaces or elliptic curves over the
integers,...

Exercise 13 Find out what all the things mentioned above are, and find some
more examples of mathematical objects classified by these Dynkin diagrams.
(Hint: wikipedia.)
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We also need to know the actions of simple Lie groups on unipotent ones. We
can at least describe the actions on abelian ones: this is called representation
theory.

1.1 Infinite dimensional Lie groups

Examples of infinite dimensional Lie groups are diffeomorphisms of manifolds,
or gauge groups, or infinite dimensional classical groups. There is not much
general theory of infinite dimensional Lie groups: they are just too complicated.

1.2 Lie groups and finite groups

1. The classification of finite simple groups resembles the classification of
connected simple Lie groups.

For example, PSLn(R) is a simple Lie group, and PSLn(Fq) is a finite
simple group except when n = q = 2 or n = 2, q = 3. Simple finite groups
form about 18 series similar to Lie groups, and 26 or 27 exceptions, called
sporadic groups, which don’t seem to have any analogues for Lie groups.

Exercise 14 Show that the projective special linear groups PSL2(F4)
and PSL2(F5) are isomorphic (or if this is too hard, show they have the
same order). This gives a first hint of some of the complications of finite
simple groups: there are many accidental isomorphisms similar to this.

2. Finite groups and Lie groups are both built up from simple and abelian
groups. However, the way that finite groups are built is much more com-
plicated than the way Lie groups are built. Finite groups can contain
simple subgroups in very complicated ways; not just as direct factors.

For example, there are wreath products. Let G and H be finite simple
groups with an action of H on a set of n points. Then H acts on Gn

by permuting the factors. We can form the semi-direct product Gn nH,
sometimes denoted GoH. There is no analogue for (finite dimensional) Lie
groups. There is an analogue for infinite dimensional Lie groups, which is
one reason why the theory becomes hard in infinite dimensions.

3. The commutator subgroup of a connected solvable Lie group is nilpotent,
but the commutator subgroup of a solvable finite group need not be a
nilpotent group.

Exercise 15 Show that the symmetric group S4 is solvable but its derived
subgroup is not nilpotent. Show that it cannot be represented as a group
of upper triangular matrices over any field.

4 Non-trivial nilpotent finite groups are never subgroups of real upper tri-
angular matrices (with ones on the diagonal).
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1.3 Lie groups and algebraic groups

By algebraic group, we mean an algebraic variety which is also a group, such
as GLn(R). Any real algebraic group is a Lie group. Most of the connected Lie
groups we have seen so far are real algebraic groups. Since they are so similar,
we’ll list some differences.

1. Unipotent and semisimple abelian algebraic groups are totally different,
but for Lie groups they are nearly the same. For example R ' {( 1 ∗

0 1 )}
is unipotent and R× '

{(
a 0
0 a−1

)}
is semisimple. As Lie groups, they

are closely related (nearly the same), but the Lie group homomorphism
exp : R → R× is not algebraic (polynomial), so they look quite different
as algebraic groups.

2. Abelian varieties are different from affine algebraic groups. For example,
consider the (projective) elliptic curve y2 = x3 + x with its usual group
operation and the group of matrices of the form

(
a b
−b a

)
with a2 + b2 = 1.

Both are isomorphic to S1 as Lie groups, but they are completely different
as algebraic groups; one is projective and the other is affine.

3. Some Lie groups do not correspond to ANY algebraic group. We give two
examples here.

The Heisenberg group is the subgroup of symmetries of L2(R) generated by
translations (f(t) 7→ f(t+x)), multiplication by e2πity (f(t) 7→ e2πityf(t)),
and multiplication by e2πiz (f(t) 7→ e2πizf(t)). The general element is of
the form f(t) 7→ e2πi(yt+z)f(t+ x). This can also be modeled as

 1 x z
0 1 y
0 0 1


/

 1 0 n
0 1 0
0 0 1

∣∣∣∣∣∣n ∈ Z


It has the property that in any finite dimensional representation, the center
(elements with x = y = 0) acts trivially, so it cannot be isomorphic to any
algebraic group.

The metaplectic group. Let’s try to find all connected groups with Lie
algebra sl2(R) = {

(
a b
c d

)
|a+ d = 0}. There are two obvious ones: SL2(R)

and PSL2(R). There aren’t any other ones that can be represented as
groups of finite dimensional matrices. However, if you look at SL2(R),
you’ll find that it is not simply connected. To see this, we will use Iwasawa
decomposition (which we will only prove in some special cases).

Theorem 16 (Iwasawa decomposition) If G is a connected semisim-
ple Lie group, then there are closed subgroups K, A, and N , with K
compact, A abelian, and N unipotent, such that the multiplication map
K × A×N → G is a surjective diffeomorphism. Moreover, A and N are
simply connected.

In the case of SLn, this is the statement that any basis can be obtained
uniquely by taking an orthonormal basis (K = SOn), scaling by positive
reals (A is the group of diagonal matrices with positive real entries), and
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shearing (N is the group
(

1. . .
∗

0 1

)
). This is exactly the result of the

Gram-Schmidt process.

The upshot is that G ' K ×A×N (topologically), and A and N do not
contribute to the fundamental group, so the fundamental group of G is
the same as that of K. In our case, K = SO2(R) is isomorphic to a circle,
so the fundamental group of SL2(R) is Z.

So the universal cover S̃L2(R) has center Z. Any finite dimensional rep-

resentation of S̃L2(R) factors through SL2(R), so none of the covers of
SL2(R) can be written as a group of finite dimensional matrices. Repre-
senting such groups is a pain.

(This seems to be repeated later....) Most of the examples of Lie groups
so far are algebraic: this means roughly that they are algebraic varieties
over the reals. Much of the theory of algebraic groups is similar to that of
Lie groups, but there are some differences. In particular some Lie groups
are not algebraic. One example is the group of upper triangular 3 by 3
unipotent matrices modulo Z. This is the Heisenberg or Weyl group: it has
a nice infinite dimensional representation generated by translations and
multiplication by eiyx acting on L2 functions on the reals. it is somewhat
easier to study the representations of its Lie algebra, which has a basis of
3 elements X, Y , Z with [X,Y ] = Z. We can represent this in infinite
dimensions by putting X = x, Y = d/dx, Z = 1 acting on polynomials
(this is Leibniz’s rule!) In quantum mechanics this algebra turns up a lot
where X is the position operator and Y the momentum operator. But it
has not finite dimensional representations with Z acting as 1 because the
trace of Z must be 0.

Also abelian algebraic groups are much more subtle than abelian Lie
groups. For example, over the complex numbers, the Lie groups C, C∗,
and an elliptic curve are all quite similar: they differ by quotienting out
copies of Z so look the same locally. However as algebraic groups they are
totally different and have nothing to do with each other: the first is unipo-
tent, the second is semisimple, and the third is a (complete) variety. The
point is that the maps between the corresponding Lie groups that make
them similar are transcendental functions (exponentials or elliptic func-
tions) that do not exist in the algebraic setting. Rather oddly, non-abelian
algebraic groups are easier to handle than abelian ones. The reason is that
non-abelian ones can be studied using the adjoint representation on their
Lie algebras, while for abelian ones this representation is trivial and gives
no useful information: abelian varieties are abelian algebraic groups, and
are VERY hard to understand over the rationals.

The most important case is the metaplectic group Mp2(R), which is the
connected double cover of SL2(R). It turns up in the theory of modular
forms of half-integral weight and has a representation called the metaplec-
tic representation.

p-adic Lie groups are defined in a similar way to Lie groups using p-adic
manifolds rather than smooth manifolds. They turn up a lot in number theory
and algebraic geometry. For example, Galois groups act on varieties defined over
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number fields, and therefore act on their (etale) cohomology groups, which are
vector spaces over p-adic fields, So we get representations of Galois groups into
p-adic Lie groups. These see much more of the Galois group than representations
into real Lie groups, which tend to have finite images.

1.4 Lie groups and Lie algebras

Lie groups can have a rather complicated global structure. For example, what
does GLn(R) look like as a topological space, and what are its homology groups?
Lie algebras are a way to linearize Lie groups. The Lie algebra is just the tangent
space to the identity, with a Lie bracket [, ] which is a sort of ghost of the
commutator in the Lie group. The Lie algebra is almost enough to determine
the connected component of the Lie group. (Obviously it cannot see any of the
components other than the identity.)

Exercise 17 The Lie algebra of GLn(R) is Mn(R), with Lie bracket [A,B] =
AB − BA, corresponding to the fact that if A and B are small then the com-
mutator (1 + A)(1 + B)(1 + A)−1(1 + B)−1 = 1 + [A,B]+ higher order terms.
Show that [A,B] = −[B,A] and prove the Jacobi identity

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0

An abstract Lie algebra over a field is a vector space with a bracket satisfying
these two identities.

We have an equivalence of categories between simply connected Lie groups
and Lie algebras. The correspondence cannot detect

• Non-trivial components of G. For example, SOn and On have the same
Lie algebra.

• Discrete normal (therefore central) subgroups of G. If Z ⊆ G is any
discrete normal subgroup, then G and G/Z have the same Lie algebra.
For example, SU(2) has the same Lie algebra as PSU(2) ' SO3(R).

If G̃ is a connected and simply connected Lie group with Lie algebra g, then any
other connected group G with Lie algebra g must be isomorphic to G̃/Z, where
Z is some discrete subgroup of the center. Thus, if you know all the discrete
subgroups of the center of G̃, we can read off all the connected Lie groups with
the given Lie algebra.

Let’s find all the groups with the algebra so4(R). First let’s find a simply
connected group with this Lie algebra. You might guess SO4(R), but that isn’t
simply connected. The simply connected one is S3 × S3 as we saw earlier (it
is a product of two simply connected groups, so it is simply connected). The
center of S3 is generated by −1, so the center of S3 × S3 is (Z/2Z)2, the Klein
four group. There are three subgroups of order 2

Therefore, there are 5 groups with Lie algebra so4.
Formal groups are intermediate between Lie algebras and Lie groups: We

get maps (Lie groups) to (Formal groups) to (Lie algebras). In characteristic 0
there is little difference between formal groups and Lie algebras, but over more
general rings there is a big difference. Roughly speaking, Lie algebras seem to
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be the “wrong” objects in this case as they do not see enough of the group, and
formal groups seem to be a good replacement.

A 1-dimensional formal group is a power series F (x, y) = x + y + · · · that
is associative in the obvious sense F (x, F (y, z)) = F (F (x, y), z). For example
F (x, y) = x+ y is a formal group called the additive formal group.

Exercise 18 Show that F (x, y) = x + y + xy is a formal group, and check
that over the rationals it is isomorphic to the additive formal group (in other
words there is a power series with rational coefficients such that F (f(x), f(y)) =
f(x+ y)). These formal groups are not isomorphic over the integers.

Higher dimensional formal groups are defined similarly, except they are given
by several power series in several variables.

1.5 Important Lie groups

Dimension 1: There are just R and S1 = R/Z.
Dimension 2: The abelian groups are quotients of R2 by some discrete sub-

group; there are three cases: R2, R2/Z = R× S1, and R2/Z2 = S1 × S1.
There is also a non-abelian group, the group of all matrices of the form(

a b
0 a−1

)
, where a > 0. The Lie algebra is the subalgebra of 2×2 matrices of the

form
(
h x
0 −h

)
, which is generated by two elements H and X, with [H,X] = 2X.

Dimension 3: There are some abelian and solvable groups, such as R2nR1, or
the direct sum of R1 with one of the two dimensional groups. As the dimension
increases, the number of solvable groups gets huge, so we ignore them from here
on.

You get the group SL2(R), which is the most important Lie group of all. We
saw earlier that SL2(R) has fundamental group Z. The double cover Mp2(R)
is important. The quotient PSL2(R) is simple, and acts on the open upper half
plane by linear fractional transformations

Closely related to SL2(R) is the compact group SU2. We know that SU2 '
S3, and it covers SO3(R), with kernel ±1. After we learn about Spin groups, we
will see that SU2

∼= Spin3(R). The Lie algebra su2 is generated by three elements
X, Y , and Z with relations [X,Y ] = 2Z, [Y,Z] = 2X, and [Z,X] = 2Y .1

The Lie algebras sl2(R) and su2 are non-isomorphic, but when we complexify,
they both become isomorphic to sl2(C).

There is another interesting 3 dimensional algebra. The Heisenberg algebra
is the Lie algebra of the Heisenberg group. It is generated by X,Y, Z, with
[X,Y ] = Z and Z central. You can think of this as strictly upper triangular
matrices.

Dimension 6: (nothing interesting happens in dimensions 4,5) We get the
group SL2(C). Later, we will see that it is also called Spin1,3(R).

Dimension 8: We have SU3(R) and SL3(R). This is the first time we get a
2-dimensional root system.

Dimension 14: G2, which we will discuss a little.
Dimension 248: E8, which we will discuss in detail.

This class is mostly about finite dimensional algebras, but let’s mention some
infinite dimensional Lie groups or Lie algebras.

1An explicit representation is given by X =
(

0 1
−1 0

)
, Y =

(
0 i
i 0

)
, and Z =

(
i 0
0 −i

)
. The

cross product on R3 gives it the structure of this Lie algebra.
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1. Automorphisms of a Hilbert space form a Lie group.

2. Diffeomorphisms of a manifold form a Lie group. There is some physics
stuff related to this.

3. Gauge groups are (continuous, smooth, analytic, or whatever) maps from
a manifold M to a group G.

4. The Virasoro algebra is generated by Ln for n ∈ Z and c, with relations

[Ln, Lm] = (n − m)Ln+m + δn+m,0
n3−n

12 c, where c is central (called the
central charge). If we set c = 0, we get (complexified) vector fields on S1,
where we think of Ln as ieinθ ∂∂θ . Thus, the Virasoro algebra is a central
extension

0→ cC→ Virasoro→ Vect(S1)→ 0.

5. Affine Kac-Moody algebras, which are more or less central extensions of
certain gauge groups over the circle.

2 Lie algebras

Lie groups such as GLn(R) are quite complicated nonlinear objects. A Lie
algebra is a way of linearizing a Lie group, which is often easier to handle.
Roughly speaking, the addition and Lie bracket of the Lie algebra are given by
the lowest order terms in the product and commutator of the Lie group. By
a minor miracle (the Campbell-Baker-Hausdorff formula) we do not need any
higher order terms: the Lie algebra is enough to determine the group product
locally. We first recall some background about vector fields and differential
operators on a manifold. We will then define the Lie algebra of a Lie group to
be the left invariant vector fields on the group.

For any algebra over a ring we define the Lie bracket [a, b] to be ab− ba. It
satisfies the identities

• [a, b] is bilinear

• [a, b] = −[b, a]

• [[a, b], c] + [[b, c], a] + [[c, a], b] = 0 (Jacobi identity)

Definition 19 A Lie algebra over a ring is a module with a bracket satisfying
the conditions above, in other words it is bilinear, skew symmetric, and satisfies
the Jacobi identity.

These conditions make sense in any additive tensor category, so for example
we can define Lie algebras of sheaves, or graded Lie algebras. An interesting
variation is Lie superalgebras, where we use the tensor category of supermodules
over a ring or field. Some authors add the non-linear condition that [a, a] = 0.

Example 20 The basic example of a Lie algebra is given by taking V to be an
associative algebra and defining [a, b] to be ab− ba.
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The Lie algebra of a Lie group can be defined as its tangent space at the
identity, with the Lie bracket given by the lowest order part of the commutator.
The lowest-order terms of the group law are just given by addition on the Lie
algebra, as can be seen inGLn(R): the product of 1+εA and 1+εB is 1+ε(A+B)
to first order. However defining the Lie bracket in terms of the commutator is
a little messy, and it is technically more convenient to define the Lie algebra as
the left invariant vector fields on the manifold.

There are several different ways to think of vector fields:

• Informally, a vector field is a little tangent vector at each point.

• A vector field is informally an infinitesimal diffeomorphism, where we get
an infinitesimal diffeomorphism from a vector field by pushing each point
slightly in the direction of the vector field.

• More formally, a vector field is a section of the tangent bundle or sheaf.

• A vector field is a normalized differential operator of order at most 1

• A vector field is a derivation of the ring of smooth functions.

The last two seem less intuitive but turn out to be the easiest definitions to
work with.

Suppose we have a manifold M , with its ring R of smooth functions. A
differential operator on M should be something that in local coordinates looks
like a partial differential operator times a smooth function. It is easier to forget
about local coordinates, and just use the following key property of differential
operators: the commutator of an nth order operator with a smooth function is a
differential operator of smaller order. This is really just a form of Leibniz’s rule
for differentiating a product. We will use this to DEFINE differential operators
as follows.

Definition 21 A differential operator of order less than 0 is 0. A differential
operator of order at most n ≥ 0 is an operator on R whose commutator with
elements of R is a differential operator of order at most n− 1.

Differential operators on R form a filtered ring D0 ⊂ D1 ⊂ D2 · · · , where Dn is
the differential operators of order at most n. The differential operators of order
at most 0 can be identified with the ring R (look at their action on 1), and
any differential operator can be normalized by adding a function so that it kills
1. So a differential operator can be written canonically as a function (order 0
operator) plus a normalized differential operator.

The product of differential operators of orders at most m, n has order at most
m + n. Differential operators do not quite commute with each other; however
the commutator or Lie bracket [D1, D2] of operators of orders at most m, n has
order at most m+ n− 1; in other words differential operators commute “up to
lower order terms”. This means that the associated graded ring D0⊕D1/D0⊕
D2/D1⊕· · · is a commutative graded ring (whose elements are sometimes called
symbols).

We will call a differential operator normalized if it kills the function 1. Dif-
ferential operators of order at most 1 can be written canonically as the sum of an
order 0 differential operator and a normalized differential operator. (However
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there is no canonical way to write an operator of order n > 1 as an operator of
order less than n and something “homogeneous” of order n.) A vector field on
a manifold is the same as a normalized differential operator of order at most 1.
Vector fields are closed under the Lie bracket, and in particular form a Lie alge-
bra. It is useful to think of a vector field as a sort of infinitesimal diffeomorphism
of the manifold: each point is moved an infinitesimal distance in the direction
of the vector at that point. Since the Lie algebra of a group can be thought of
as the “infinitesimal” elements of the group, this means that the vector fields
on a manifold are more or less the Lie algebra of the group of diffeomorphisms.

The Lie algebra of vector fields is an infinite dimensional Lie algebra, which
is too big for this course, so we cut it down.

Definition 22 The Lie algebra of a Lie group is the Lie algebra of left-invariant
vector fields on the group.

We explain what this means. The group is a manifold, so we have the Lie
algebra of all vector fields on it forming an infinite dimensional lie algebra. The
group acts on itself by left translation, and so acts on everything constructed
from the manifold, such as vector fields. We just take the vector fields fixed by
this action of left translation. It is automatically a subalgebra of the lie algebra
of all vector fields, as the group action preserves the Lie bracket.

We can also identify the Lie algebra of the group with the tangent space at
the origin. The reason is that if we pick a tangent vector at the origin, there
is a unique vector field on G given by left translating this vector everywhere.
We could have defined the Lie algebra to be the tangent space at the origin,
but then it would not have been so clear how (or why) we can define the Lie
bracket.

Now we will calculate the left invariant vector fields on the group GLn(R)
and find the Lie bracket. We will then be able to find the Lie algebras of other
groups by mapping them to GLn(R). There are obvious coordinates xij for
GLn(R) ⊂ Rn×n, and corresponding vector fields ∂/∂xij . Of course they are
not left invariant under GLn(R): they are left invariant vector fields on the

abelian group Rn
2

, and have zero Lie bracket.
We let x = (xij) be the matrix whose entries are the coordinate functions.

We can think of x as the identity function from Rn
2

to itself, so might guess
that G acts trivially on it, but this is wrong: the point is that the two copies
of Rn

2

are not really the same as the domain is acted on by G by translations,
while the range is acted on trivially by G. This is very confusing. The action of
an element g on x is given by right multiplying it by g−1. Next if a = (aij) is a
matrix we can consider the matrix of differential operators with entries aij We
consider the matrix D of differential operators xik∂/∂xjk (using the Einstein
summation convention). This acts on x as left multiplication by the matrix eij
(with a 1 in position i, j, other entries 0). Since left multiplication by a matrix
commutes with right multiplication we see that these differential operators all
commute with left translation on the entries of x, and therefore are left invariant
differential operators.

So we get a natural correspondence between n by n matrices and these left
invariant differential operators. Finally we can work out the Lie bracket of two
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such differential operators

[xik
∂

∂xjk
, xi′k′

∂

∂xj′k′
] = [j = i′]xij

∂

∂xj′k
− [i = j′]xi′j

∂

∂xj′k

, and we see that it just corresponds to the Lie bracket

[eij , ei′j′ ] = [j = i′]eij′ − [i = j′]ei′j

of n by n matrices eij that have a one in position (i, j) and are zero elsewhere.
To summarize, the Lie algebra of GLn(R) is just Mn(R), with the Lie bracket

given by [A,B] = AB −BA.
To find the Lie algebras of subgroups of general linear groups, which covers

most practical cases, we just have to find the tangent space at the identity. The
easy way to do this to to find the matrices A such that 1 + εA satisfies the
equations defining the Lie group, where ε2 = 0.

Example 23 The orthogonal group consists of matrices g such that ggT = I.
So its Lie algebra consists of matrices a such that (1 + εa)(1 + εaT ) = 1 to first
order in ε, in other words a+ aT = 0, so that a s skew-symmetric.

Example 24 The special linear group consists of matrices g such that det g = 1.
So its Lie algebra consists of matrices a such that det(1 + εa) = 1 to first order
in ε. Since det(1 + aε) = 1 + Trace(a)ε to first order in epsilon, the Lie algebra
consists of the matrices of trace 0.

Exercise 25 Show that the Lie algebra of the unitary group consists of skew
Hermitian matrices, which are Hermitian matrices multiplied by i.

Identifying skew hermitian matrices with hermitian matrices by multiplica-
tion by i shows that defining [a, b] = i(ab− ba) makes Hermitian matrices into
a Lie algebra. This Lie bracket is not the only interesting algebraic structure
one can put on Hermitian matrices.

Exercise 26 Show that if a and b are Hermitian then so is their Jordan product
a◦b = (ab+ba)/2. Show that this is a commutative but non-associative product,
satisfying the Jordan identity (x ◦ y) ◦ (x ◦ x) = x ◦ (y ◦ (x ◦ x)). Algebras with
these properties are called Jordan algebras.

In the early days of quantum mechanics it was hoped that a suitable Jordan al-
gebra would explain the universe, but this hope was abandoned when the simple
finite dimensional Jordan algebras were classified: they are mostly algebras of
Hermitian matrices, and none of them explain the known elementary particles.

Exercise 27 Find the Lie algebra of the group Sp2n(R) of symplectic matrices.

As we mentioned before, the Lie algebra cannot detect other components
of the Lie group, or discrete normal subgroups. It is often useful to note that
discrete normal subgroups of a connected group are always in the center (proof:
the image of an element under conjugation is connected and discrete, so is just
one point). So for example, On, SOn and POn all have the same Lie algebra.
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Subalgebras of Lie algebras B are defined in the obvious way and are ana-
logues of subgroups. The analogues of normal subgroups are subalgebras A such
that [A,B] ⊆ A (corresponding to the fact that a subgroup is normal if and only,
if aba−1b−1 is in A for all a ∈ A and b ∈ B) so that B/A is a Lie algebra in
the obvious way. Much of the terminology for groups is extended to Lie alge-
bras in the most obvious way. For example a Lie algebra is called abelian if the
bracket is always 0, and is called solvable if there is a chain of ideals with abelian
quotients. Unfortunately the definition of simple Lie algebras and simple Lie
groups is not completely standardized and is not consistent with the definition
of a simple abstract group. The definition of a simple lie algebra has a trap:
a Lie algebra is called simple if it has no ideals other than 0 and itself, and if
the Lie algebra is NON-ABELIAN. In particular the 1-dimensional Lie algebra
is NOT usually considered to be simple. The definition of simple is sometimes
modified slightly for Lie groups: a connected Lie group is called simple if its Lie
algebra is simple. This corresponds to the Lie group being non-abelian having
no normal subgroups other than itself and discrete subgroups of its center, so
for example SL2(R) is considered to be a simple Lie group even though it is not
simple as an abstract group.

Subgroups of Lie groups are closely related to subgroups of the Lie algebra.
Informally, we can get a subalgebra by taking the tangent space of the subgroup,
and can get a subgroup by taking the elements “generated” by the infinitesimal
group elements of the Lie algebra. However it is rather tricky to make this
rigorous, as the following examples show.

Example 28 The rational numbers and the integers are subgroups of the reals,
but these do not correspond to subgroups of the Lie algebra of the reals. It is
clear why not: the integers are not connected so cannot be detected by looking
near the identity, and the rationals are not a closed subset.

This suggests that subalgebras should correspond to closed connected sub-
groups, but this fails for more subtle reasons:

Example 29 Consider the compact abelian group G = R2/Z2, a 2-dimensional
torus. For any element (a, b) of its Lie algebra R2 we get a homomorphism of
R to G, whose image is a subgroup. If the ratio a/b is rational we get a closed
subgroup isomorphic to S1 as the image. However if the ratio is irrational
the image is a copy of R that is dense in G, and in particular is not a closed
subgroup. You might think this problem has something to do with the fact that
G is not simply connected, because it disappears if we replace G by its universal
cover. However G is a subgroup of the simple connected group SU(3) so we run
into exactly the same problem even for simply connected compact groups.

In infinite dimensions the correspondence between subgroups and subalge-
bras is even more subtle, as the following examples show.

Example 30 Let us try to find a Lie algebra of the unitary group in infinite
dimensions. One possible choice is the Lie algebra of bounded skew Hermi-
tian operators. This is a perfectly good Lie algebra, but its elements do not
correspond to all the 1-parameter subgroups of the unitary group. We recall
from Hilbert space theory that 1-parameter subgroups of the unitary group cor-
respond to unbounded skew Hermitian operators (typical example: translation
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on L2(R) corresponds to d/dx, which is not defined everywhere.) So if we define
the Lie algebra like this, then 1-dimensional subgroups need not correspond to
1-dimensional subalgebras. So instead we might try to define the Lie algebra to
be unbounded skew hermitian operators. But these are not even closed under
addition, never mind the Lie bracket, because two such operators might have
no non-zero vectors in their domains of definition.

Example 31 It is reasonable to regard the Lie algebra of smooth vector fields
as something like the Lie algebra of diffeomorphisms of the manifold. However
elements of this Lie algebra need not correspond to 1-parameter subgroups. To
see what can go wrong, consider the vector field x2d/dx on the real line. If we try
to find the flow corresponding to this we have to solve dx/dt = x2 with solution
x = x0/(1 − x0t). However this blows up at finite time t. so we do not get
a 1-parameter group of diffeomorphisms. A similar example is the vector field
d/dx on the positive real line: it corresponds to translations, but translations
are not diffeomorphisms of the positive line because we fall off the edge.

So in infinite dimensions 1-parameter subgroups need not correspond to 1-
dimensional subalgebras of the Lie algebra, and 1-dimensional subalgebras need
not correspond to 1-parameter subgroups.

3 The Poincaré-Birkhoff-Witt theorem

We defined the Lie algebra of a Lie group as the left-invariant normalized dif-
ferential operators of order at most 1, and simply threw away the higher order
operators. This turns out to lose no information, because we can reconstruct
these higher order differential operators from the Lie algebra by taking the “uni-
versal enveloping algebra”, which partly justifies the claim that the Lie algebra
captures the Lie group locally.

The universal enveloping algebra Ug of a Lie algebra g is the associative
algebra generated by the module g, with the relations [A,B] = AB − BA. A
module over a Lie algebra g is a vector space together with a linear map f from
g to operators on the space such that f([a, b]) = f(a)f(b)− f(b)f(a).

Exercise 32 Show that modules over the algebra Ug are the same as modules
over the Lie algebra g, and show that Ug is universal in the sense that any map
from the Lie algebra to an associative algebra such that [A,B] = AB − BA
factors through it. (Category theorists would say that the universal enveloping
algebra is a functor that is left adjoint to the functor taking an associative
algebra to its underlying Lie algebra.)

The universal enveloping algebra of a Lie algebra can be thought of as the
ring of all left invariant differential operators on the group (while the Lie algebra
consists of the normalized ones of order at most 1). Actually this is only correct
in characteristic 0: over fields of prime characteristic it breaks down because not
all left invariant differential operators can be generated by left invariant vector
fields. We can see this even in the case of the 1-dimensional abelian Lie algebra
over the integers.

Exercise 33 Show that the space of translation-invariant differential operators
on Z[x] has a basis of elements 1

n!
dn

dxn
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So these are definitely not generated by d
dx . If we reduce mod p we get similar

problems over fields of characteristic p. This is really a sign that in character-
istic p > 0 the Lie algebra is not the right object (and does NOT capture the
Lie group locally): the correct replacement is the algebra of all left invariant
differential operators, or something closely related such as a formal group.

We need some control over the size of the universal enveloping algebra. Sup-
pose that g is a free module over a ring. It is easy to find a good upper bound
on the size of Ug. We can filter Ug by U0 ⊂ U1 ⊂ U2 · · · where Un is spanned
by monomials that are products of at most n elements of g.

Exercise 34 The associated graded ring U0 ⊕ U1/U0 ⊕ · · · has the following
properties: is is generated by U1, and is commutative.

Commutativity follows using AB − BA = [A,B]. So this graded algebra is a
quotient of the polynomial ring on g, which gives an upper bound on the size
of Ug.

Theorem 35 The Poincaré-Birkhoff-Witt theorem says that the map from the
polynomial ring S(g) to this graded algebra G(Ug) of U(g) is an isomorphism,
in other words there is no further collapse.

In particular the map from the Lie algebra to the UEA is injective, or in other
words we can find faithful representations of the Lie algebra.

The universal enveloping algebra is given by “generators and relations”, and
when objects are given in this way it is usually easy to find upper bounds for
the size of such objects by algebraic manipulation, but harder to show they do
not collapse further. A good way to find a lower bound on the size is to find
an explicit representation on something. Some cases of the PBW theorem are
easy: for example, if our Lie algebra is known to be the Lie algebra of a Lie
group, then the UEA should be differential operators, which come with a natural
representation on smooth functions, or we can even restrict to formal power
series expansions of smooth functions at the identity. There are enough such
functions to see that the elements gn1

1 gn2
2 ... of the UEA are linearly independent

as they have linearly independent actions on smooth functions.
If we want to prove the PBW theorem more generally we have to work

harder: even over the reals it is not at all obvious that any Lie algebra is the
Lie algebra of a Lie group. (At first sight this seems easy: all one has to
do is find a faithful representation on a vector space, and exponentiate this
to a group action. For abelian Lie algebras this is trivial, and at the opposite
extreme when the algebra has no center it is also trivial as we can use the adjoint
representation. Every Lie algebra can be obtained by starting with these two
type and taking extensions, but it the trouble is that it is hard to show that one
can find a faithful representation of an extension of two algebras with faithful
representations.)

In general we have to build a suitable representation from the Lie algebra.
We will do this by building something that “ought” to be Ug, and then defining
an action of g on this by left multiplication and checking that it works.

Step 1: Construction of V . We choose a well-ordered basis of g and define
V to have a basis of monomials that are formal products abc... of elements of
the basis with a ≤ b ≤ c ≤ · · · . (There is an obvious map from V onto Ug; our
aim is to prove that it is an isomorphism.)
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Step 2: Construction of the action of g on V . Suppose a is a basis element of
g and bc · · · is in V . We define a(bc · · · ) to be abc · · · if a ≤ b, and [ab](c · · · ) +
b(a(c · · · ) if a > b. This is well defined by induction on the length of an element
of V and by using the fact that the basis is well ordered.

Step 3. Check that this action of g on V satisfies [a, b] = ab − ba. This
holds on c · · · whenever b ≤ c by definition of the action, and similarly it holds
whenever a ≤ c, so we can assume that both a and b are greater than c. We
can also assume by induction that [x, y](z) = x(y(z))− y(x(z) for any elements
x, y of the Lie algebra and any element z of V of length less than that of c · · · .
We calculate both sides of the identity we have to prove, pushing c to the left,
as follows:

a(b(c · · · )) = a(c(b(· · · )) + a([b, c](· · · )) (1)

= c(a(b(· · · ))) + [a, c](b(· · · ) + [a, [b, c]](· · · ) + [b, c](a(· · · )) (2)

and similarly

b(a(c · · · )) = c(b(a(· · · ))) + [b, c](a(· · · ) + [b, [a, c]](· · · ) + [a, c](b(· · · ))

[a, b](c · · · ) = c([a, b](· · · )) + [[a, b], c](· · · )

Comparing everything we see that

a(b(c · · · ))− b(a(c · · · ))− [a, b](c · · · )

is equal to
[[a, b], c](· · · ) + [[b, c], a](· · · ) + [[c, a], b](· · · )

We finally use the Jacobi identity for g to see that this vanishes, thus showing
that we indeed have an action of g on V .

This completes the proof of the PBW theorem.
The PBW theorem shows that we have found “all” identities satisfied by the

Lie bracket, at least over fields, because any Lie algebra is a subalgebra of the Lie
algebra of some associative algebra. For Jordan algebras the analogous result is
not true. Jordan algebras are analogous to Lie algebras except that the Jordan
product a ◦ b is ab+ ba rather than ab− ba. This satisfies identities a ◦ b = b ◦ a
and the Jordan identity. However these identities are not enough to force the
Jordan algebra to be a subalgebra of the Jordan algebra of an associative ring:
the Jordan algebras with this property are called special, and satisfy further
independent identities (the smallest of which has degree 8). There is a 27-
dimensional Jordan algebra (Hermitian matrices over the Cayley numbers) that
is not special. Another example is Lie superalgebras: here we need the extra
identity [a, [a, a]] = 0 for a odd in order to get a faithful representation in a ring.

The PBW theorem underlies the later calculations of characters of irreducible
representations of Lie algebras. These representations can be written in terms of
“Verma modules”, an Verma modules in turn can be identified with the universal
enveloping algebras of Lie algebras. The PBW theorem gives complete control
over the “size” of the Verma module, in other words its character, which in
turn leads to character formulas for the irreducible representations. A related
application is the construction of exceptional simple Lie algebras (and Kac–
Moody Lie algebras): the hard part of the construction is to show that these
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algebras are non-zero, which ultimately reduces to showing that certain universal
enveloping algebras are non-zero.

The UEA of a Lie algebra is not just an associative algebra; it is also a Hopf
algebra.

Definition 36 A Hopf algebra is a group.

In order to understand this, we need to explain what a group is. It is a set G
with an associative product, identity, and inverse. However it also has further
structure as follows. Given a group action on sets X, Y , there is an action on
X × Y given by g(x × y) = g(x) × g(y). This action is given by the diagonal
map g 7→ g× g from G to G×G. Similarly there is an action of G on a 1-point
set, induced by a map g 7→ ∗ from G to a 1-point set. These extra maps are
not usually mentioned in the definition of a group, because they are uniquely
determined. There is a unique diagonal map from G to G×G so that the maps
G 7→ G × G 7→ G are identities. So we have a coassociative coproduct map
G 7→ G×G and a counit G 7→ 1 making G into a “cogroup”, but this structure
is boring because it is uniquely determined for any set. The reason it is unique
is that we define the product of a group using the categorical product of sets.
Similarly we can define groups in any category with products, and again the
“coalgebra” structure is uniquely determined.

Now suppose that we have a category with some sort of product operation
that is not the categorical product; for example, the tensor product of modules
over a ring. If we copy the naive definition of a group, we get the concept of
an associative algebra. However these do not behave like groups: for example,
there is not natural action on tensor products of modules, corresponding to
an action of a group on a product of sets. To get this we need to put in the
“costructure” explicitly. In other words, we need a coassociative product with
a counit, so that the coproduct is an automorphism of algebras. The inverse of
a group gives an antipode on the Hopf algebra.

So we can defined groups/Hopf algebras in any symmetric monoidal category.
In the category of sets, these are just the usual groups, while in the category of
modules over a ring we get the usual Hopf algebras.

Example 37 If G is a group, then its group ring R[G] over a commutative ring
is a Hopf algebra, with the coproduct given by g 7→ g ⊗ g and the counit given
by g 7→ 1.

We can ask if the group is determined by the group ring. The answer is “no” if
the group ring is considered as an associative algebra: for example, the complex
group ring of a finite abelian group is just a sum of copies of C corresponding
to the irreducible representations, so two finite abelian groups have isomorphic
group rings if and only if they have the same order. However the group can be
recovered from the Hopf algebra as the group-like elements:

Definition 38 An element of a Hopf algebra is called group-like if ∆(a) = a⊗a
and (a) = 1.

Exercise 39 Show that the group-like elements of a Hopf algebra form a group.
Show that the group-like elements of a group ring of G form a group that can be
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naturally identified with the group G. What is the group of group-like elements
of the universal enveloping algebra of a Lie algebra?

The universal enveloping algebra is not the only analogue of the group ring
for a Lie group. Another analogue, often used in analysis, is the algebra of
continuous (or smooth) functions of compact support (or L1 functions, or finite
measures...) under convolution. For p-adic groups one can take the locally
constant functions with compact support. These algebras look more like the
group algebra of a finite group, but is less convenient in some ways as they need
not have a coproduct.

Example 40 The main point of all this is that the UEA of a Lie algebra is a
Hopf algebra. In other words it behaves as if it were a group or group ring, which
is of course an approximation to the Lie group of the Lie algebra. The map from
Ug to Ug⊗Ug is given by the Leibniz formula g 7→ 1⊗g+g×1 from calculus. This
is really just the formula telling you how to differentiate a product: d

dx (fg) =
d
dx (f)g + f d

dx (g), where we can see the map d
dx 7→

d
dx ⊗ 1 + 1⊗ d

dx .
The fact that the map ∆ extends to a ring homomorphism follows from the

universal property of the UEA.

We would like to reconstruct the Lie algebra from its universal enveloping
algebra in the same way we reconstructed a group from its group algebra.

Definition 41 An element of a Hopf algebra is called primitive if it satisfies
the Leibniz identity ∆(a) = a⊗ 1 + 1⊗ a.

Exercise 42 Show that the primitive elements of a Hopf algebra form a Lie
algebra.

A natural guess is that the Lie algebra consists of the primitive elements of the
universal enveloping algebra. This fails over fields of positive characteristic p:

Exercise 43 If a is primitive in a Hopf algebra of prime characteristic p > 0,
so is ap. Find the Lie algebra of primitive elements of the universal enveloping
algebra of a 1-dimensional Lie algebra over the finite field Fp.

Sometimes in characteristic p one works with restricted Lie algebras: these are
Lie algebras together with a ““p”th power operation” a 7→ a[p] behaving like
the p-th power of derivations.

Lemma 44 Over a field of characteristic 0, an element of the UEA is primitive
if and only if it is in the Lie algebra.

Proof It is obvious that elements of the Lie algebra are primitive, so we need
to show that primitive elements are in the Lie algebra. By the PBW theorem,
the coalgebra structures on any two Lie algebras of the same dimension are
isomorphic, so we can just the lemma for one Lie algebra of any dimension, say
the abelian one.

Exercise 45 Show that over a field of characteristic 0, the dual of a polynomial
ring generated by primitive elements is a ring of formal power series. Show that
this is false in positive characteristic.

20



Primitive elements satisfy ∆(a) = 1⊗a+a×1, so a(fg) = a(f)η(g)+η(f)a(g) =
0 whenever f and g are power series with constant term 0 (in other words in the
kernel of the counit η), so have to vanish on all decomposable elements, those
that are products of two power series with constant term 0. The decomposable
elements span all elements whose terms of degrees less than 2 vanish, so primitive
elements have degree 1 and are therefore in the Lie algebra. � The proof fails

in positive characteristic because the dual algebra of the coalgebra of a UEA is
no longer a power series ring. If the coalgebra is Z[D] then the dual algebra
is Z[{xi/i!}], so reducing mod p we get an algebra generated by elements of
degrees pn each of which has p’th power 0. This is another indication that the
UEA is the wrong object if we are not working over fields of char 0.

There is a second way to associate a Hopf algebra to a Lie group, which is in
some sense dual to the UEA, which is to take the ring of polynomial functions
on an (algebraic) Lie group. The UEA consists of (left invariant) differential
operators and is cocommutative but not usually commutative, while the ring
of (polynomial) functions is commutative but not usually cocommutative. It
works as follows: suppose that G is an algebraic group contained in Rn. Then
it has a coordinate ring O(G) = R[x1. · · · , xn]/(I) where the ideal I is the
polynomials vanishing on R. The product map G×G 7→ G induces a dual map
O(G) 7→ O(G) ⊗ O(G), and similarly the unit of G induces a map O(G) 7→ R,
so we have all the data for a commutative Hopf algebra.

Example 46 Suppose G is the general linear group SL2(R). Then the coordi-
nate ring is O(G) = R[a, b, c, d]/(ad − bc − 1). The coproduct is given by the
group product:(

a1 b1
c1 d1

)(
a2 b2
c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)
so ∆(a) = a⊗a+b⊗c, ∆(b) = a⊗b+b⊗d, ∆(c) = c⊗a+d⊗b, ∆(d) = c⊗b+d⊗d.
The counit is given by η(a) = 1, η(b) = 0, η(c) = 0, η(d) = 1. The antipode is
S(a) = d, S(b) = −b, S(c) = −c, S(d) = a.

Example 47 Following Quillen and Milnor, we will show that the Steenrod
algebra in algebraic topology is a sort of infinite dimensional Lie group.

First recall the original definition of the Steenrod algebra. The Steenrod
algebra is the algebra of stable cohomology operations mod 2, so can be found by
calculating the cohomology of Eilenberg–Maclane spaces, which was originally
done by H. Cartan and Serre. They showed that the Steenrod algebra is the
algebra over F2 generated by elements Sqq for q = 1, 2, 3 · · · modulo the Adem
relations

SqiSqj =

[i/2]∑
k=0

(
j − k − 1

i− 2k

)
Sqi+j−kSqk

which not even algebraic topologists are able to remember. Cartan also gave a
formula for the action of Steenrod squares on a cup product

Sqn(x ∪ y) =
∑
i+j=n

(Sqix) ∪ (Sqjy)
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which we know should be interpreted as a coproduct on the Steenrod algebra

∆Sqn =
∑
i+j=n

Sqi ⊗ Sqj

In other words the Steenrod algebra is a cocommutative Hopf algebra over the
field with 2 elements. A cocommutative Hopf algebra should be thought of as
something like a (universal enveloping algebra of a Lie) group, so should be
related to the automorphisms of something. We will show that the Steenrod
algebra is in some sense the automorphism group of the 1-dimensional additive
group.

At first sight this makes no sense. The automorphism group of the additive
Lie group R is just R∗ which looks nothing like the Steenrod algebra. This is
because we need to look more closely at this group, where by “more closely” we
mean infinitesimally.

So first look at infinitesimal automorphisms of the real line fixing 0. These
can be written as formal power series

x 7→ a0x+ a1x
2 + · · ·

with a0 invertible. The product of this group is by composition of power series
(which accounts for the funny grading of the coefficients). We can do this all over
the integers Z. Then this group is represented by the ring Z[a0, a

−1
0 , a1, a2, . . .],

which has a complicated coproduct map describing the group product.

Exercise 48 Find the image of a0, a1, and a2 under the coproduct map.

To get the Steenrod algebra, we restrict to the subgroup of automorphisms of the
line preserving the additive group structure, in other words we want the power
series f with f(x+y) = f(x) +f(y). The problem is that there are non (except
for multiplication by constants). This is because we forgot to reduce mod p. If
we work mod a prime p there are now plenty of additive homomorphisms, in
particular the Frobenius map x 7→ xp and its powers x 7→ xp

n

. So the group of
infinitesimal automorphisms of the additive group consists of the maps

x 7→ a0x+ ap−1x
p + ap2−1x

p2 + · · ·

. (with a0 invertible). So the coordinate ring of the corresponding group is
Fp[x0, x

−1
0 , ap−1, ap2−1, · · · ]. Now we need to find the coproduct on this corre-

sponding to composition of functions. Suppose we have two group elements

x 7→ f(x) = a0x+ ap−1x
p + ap2−1x

p2 + · · ·

and
x 7→ g(x) = b0x+ bp−1x

p + bp2−1x
p2 + · · ·

. We want to calculate f(g(x)). This is given by

f(g(x)) =
∑

api−1(
∑

bpj−1x
pj )p

i

(3)

=
∑

api−1b
pi

pj−1x
pi+j (4)
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so the coproduct is given by Milnor’s formula

∆(apn−1) =
∑
i+j=n

api−1 ⊗ ap
i

pj−1.

or
∆(a0) = a0 ⊗ a0

∆(a1) = a0 ⊗ a1 + a1 ⊗ a2
0

∆(a3) = a0 ⊗ a3 + a1 ⊗ a2
1 + a3 ⊗ a4

0

∆(a7) = a0 ⊗ a7 + a1 ⊗ a2
3 + a3 ⊗ a4

1 + a7 ⊗ a8
0

We get the classical Steenrod algebra from this (for p = 2) by making 2 minor
changes: we identify a0 with 1, and (following Milnor) we take the graded dual
(so that the Steenrod algebra is cocommutative rather than commutative). So,
as Quillen pointed out, the mysterious Adem relations turn out to be a disguised
form of the rule for composing two formal power series.

We can try to understand the structure of the Steenrod algebra by pretending
that it is a Lie group. So we should ask if it is solvable/nilpotent/simple. It
is graded by the non-negative integers, so it has an abelian degree 0 piece on
the top, and then the rest of it is almost nilpotent: more precisely it is pro-
nilpotent, a projective limit of nilpotent objects. So the Steenrod algebra itself
should be thought of as a pro-solvable infinite dimensional Lie group. (The
correct terminology is affine group scheme.) For any commutative R ring the
group S(R) has a decreasing filtration S0 ⊂ Sp−1 ⊆ Sp2−1 ⊆ · · · , where Spn−1

for n > 0 consists of the automorphisms x 7→ x + apn−1x
pn + · · · . So S0/Sp−1

is the multiplicative group of R, and Spn−1/Spn+1−1 is the additive group of R.

4 The exponential map

If A is a matrix, we can define exp(A) by the usual power series. We should
check this converges: this follows if we define the norm of a matrix to be
supx 6=0(|Ax|)/|x|. Then |AB| ≤ |A||B| and |A+B| ≤ |A|+ |B| so the usual esti-
mates show that the exponential series of a matrix converges. The exponential
is a map from the Lie algebra Mn(R) of the Lie group GLn(R) to GLn(R). (The
same proof shows that the exponential map converges for bounded operators on
a Banach space. The exponential map also exists for unbounded self-adjoint
operators on a Hilbert space, but this is harder to prove and uses the spectral
theorem.) The exponential map satisfies exp(A+B) = exp(A) exp(B) whenever
A and B commute (same proof as for reals) but this does NOT usually hold if A
and B do not commute. Another useful identity is det(exp(A)) = exp(trace(A))
(conjugate A to an upper triangular matrix).

To calculate the exponential of a matrix explicitly one can use the Lagrange
interpolation formula as in the following exercises.

Exercise 49 Show that if the numbers λi are n distinct numbers, and Bi are
numbers, then

B1
(A− λ2)(A− λ3) · · ·

(λ1 − λ2)(λ1 − λ3) · · ·
+B2

(A− λ1)(A− λ3) · · ·
(λ2 − λ1)(λ2 − λ3) · · ·

+ · · ·

is a polynomial of degree less than n taking values Bi at λi.
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Exercise 50 Show that if the matrix A has distinct eigenvalues λ1,λ2,... then
exp(A) is given by

exp(λ1)
(A− λ2)(A− λ3) · · ·

(λ1 − λ2)(λ1 − λ3) · · ·
+ exp(λ2)

(A− λ1)(A− λ3) · · ·
(λ2 − λ1)(λ2 − λ3) · · ·

+ · · ·

(In this formula exp can be replaced by any holomorphic function.)

Exercise 51 Find exp

(
a b
c d

)
. The work can be reduced a little by writing

the matrix as a sum of a multiple of the identity and a matrix of trace 0.

In particular for every element of the Lie algebra we get a 1-parameter
subgroup exp(tA) of the Lie group. We look at some examples of 1-parameter
subgroups.

Example 52 If A is nilpotent, then exp(tA) is a copy of the real line, and its
elements consist of unipotent matrices. In this case the exponential series is
just a polynomial, as is its inverse log(1 + x), so the exponential map is an
isomorphism between nilpotent matrices and unipotent ones.

Example 53 If the matrix A is semisimple with all eigenvalues real, then it can
be diagonalized, and the image of the exponential map is a copy of the positive
real numbers. In particular it is again injective.

Example 54 If the matrix A is

(
0 1
−1 0

)
(semisimple with imaginary eigen-

values) then the image of the exponential map is the circle group of rotations.
In particular the exponential map is no longer injective.

Example 55 A 1-parameter subgroup need not have closed image: consider
an irrational line in the torus S1 × S1, considered as (say) diagonal matrices in
GL2(C).)

In general a 1-parameter subgroup may combine features of all the examples
above.

Exercise 56 Show that if A is in the Lie algebra of the orthogonal group (so
A+At = 0) then exp(A) is in the orthogonal group.

One way to construct a Lie group from a Lie algebra is to fix a representation
of the Lie algebra on a vector space V , and define the Lie group to be the group
generated by the elements exp(a) for a in the Lie algebra. It is useful to do this
over fields other than the real numbers; for example, we might want to do it
over finite fields to construct the finite simple groups of Lie type. The problem
is that the exponential series does not seem to make sense. We can get around
this in two steps as follows. First of all, if we work over (say) the rational
numbers, the exponential series still makes sense on nilpotent elements of the
Lie algebra, as the series is then just a finite polynomial. The other problem
is that the exponential series contains coefficients of 1/n!, that make no sense
if n ≤ p for p the characteristic of the field. Chevalley solved this problem as
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follows. The elements an/n! are elements of the universal enveloping algebra
over the rationals. If we take the universal enveloping algebra over the integers
and reduce it mod p we cannot then divide an by n!. However we can first do
the division by n! and then reduce mod p: in other words we take the subring
of the universal enveloping algebra over the rationals generated by the elements
an/n! for a nilpotent, and then reduce this subring mod p. Then this has well
defined exponential maps for nilpotent elements of the Lie algebra.

Another way to define exponentials without dividing by a prime p is to use
the Artin-Hasse exponential

exp

(
x

1
+
xp

p
+
xp

2

p2
+ · · ·

)

Exercise 57 Show that a formal power series f(x) = 1 + · · · with ratio-
nal coefficients has coefficients with denominators prime to p if and only if
f(xp)/f(x)p ≡ 1 mod p. Use this to show that the Artin-Hasse power series has
coefficients with denominators prime to p.

Example 58 The exponential map need not be onto, even if the Lie group is
connected. As an example, we will work out the image of the exponential map
for the connected group SL2(R). The Lie algebra is the 2 by 2 matrices of trace
0, so the eigenvalues are of the form λ,−λ for λ > 0, or iλ,−iλ for λ > 0,
or 0, 0. In the first case exp(A) is diagonalizable with two positive distinct
eigenvalue with product 1. In the second case A is diagonalizable with two
eigenvalues of absolute value 1 and product 1. In the third case A is unipotent
(both eigenvalues 1) but need not be diagonalizable. If we check through the
conjugacy classes of SL2(R) we see that we are missing the following classes:
matrices with two distinct negative eigenvalues (in other words trace less than
−2), and non-diagonalizable matrices with both eigenvalues −1. So the image of
the exponential map is not even dense (or open or closed): it omits all matrices
of trace less than −2.

There is an alternative more abstract definition of the exponential map that
goes roughly as follows. For any element a of the Lie algebra of a group G ,
we show that there is a unique 1-parameter subgroup R 7→ G whose derivative
at the origin is a. Then exp(a) is defined to be the value of this 1-parameter
subgroup at 1. This definition has the advantage that it works for all Lie groups,
and in particular shows that the exponential map does not depend on a choice
of representation of the Lie group as a matrix group. The disadvantage is that
one has to prove existence and uniqueness of 1-parameter subgroups, which are
essentially geodesics for a suitable connection on G.

Theorem 59 (Campbell-Baker-Hausdorff)

exp(A) exp(B) = exp(A+B + [A,B]/2 + · · · )

where the exponent on the right is an infinite formal series in the free Lie algebra
generated by formal variables A and B.

In particular this justifies the claim that Lie algebras capture the local structure
of a Lie group, because we can define the product of the Lie group locally in
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terms of the Lie bracket. The convergence of the Campbell-Baker-Hausdorff
formula is a bit subtle: it converges in some neighborhood of 0, and converges for
nilpotent Lie algebras, but does not converge everywhere if the simply connected
Lie group of the Lie algebra is not homeomorphic to a vector space. For example,
if it converged everywhere for the group SU(2) then we would find that R3 can
be given a group structure locally isomorphic to it, which is impossible as the
universal cover is not R3.

In general there is no exponential map from a Lie algebra to its UEA, but
we can define one to its completion if the Lie algebra is graded with all pieces
of positive degree. In this case the UEA is also graded so we can take its
completion, and the exp and log maps are well defined on elements with constant
terms 0 and 1 in this completion. We can define group-like elements in the
completed UEA in the obvious way (but note that the map ∆ has image in
the completion of Ug ⊗ Ug, which is larger than the tensor products of the
completions). For nilpotent Lie algebras things are even better as the series are
finite as elements of the Lie algebra are nilpotent, so we do not need to take
completions.

Lemma 60 exp is an isomorphism from primitive elements to group-like ele-
ments in the completion of the UEA, with inverse given by log

Proof This is an easy calculation: for example, if a is primitive so that ∆(a) =
1⊗ a+ a⊗ 1, then ∆(exp(a)) = exp(∆(a)) = exp(1⊗ a) exp(a⊗ 1) = exp(a)⊗
exp(a). �

Proof (of the Baker-Campbell-Hausdorff formula) If we grade the free Lie alge-
bra by giving A and B degree 1 then it is trivial that exp(A) exp(B) = exp(C) for
some C in the completion of the UEA: we just take C to be log(exp(A) exp(B)).
The problem is to prove that C is in the completion of the Lie algebra, in other
words can be written in terms of A and B using just the Lie bracket but not the
product of the UEA. In other words we have to show that C is primitive. But
this follows easily from the remarks above: A and B are primitive, so exp(A)
and exp(B) are group-like, so their product exp(A) exp(B) is also group-like, so
the log of the product is primitive. �

One application of this formula is to prove Lie’s rather hard theorem that
there is a Lie group for every Lie algebra: roughly speaking the CBH formula
allows us to define a sort of local chunk of the Lie group near the identity, and
we can construct a global Lie group by carefully pasting such chunks together.

This does not quite give an explicit expression for exp(a) exp(b); in fact there
are many different explicit expressions, because there are many ways to write
elements of the free Lie algebra. We will now use the Campbell-Baker-Hausdorff
to find an explicit expression.

Dynkin gave an explicit formula for the Campbell-Baker-Hausdorff formula
as follows. We can write

log(exey) =
∑
m>0

(−1)m

m

 ∑
i+j>0

xi

i!

yj

j!


(remembering that x and y do not commute) which gives an explicit non-
commuting power series, though not written in terms of the Lie bracket. How-
ever we know the right hand side is primitive by the Baker-Campbell-Hausdorff
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theorem, so if we apply any linear map Φ from the free associative algebra to
the free Lie algebra on x, y that is the identity on primitive elements we will
get an explicit expression for log(exey) in terms of the Lie bracket. One such
linear map φ was found by Dynkin as follows. Put

Φ(x1x2 · · ·xn−1xn) = [x1, [x2, . . . , [xn−1, xn] · · · ]]

if n ≥ 1. Then by definition of Φ, if deg v > 0 we have Φ(uv) = θ(u)Φ(v), where
θ is the algebra homomorphism from the associative algebra to End(A) taking
xi to [xi, ∗] (so θ(u)v = [u, v] whenever u is primitive). Then Φ(u) = deg(u)u
for all primitive elements u. This follows by induction on the degree of u as
Φ([u, v]) = Φ(uv − vu) = θ(u)Φ(v) − θ(v)Φ(u) = deg(v)[u, v] − deg(u)[v, u] =
deg([u, v])[u, v].

So we define φ by φ(u) = Φ(u)/deg(u) if deg(u) > 0, giving the desired
retraction from the associative algebra to the Lie algebra.

Exercise 61 Work out the terms of Dynkins formula of degree up to 3. (An-
swer: x+ y + [x, y]/2 + [x, [x, y]]/12 + [y, [y, x]]/12.)

5 Free things

The free monoid on n generators a1, . . . an has elements ai1ai2 corresponding to
all finite sequences i1, i2, . . . of 1, . . . n in the obvious way. These elements form
a basis of the free algebra on these generators (which is the monoid ring of the
free monoid). In particular the free algebra, graded so that all generators have
degree 1, and a degree m piece of dimension nm.

Example 62 The free Lie algebra on n generators a, b, c, . . . is graded by giving
all generators degree 1, and we can ask for the dimension of the piece of degree
m; in other words how many independent expressions can we form using the
Lie bracket m − 1 times. We can solve this using the PBW theorem. The
point is that the UEA of a free Lie algebra is the free associative algebra on
a, b, c, . . .,whose piece of degree m has dimension nm. By the PBW theorem the
UEA is the “same size” as the polynomial algebra over the free Lie algebra. So
if the free Lie algebra has km independent elements of degree m, then

1

(1− t)k1
1

(1− t2)k2
· · · = 1 + nt+ n2t2 + · · ·

(where the left is the Poincare series of the symmetric algebra of the UEA, and
the right is the Poincare series of the free associative algebra). So this gives a
recursive way to calculate the numbers km, especially if we take logs of both
sides: ∑

i

kit
ij/j = log(1/(1− nt)) =

∑
i

niti/i

The dimension M(α, n) of the degree n piece of the free Lie algebra on α
generators is called a necklace polynomial, and by Moebius inversion is given
by

M(α, n) =
1

n

∑
d|n

µ(n/d)αd
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M(α, 1) = α

M(α, 2) =
α2 − α

2

M(α, 3) =
α3 − α

3

M(α, 4) =
α4 − α2

4

Exercise 63 Show that the necklace polynomial M(α, n) counts the number of
aperiodic necklaces with n beads of α colors. (Aperiodic means that the necklace
cannot be obtained by repeating some smaller necklace. Necklaces are the same
if one can be obtained by rotating another, but “flipping” is not allowed.) Show
that if q is a prime power then M(q, n) is the number of irreducible monic
polynomials of degree n over the field of q elements. Show that

(1− αz) =
∏
n

(1− zn)M(α,n).

We can construct a totally ordered basis H for the free Lie algebra on a
totally ordered set X using Hall sets as follows. The set H is the union of sets
H1, H2, of degrees 1, 2, ...and if u has length less than v then u < v. The set H1

is just X. The set H2 is the elements [u, v] with u, v ∈ H1, u < v. The elements
of length at least 3 are those of the form [u[vw]] with v ≤ u < [u, v] and v < w
and u, v, w, [[vw] all in H. We choose any total ordering on Hn. We will not
give a proof that this works as we do not use this result later.

Exercise 64 Find the sets H1, H2, H3, H4, H5 for a free Lie algebra on 2 gen-
erators (for some choice of ordering in Hi).

A useful variation of the free monoid is the free group on generators a, b, . . .,
which is the same as the monoid on generators a,A, b, B, . . . with the relations
aA = Aa = 1 and so on. We review some basic facts about free groups.

Lemma 65 Each element of the free group has a unique representative given
the product of a sequence of elements a,A = a−1, b, B = b−1, . . . such that no
generator occurs next to its inverse. In other words, there are no “unexpected”
relations between generators of a free group.

Proof It is obvious that any element of the free group can be written in this
form, and the problem is to show that this representative is unique. If X = Y
then XY −1 = 1, so this reduces to checking that non-empty representative is not
the identity element. This is the usual problem for things given by generators
and relations of showing that there is no unexpected collapse, and a good way to
show this is to find explicit representations where given elements are obviously
nontrivial. We will do this by constructing some explicit finite permutation
representations.

Given a product X = xn · · ·x2x1 · · · of n > 0 elements a,A, b, B, . . . with
no generator next to its inverse we will construct an action of the free group
on a finite set of n + 1 points 1, 2, . . . n + 1 such that X takes 1 to n + 1. We
first decree that x1(1) = 2, x2(2) = 3, and so on. We need to extend this to an
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action of each generator a on 1, 2, ..., n+ 1. But since a does not occur next to
A in X, the conditions on a are consistent so we can extend the action of a to
the whole of 1, . . . , n+ 1. So we get an action of the free group on n+ 1 points
with X acting nontrivially, which shows that X is not the identity. �

In fact we have shown a little more: free groups are residually finite, meaning
that for any nontrivial element we can find a finite index (normal) subgroup
containing it. Another way of thinking about this is that elements can be
detected by homomorphisms to finite groups. (In general if P is some property
of groups, then “residually P” means that any two distinct elements of the group
can be separated by a quotient group with property P.)

A useful way of thinking of free groups is that they are the fundamental
groups of (connected) graphs with base points. Given such a graph we can
obtain an independent set of generators for its free fundamental group by picking
a maximal tree. The remaining edges then correspond to generators of the
fundamental group as follows: given such an edge, start at the basepoint, travel
along the tree to one end of the edge, go along the edge, then go back along the
tree to the basepoint.

Lemma 66 Any subgroup of a free group is free. More precisely, an index m
subgroup of a free group on n generators is free on m(n− 1) + 1 generators.

Proof Represent the free group as the fundamental group of a graph with n
loops. Then a subgroup of index m is the fundamental group of the correspond-
ing m-fold connected cover. Since this is also a tree, its fundamental group is
also free.

To count the number of generators, observe that the number of generators
of the fundamental group of a graph is 1−χ where χ is the Euler characteristic
(number of vertices minus number of edges). Since the Euler characteristic
gets multiplied by m when we take an m-fold cover, this gives the number of
generators of a subgroup. �

Exercise 67 Consider the action of the free group on 2 generators a, b on 3
points 1, 2, 3 such that a and b act as the transposition (12) and (13). Find a
set of four generators for the free subgroup fixing 1. (Draw the graph with three
vertices 1, 2, 3 and four edges giving the actions of a and b on the vertices, then
pick a maximal tree (with 2 edges) then find the four generators by starting at
1, running along the tree, across and edge, and back along the tree.)

Exercise 68 How many subgroups of index 3 does the free group on 2 genera-
tors have? (The subgroups correspond to transitive actions on 3 points, one of
which is marked.) How many triple covers does a figure 8 have?

Now we show that free Lie algebras and free Lie groups are closely related.
This may be a little surprising, because these correspond to connected and
discrete groups, which in some sense are opposite to each other. Given a free
group F , we can form its descending central series F0 ⊇ F1 ⊇ · · · , with Fi+1 =
[Fi, F ], the group generated by commutators.

If a group has a descending central series G0 ⊃ G1 · · · we can construct a
graded Lie ring from it as follows. The Lie ring will be G0/G1 ⊕G1/G2 ⊕ · · · .
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The additive structure of the ring is just given by the (abelian) group structure
on each quotient. The Lie bracket is given by the commutator [a, b] = a−1b−1ab.
The key point is to check that the Jacobi identity holds. This follows from Philip
Hall’s identity:

Exercise 69

[[x, y−1], z]y · [[y, z−1], x]z · [[z, x−1], y]x = 1

Exercise 70 Check that G0/G1 ⊕G1/G2 ⊕ · · · is a Lie ring.

Theorem 71 The Lie ring of the descending central series of the free Lie group
on n generators is the free Lie ring on these generators.

Proof First, there is an obvious homomorphism from the free Lie ring to the
Lie ring of the free group, by the universal property of the free ring. To prove
this is an isomorphism we want to construct a map in the other direction. We
do this as follows.

We map each generator A of the free group to exp(a) in the rational com-
pleted universal enveloping algebra of the free Lie ring, where a is the generator
of the free Lie ring corresponding to the generator A of the free group. This
extends to a homomorphism f of groups by the universal property of a free
group. If A is in Fn then f(A) is of the form 1 + an+1 + an+2 + · · · where ai
has degree i in the universal enveloping algebra. We define the image of A to be
the element an+1. We can check that this is primitive (as the log of a group-like
element is primitive) and integral, so an element of the free Lie algebra. We
can also check that this preserves addition and the Lie bracket and so gives a
Lie algebra homomorphism from the Lie ring of the free group. This gives the
desired inverse map, so proves that the Lie ring of the free group is the free Lie
algebra. �

Exercise 72 Show that free groups are residually nilpotent. Show that free Lie
algebras are residually nilpotent.

So the relation between the free group and the free Lie algebra on some
generators is given as follows. The Lie ring of the free group is the free Lie
ring on the generators. The group generated by the elements exp(a), as a runs
through generators for a free Lie ring, is the free group.

6 Nilpotent Lie groups

The main result about nilpotent Lie algebras is Engel’s theorem, due to Friedrich
Engel (not to be confused with the philosopher Friedrich Engels).

Theorem 73 (Engel) Suppose that g is a Lie algebra of nilpotent endomor-
phisms of a non-zero finite dimensional vector space V . Then V has a nonzero
vector fixed by g.
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Proof We use induction on the dimension of g. The main step is to show that
g has an ideal h of codimension 1 (unless g is 0). So fix any proper nonzero
subalgebra h of g. Then h acts on g by nilpotent endomorphisms, and so acts
on the vector space g/h by nilpotent endomorphisms. By induction there is a
nonzero element of g/h killed by h, so if h has codimension greater than 1 we
can add this to h and repeat until h has codimension 1. In this case h is an
ideal of g.

Now look at the subspace W of V fixed by all elements of h, which is non-
zero by induction. This is acted on by the 1-dimensional Lie algebra g/h as h
is an ideal, and as g/h acts by a nilpotent endomorphism of W there must be
a non-trivial fixed vector. �

This theorem shows that if g is a Lie algebra of nilpotent endomorphisms of
V , then there is a flag 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V such that g acts trivially
on each Vi/Vi−1. (Take V1 to be the vectors fixed by g and apply induction
to V/V1). In other words V has a basis so that g is strictly upper triangu-
lar. Conversely any strictly upper triangular Lie algebra consists of nilpotent
endomorphisms.

We would like to say that a Lie algebra is nilpotent if all elements are rep-
resented by nilpotent matrices, but there is a slight problem that this depends
on the choice of representation: an 1-dimensional abelian Lie algebra can be
represented by either a nilpotent or a non-nilpotent matrix. So instead we use
the following definition:

Definition 74 A Lie algebra g is called nilpotent if it has a central series 0 =
g0 ⊂ g1 ⊂ · · · ⊂ gn = g. This means that each gi is an ideal, and g fixes all
elements of gi/gi−1 (or equivalently that gi/gi−1 is in the center of g/gi−1).

There are two obvious ways to construct a central series of a group or Lie
algebra: we can start at the bottom, and repeatedly quotient out by the center
(gi/gi−1 = center of g/gi−1), or we can start at the top and repeatedly take
commutators (gi = [g, gi+1] ). The first method produces the “largest” central
series and the second produces the “smallest”. It is also possible to continue
the upper and lower central series “transfinitely” but then they are no longer
closely related: for example, for the free group or Lie algebra the descending
central series becomes trivial after ω steps, but the ascending one never takes
off as the center is trivial.

Exercise 75 Find an example of a nilpotent Lie algebra whose ascending and
descending central series are not the same. (The smallest example is 4-dimensional.)

A reasonably typical example of a nilpotent Lie algebra is the Lie algebra
of all strictly upper triangular matrices. A Lie algebra is nilpotent if and only
if it is isomorphic to a Lie algebra of strictly upper triangular matrices. This
follows immediately from Engel’s theorem if we can show that it has a finite-
dimensional faithful representation in which all elements act nilpotently. We
will prove this later as a special case of Ado’s theorem.

Similarly we define a group to be nilpotent if it has a central series. There is
nothing obviously nilpotent in a nilpotent group: the terminology comes from
Lie algebras.
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Theorem 76 For finite groups, the nilpotent ones are just the products of
groups of prime power order.

Proof First we show that any group of prime power order is nilpotent. The
key step is to show that it has a nontrivial center (if it is nontrivial). For this,
look at the partition into conjugacy classes. Each conjugacy class has order
(order of G)/(order of subgroup fixing an element), so has order divisible by p
if it is not in the center. If G is nontrivial it also has order divisible by p, so the
number of elements in the center is divisible by p. So by repeatedly killing the
center we see that G has a central series and is nilpotent.

It is trivial to see that a product of two nilpotent groups is nilpotent, so any
finite product of groups of prime power order is nilpotent.

Conversely we want to show that if G is nilpotent then it is a product of its
Sylow subgroups, or in other words all its Sylow subgroups are normal. If G
is nontrivial then we can find an element of some prime order p in the center
generating a subgroup H as G is nilpotent, and by induction G/H is a product
of its Sylow subgroups. But if Q is a Sylow q-subgroup of G, then its image in
G/H is the unique Sylow q-subgroup of G/H, whose inverse image in G is QH.
But since H is in the center of QH there is only one Sylow q-subgroup of QH
(either Q or QH depending on whether or not p = q) so it must be normalized
by G. So all Sylow subgroups of G are normal, so G is a product of its Sylow
subgroups. �

For any finite nilpotent group we can construct a finite Lie ring of the same
order, as in the previous section. This does not seem to help all that much, as
finite Lie rings seem just as messy as finite nilpotent groups.

The naive analogue of Engel’s theorem fails for nilpotent groups: for exam-
ple, the dihedral group of order 8 is nilpotent but has no fixed vectors in its
2-dimensional real representation. However there is an analogue that works: if
a p-group acts on a non-zero finite dimensional vector space over a field with
p elements then it fixes some vector The proof is similar to the proof that a
non-trivial p group has a nontrivial center. There is also a similar analogue for
algebraic groups: an algebraic group acting on a nonzero vector space whose
elements are unipotent (all eigenvalues 1, or equivalently 1 plus nilpotent) fixes
some vector, so is conjugate to a group of upper-triangular matrices with 1’s on
the diagonal.

There are huge numbers of p-groups of order pn if n is reasonably large;
in fact the number of groups of order less than some number is dominated by
groups of order 2n. In fact we can do this with just 2-step nilpotent groups. Fix
two vector spaces V , W over a field (such as the field with p elements). If we
are given a skew symmetric bilinear map [, ] from V ×V to W then we can make
V ⊕W into a nilpotent group by letting the commutator of w1, w2 be the element
[w1, w2] of V . So the number of groups we get is about pdim(V )2 dim(W )/2. For
groups of order pn we have dim(V ) + dim(W ) = n, so the number of groups is
maximized for dim(V ) = n/3, dim(W ) = 2n/3, and the number of groups is

about p2n3/27. Of course we should divide out by groups that are isomorphic, but
the number of choices we make is only psomething quadratic in n so this is dominated
by the cubic exponent of p and does not reduce the number of groups all that
much. The number of groups of order 2n is 1, 1, 2, 5, 14, 51, 267, 2328, 56092,
10494213, 49487365422, ..., and almost all groups of order less than some large
integer are 2-group.
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Exercise 77 Classify the groups of order 8. (The 3 abelian ones are obvious;
the other two are the dihedral group and the quaternion group. One way to find
the non-abelian ones is to start by observing that the center of a nonabelian
group has order 2 and the quotient by the center is a Klein 4-group.)

Trying to classify nilpotent Lie algebras or nilpotent Lie groups of given
dimension is just as bad: beyond dimension about 6 or so everything just gets
horribly messy.

We saw earlier that in some sense Lie groups are commutative to first order.
This suggests that maybe discrete subgroups generated by elements close to the
identity will be commutative. This is not quite correct: for example, the group
of unipotent upper triangular matrices has non-abelian subgroups generated by
elements close to the identity. However Zassenhaus showed that it is essentially
correct, except that “abelian” has to be replaced by “nilpotent”, which is in
some sense very close to “abelian”.

Theorem 78 (Zassenhaus) The identity of a Lie group has a neighborhood U
with the following property: any discrete subgroup generated by elements of U
is nilpotent.

Proof The idea of the proof is that elements near the identity almost commute
with each other. The commutator of two elements is second order. So if U is
small enough then then sets u1 = U , U2 = [U,U ], U3 = [[U,U ], U ], will tend
to 0 in the sense that they will eventually be in any given neighborhood. If a
subgroup H of G is discrete this means that its intersection with Un for n large
is the identity element. If in addition H is generated by elements of U , this
means that [...[g1, g2], g3, ...], gn] = 1 for any n elements in the generating set,
which implies that H is nilpotent of step n. �

For nilpotent Lie algebras g over fields of characteristic 0, the Campbell-
Baker-Hausdorff formula converges as it only has a finite number of nonzero
terms, so can be used to give g a group structure. In particular, if G is a
nilpotent Lie group then its universal covering space is a vector space and in
particular is contractible. This fails completely for general Lie groups: for
example the group S3 is simply connected so has universal covering space a
sphere.

We should at least mention Gromov’s theorem that a finitely-generated
group has polynomial growth if and only if it has a nilpotent subgroup of finite
index.

7 Solvable Lie groups

Recall that a solvable group is one all of whose composition factors are abelian.
The term comes from Galois theory, where a polynomial is solvable by radicals
(and Artin–Schrier extensions in positive characteristic) if and only if its Galois
group is solvable. For Lie groups the term solvable has the same meaning, and
for Lie algebras it means the obvious variation: the Lie algebra is solvable if all
composition factors are abelian Lie algebras.

The main goal of this section is to prove Lie’s theorem that a complex
solvable Lie algebra of matrices is conjugate to an algebra of upper triangular
matrices.
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Lie’s theorem fails in positive characteristic, so in proving it we need to
make use of some property of matrices that holds in characteristic 0 but not
in positive characteristic. One such property is that if the trace of λI vanishes
then so does λ; this is used in the following lemma.

Lemma 79 Suppose that the Lie algebra G over a field of characteristic 0 has
an ideal H and acts on the finite dimensional vector space V . Then G acts on
each eigenspace of H.

Proof Recall that an eigenvalue of H is given by some linear form λ on H, and
the corresponding eigenspace consists of vectors v such that h(v) = λ(h)v for all
h ∈ H. Pick some eigenvector of H with eigenvalue λ, and pick some g ∈ G. We
need to show that g(v) also has eigenvalue λ. Look at the space W spanned by
g, gv, g2v,... which has an increasing filtration 0 = W0 ⊂ W1 ⊂ · · · ⊂ Wn = W
where Wi is spanned by Wi−1 and giv. Then each Wi/Wi−1 is at most 1-
dimensional and is acted on by H with eigenvalue λ, because [g, h] is in H.
So on W , any element h of H has trace nλ(h). In particular [g, h] has trace
nλ([g, h]), so λ([g, h]) = 0 because [g, h] has trace 0 and n is invertible (this is
where we use the characteristic 0 assumption). But λ([g, h]) = 0 implies that
hgv = ghv = gλ(h)v, so gv is an eigenvalue of H with eigenvalue λ, which is
what we were trying to prove. �

This lemma really does fail in infinite dimensions or in characteristic p > 0.
For example, we can take the nilpotent Lie algebra spanned by the operators 1,
x, d/dx which acts on k[x]. Then 1 is an eigenvalue of d/dx, but x1 is not. In
characteristic p we can take the finite dimensional quotient k[x]/(xp). It is clear
from the proof that it holds in characteristic p > 0 provided the vector space V
has dimension less than p. this is quite a common phenomenon: results true in
characteristic 0 are often true in characteristic p > 0 provided we stick to vector
spaces of dimension less than p.

Theorem 80 Lie’s theorem. If a solvable Lie algebra G over an algebraically
closed field of characteristic 0 acts on a non-zero finite-dimensional vector space,
it has an eigenvector.

Proof If G is nonzero, then as it is solvable we can find an ideal H of codimen-
sion 1. By induction on the dimension of G there is an eigenspace W of H for
some eigenvalue of H. If g is any element of G not in H then by the previous
lemma g acts on W , and as we are working over an algebraically closed field we
can find some eigenvector of g on W . This is an eigenvector of G because G is
spanned by g and H. �

By repeatedly applying this theorem, we see that the Lie algebra fixes a flag.
So solvable Lie subalgebras of Mn(C) are conjugate to subalgebras of the Lie
algebra of upper triangular matrices.

Another way of stating Lie’s theorem is that any irreducible representation
of a finite-dimensional complex solvable Lie algebra is 1-dimensional. This does
not mean that their representation theory is trivial. Non-abelian solvable com-
plex Lie algebras have plenty of infinite dimensional irreducible representations.
And even finite dimensional representations are hard to study, because there are
plenty of indecomposable representations that are not irreducible. In fact, even
for abelian Lie algebras of dimension 2, the finite dimensional indecomposable
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representations are very hard to classify. We will see later that the representa-
tion theory of simple Lie algebras is much easier, because we do not have this
problem: all indecomposable representations are irreducible.

If we examine the proof, we see that Lie’s theorem still holds in positive
characteristic provided the dimension of the vector space is less than the char-
acteristic.

Example 81 The solvable (in fact nilpotent) Lie algebra spanned by the op-
erators 1, x, d/dx acts on k[x], and has no eigenvectors. In characteristic p is
acts on the finite dimensional quotient k[x]/(xp), but has no eigenvectors; in
fact the action is irreducible. So Lie’s theorem fails in characteristic p > 0 and
in infinite dimensions.

Corollary 82 The derived subalgebra of a finite dimensional solvable Lie alge-
bra over a field of characteristic 0 is nilpotent.

Proof We can extend the field to be algebraically closed. In this case the
corollary follows from Lie’s theorem, because the Lie algebra can be assume to
be upper triangular, in which case its derived algebra consists of strictly upper
triangular matrices and is therefore nilpotent. �

Although Lie’s theorem fails in positive characteristic for Lie algebras, it
still holds for solvable algebraic groups in any characteristic: this is Kolchin’s
theorem. (However it fails for solvable connected Lie groups: these are not nec-
essarily isomorphic to groups of (upper triangular) matrices.) More generally
still, Borel proved that any solvable algebraic group acting on a projective vari-
ety (over an algebraically closed field) has a fixed point. The special case when
the projective variety is projective space is Kolchin’s theorem.

Example 83 There are obvious analogues of Lie’s theorems for connected solv-
able Lie groups of matrices. However for disconnected solvable groups the
conclusions do not hold. For example, the symmetric group S3 acting on its
irreducible 2-dimensional representation has no eigenvectors. And the derived
subgroup of a solvable finite group is usually not nilpotent: an example is the
solvable symmetric group S4 whose derived subgroup is the alternating group
A4.

Example 84 Lie’s theorem shows that in some sense solvable connected Lie
groups are not too far from nilpotent ones: they are given by sticking an abelian
group on top of a nilpotent one. For (disconnected) finite groups, the solvable
ones can be much more complicated than nilpotent ones. For example, a typical
example of a smallish solvable group is GL2(F3) of order 48 with the chain
of normal subgroups 1 ⊃ Z/2Z ⊂ Q8 ⊂ SL2(F3) ⊂ GL2(F3) with quotients
of orders 2, 4, 3, 2. Larger finite solvable groups tend to be a similar but
more complicated mess, and are rather hard to work with. The relatively easy
structure of solvable connected groups is one of the reasons that connected Lie
groups are easier to handle than finite groups.

Exercise 85 Which well-known group is PGL2(F3) isomorphic to?
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Exercise 86 Over a field k of characteristic p > 0, show that the semidi-
rect product of the 3-dimensional Lie algebra {1, x, d/dx} by the p-dimensional
abelian Lie algebra k[x]/(xp) is solvable, but its derived algebra is not nilpotent.
This shows that the corollary above fails in positive characteristic.

Although in some ways solvable Lie algebras are not too far from nilpotent
ones, their behavior can be much more complicated. For example, for any
connected nilpotent Lie algebra, the exponential map to the simply connected
group is an isomorphism (of sets). For example, we can use the BCH formula
to define a Lie group structure on the Lie algebra.

Exercise 87 Show that if a a Lie group G has a connected central subgroup
H, and the exponential map is surjective for G/H, then it is surjective for
G. Deduce that the exponential map is surjective for connected nilpotent Lie
groups.

It is very plausible that a similar result holds for solvable Lie algebras. For
example, if a Lie algebra g has a normal subalgebra h such that the exponential
maps take g and h onto their simply connected Lie groups then it seems almost
obvious that the same is true for g, which would prove it for all solvable Lie
algebras. Rather surprisingly, this is in fact sometimes false: the exponential
map for a solvable Lie algebra need not map onto the simply connected group.

Example 88 Let g be the Lie algebra of (orientation preserving) isometries
of the Euclidean plane. If we identify the Euclidean plane with the complex
numbers and rotations with multiplication by complex numbers of absolute
value 1, then the group G can be thought of as the matrices

(
eit z
0 1

)
for t real

and z complex. The Lie algebra consists of matrices of the form ( it z0 0 ) and the

exponential map takes this to
(
eit z(eit−1)/(it)
0 1

)
. (Recall the fast way to see this:

exp of an n× n matrix is a polynomial of degree less than n in it.) Examining
this we see that the exponential map is surjective, but not injective. This is
easy to fix: we can make it injective by replacing the Lie group by its universal
cover (the fundamental group is just Z). So what is the problem? The problem
is that the exponential map is surjective the group G, but is NOT surjective for
the universal cover of G. To see this, notice that points of G of the form ( 1 z

0 1 )
are in the image of only 1 point under the exponential map. So only one of their
inverse images in the universal cover can be in the image of the exponential map.
So there is no group such that the exponential map of g is an isomorphism: it
fails to be either injective or surjective (or both, if we take a non-trivial finite
cover).

This problem is closely related to the fact that the Lie algebra has elements
with non-zero purely imaginary eigenvalues in the adjoint representation.

Exercise 89 Show that the universal cover of the group of orientation-preserving
isometries of the plane can be represented faithfully as a group of 3 by 3 matri-
ces. eit 0 z

0 1 t
0 0 1
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Use Kolchin’s theorem that a solvable algebraic group can be diagonalized (over
C) to show that it cannot be represented faithfully as an algebraic group.

There are several other ways in which solvable Lie groups are fundamentally
more complicated than nilpotent ones. We will see later that left-invariant Haar
measures on nilpotent Lie groups are right-invariant, but this need not be true
for solvable Lie groups. Also the representation theory of solvable Lie algebras
can be a lot wilder than the representation theory of nilpotent ones, in the sense
that von Neumann algebras not of type I can appear. A related fact is that the
coadjoint orbit space (the space of orbits of the group on the dual of the Lie
algebra) of a solvable Lie algebra can have unpleasant topological properties: it
need not be T0 for example.

8 Picard–Vessiot theory

One of Lie’s motivations for studying Lie groups was to extend Galois theory to
differential equations, by studying the symmetry groups of differential equations.
We will give a very sketchy account of this, missing out most proofs (and for
that matter most definitions).

The theorem in Galois theory that a polynomial in characteristic 0 is solv-
able by radicals if and only if its Galois group is solvable has an analogue for
differential equations: roughly speaking, a differential equation is solvable by
radicals, integration, and exponentiation if and only if its group of symmetries
is a solvable algebraic group. This theory was initiated by Picard and Vessiot
but it is sometimes hard to tell exactly what they proved as their definitions are
somewhat vague. Kolchin gave a rigorous reformulation of their results using the
theory of algebraic groups (which he created for this purpose). In particular one
needs to distinguish between nilpotent and semisimple abelian groups (which
look the same as Lie groups, but are quite different as algebraic groups). The
correct analogue of nilpotent Lie algebras is not nilpotent groups but unipotent
groups (those such that all eigenvalues of all elements are 1): for example, the
group of diagonal matrices is nilpotent but not unipotent.

In this extension of Galois theory, one replaces fields by differential fields:
fields with a derivation D. Just as adjoining a root of a polynomial equation to
a field gives an extension of fields, adjoining a root of a differential equation to
a field gives an extension of differential fields. As in Galois theory, one can form
the differential Galois group of an extension k ⊂ Kof differential fields as the
group of automorphisms of the differential field K fixing all elements of k. Much
of the theory of differential Galois groups is quite similar to usual Galois theory:
for example, one gets a Galois correspondence between algebraic subgroups of
the differential Galois group of an extension and sub differential fields.

Example 90 Suppose we adjoin a root of the equation df/dx = p(x) to the
field k = Q(x) of rational functions over Q. This extension has a group of
automorphisms given by the additive group of Q, because we can change f to
f + c for some constant of integration c to get an automorphism.

Example 91 Suppose we adjoin a root of the equation df/dx = p(x)f (with
solution exp(

∫
p)) to the field k = Q(x) of rational functions over Q. This ex-

tension has a group of automorphisms given by the multiplicative group of Q,
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because we can change f to cf for some nonzero constant c to get an automor-
phism.

The theory applies to homogeneous linear differential equations, so that the
set of solutions is a finite-dimensional vector space acted on by the differential
Galois group. Equations such as df/dx = 1/x with solutions log x are not ho-
mogeneous so the theory does not apply directly to them, but we can easily turn
them into homogeneous equations such as (d/dx)x(d/df)f = 0, at the expense
of making the space of solutions 2-dimensional rather than 1-dimensional.

Exercise 92 Find the Lie group of automorphisms of the solutions of

(d/dx)x(d/df)f = 0

and describe its action on the space of solutions.

We will sketch the proof of one of the results of Picard-Vessiot theory, which
says roughly that a linear homogeneous differential equation can be solved by
radicals, exponentials, and integration if and only if its differential Galois group
is solvable.

In one direction this follows by calculating the differential Galois group: each
time we take radicals we get a finite cyclic group, each time we take an integral
we get a differential Galois group isomorphic to the additive group, and each
time we take an exponential we get a differential Galois group isomorphic to the
multiplicative group. So by repeating such extensions we get a group built out
of additive groups, which is solvable.

Conversely, suppose the differential Galois group is solvable. The quotient
by the connected component is a finite solvable group, which corresponds to
repeatedly taking radicals just as in ordinary Galois theory, so we can assume
that the differential Galois group is connected and solvable. Now we apply
Lie’s theorem on solvable Lie algebras (or more precisely Kolchin’s version of
it for solvable algebraic groups) so see that the differential Galois group has an
eigenvector f in the space of solutions of the differential equation. Also Df
has the same eigenvalue as D commutes with the differential Galois group, so
Df/f is fixed by the differential Galois group and so is in the base field. So f
satisfies the differential equation Df = af for some a, which can be solved by
exponentials and integration.

Example 93 A typical application of differential Galois theory is that Bessel’s
equation x2d2y/dx2+xdy/dx+(x2−ν2)y = 0 cannot be solved using integration
and elementary functions unless ν − 1/2 is integral. Except for these special
values, the differential Galois group is SL2 which is not solvable. Finding the
differential Galois group is rather too much of a digression, but we can at least
get non-trivial upper and lower bounds for it as follows. First, we can show that
it lies in SL2 (rather than just GL2) by using the Wronskian of the equation,

given by W =
(
f g
f ′ g′

)
for two independent solutions f and g. The Wronskian

get multiplied by the determinant of a matrix of the differential Galois group,
so the elements of the differential Galois group have determinant 1 if and only
if the Wronskian is in the base field.
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Exercise 94 Show that the Wronskian of d2y/dx2 + p(x)dy/dx + q(x)y = 0
satisfies the differential equation dW/dx + p(x)W = 0. Use this to find the
Wronskian of Bessel’s equation, and deduce that the differential Galois group
lies in the special linear group.

To find a lower bound for the differential Galois group, we observe that mon-
odromy gives elements of this group. (Monodromy means go around a branch
point.) Bessel’s equation has a branch point at 0, and the two solutions Jν =
xν×(something holomorphic) and J−ν = x−ν×· · · for ν not an integer are mul-
tiplied by e±2πiν by the monodromy, so the differential Galois group contains
the diagonal matrix with these entries. When ν is an integer the monodromy
is unipotent instead of semisimple: in this case the solutions are Jν with trivial
monodromy, and Yν = (something holomorphic)+Jν×(something holomorphic)×
log that has a logarithmic singularity and is changed by a multiple of Jν by mon-
odromy. So in this case the differential Galois group has a unipotent element of
the form ( 1 1

0 1 ) generated by monodromy.

For proofs of most of the results discussed here, see Kolchin’s papers on differ-
ential Galois theory.

9 Lie groups of dimension at most 3

We will find all (real, connected) Lie groups and Lie algebras of dimension at
most 3.

Dimension 0: This is the hardest case, as it involves classifying all discrete
groups, which is hopeless. Even if we restrict to compact simple groups, the
0-dimensional case is the classification of finite simple groups, which is about
a thousand times longer than the classification of compact simple Lie groups
of positive dimension. In general any Lie group has a normal closed subgroup
consisting of the connected component of the identity, and the quotient is a
discrete group. So we just give up on the discrete part, and from now on try to
find the connected Lie groups of small dimension.

Dimension 1: The only 1-dimensional Lie algebra is the abelian one. The
corresponding simply connected group is just the reals under addition. Other
groups come by quotienting by a discrete subgroup of the center: up to equiva-
lence, the only way to do this is to take R/Z. So there are just two 1-dimensional
connected Lie groups: The reals and the circle group.

Dimension 2: First we find the Lie algebras. One possibility is that the
algebra is abelian. Otherwise the derived algebra has dimension 1 (spanned by
[a, b] for any two independent vectors), so we take one element a of a basis to
span the derived algebra. For any other vector we have [a, b] is a multiple of a,
so by multiplying b by a constant we can assume that [a, b] = a. So there is just
one non-abelian Lie algebra.

The abelian groups correspond to quotients of R2 by discrete subgroups (or
lattices) in R2. There are 3 possibilities: the lattice can have rank 0, 1, or 2,
giving 3 groups R2, R1 × S1, and S1 × S1 (the torus).

Exercise 95 Find the automorphism groups of the 3 connected 2-dimensional
abelian Lie groups.
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The non-abelian simply connected group is the ax + b group that can be
represented as the orientation preserving affine transformations of the real line
of the form x 7→ ax+ b for a positive. It also appears acting on the upper half
plane by the same formula, and as 2 by 2 matrices of the form ( a b0 1 ) with a > 0.
The center is trivial, so this is the only non-abelian 2-dimensional Lie group. It
is solvable but not nilpotent.

This group has analogues over finite fields that are semidirect products of
the additive group of order q by the multiplicative group of order q − 1. More
generally, we can form the semidirect product of the additive group of order q
by any subgroup of the multiplicative group, which can be a cyclic group of any
order dividing q − 1. These groups account for many of the small non-abelian
finite groups.

Exercise 96 Show that any nonabelian group of order pq for p < q primes is
of this form: more precisely, there are no such groups unless p divides q − 1,
in which case there is a unique such group, given by a subgroup of the ax + b
group.

Dimension 3: This is where things start to get hairy. We find the connected
groups by first finding the Lie algebras, and then finding the corresponding
simply connected Lie group, and then finding the discrete subgroups of its center.
The algebras were classified by Bianchi.

We first assume that G is solvable. We start by showing that G has a
normal abelian subalgebra of dimension 2. It certainly has some normal subal-
gebra of dimension 2 (codimension 1) as G is not perfect. If this is not abelian
then it must be the unique non-abelian Lie algebra of dimension 2, so G is a
semidirect product of this by a 1-dimensional algebra acting on it. However
this 2-dimensional non-abelian Lie algebra has no outer derivations, so the Lie
algebra is just a product of the 2-dimensional non-abelian Lie algebra with a
1-dimensional Lie algebra, in which case it has a normal 2-dimensional abelian
Lie algebra.

So we see that G can be given as follows: it has a normal 2-dimensional
abelian subalgebra, and is a semidirect product by a 1-dimensional algebra
acting on it by some transformation A. So G is determined by the 2 by 2 real
matrix A. Changing A by conjugation or multiplying it by a non-zero constant
does not change the isomorphism class of the Lie algebra. So to classify the
solvable Lie algebra of dimension 3, we just have to run through all possible
types of 2 by 2 matrices as follows.

• A is zero. The Lie algebra is abelian. (Bianchi type I). There are now 4
possibilities, all products of copies of the circle and the real line.

• A is nilpotent but not zero. The Lie algebra is the Heisenberg algebra
(Bianchi type II), which can be represented as strictly upper triangular 3
by 3 matrices.

The corresponding simply connected group is the group of unipotent up-
per triangular 3 by 3 matrices: the exponential map is a bijection because
the exponential and logarithm maps are polynomials. The center of the
simply connected group is R, and there is an outer automorphism that
acts by rescaling the center, so there are two possible groups with this
Lie algebra, one simple connected, and one with center S1. The simply
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connected one can be represented as upper triangular unipotent matrices,
and is the group associated with one of the 8 Thurston geometries (the nil-
manifolds: take a quotient of the group by a discrete subgroup, such as the
subgroup of matrices with integer coefficients). The other group can be
represented as the group of transformations of L2(R) generated by trans-
lations and multiplication by eixy. These satisfy the Weyl commutation
relations. The center is multiplication by constants of absolute value 1.
This group has no faithful finite dimensional representations: in any finite
dimensional representation the center must act trivially. One way to see
this is to observe that any element of the center of a characteristic 0 Lie al-
gebra in the derived algebra must act nilpotently in any finite dimensional
representation (chop the representation up into generalized eigenspaces,
and then look at the trace on any generalized eigenspace. The trace must
be zero as the element is in the derived algebra, so the eigenvalue must
be zero.) But the only way a nilpotent element can generate a compact
group is if it acts trivially. There are several variations and generalizations
of these groups. There is a Heisenberg group of dimension 2n+ 1 for any
positive integer n associated to a symplectic form of dimension 2n. We
can also define Heisenberg groups over finite fields in a similar way.

Exercise 97 Show that over a finite field of prime order p for p odd, every
element of the Heisenberg group has order 1 or p, and the exponential map
is a bijection. What happens over the field of order 2?

The universal enveloping algebra of the Heisenberg algebra becomes the
ring of polynomials in x and d/dx if we take a quotient by identifying the
center of the Heisenberg algebra with the real numbers. This gives a rep-
resentation of the Lie algebra on the ring of polynomials, with the center
acting as scalars. The center of this Lie algebra cannot make up its mind
whether it is semisimple or nilpotent: in finite dimensional representations
it acts nilpotently, but in the infinite dimensional representations we have
described its acts semisimply.

• A is not nilpotent and not semisimple. Both eigenvalues must be the
same, and we can normalize A so they are both 1. So we can assume A is(

1 1
0 1

)
. (Bianchi type IV)

Exercise 98 Show that there is a unique connected Lie group with this
Lie algebra, and represent it by 3 by 3 upper triangular matrices. Find
the conjugacy classes of this group that are in the 2-dimensional derived
subalgebra, and sketch a picture of them, paying careful attention to what
happens near the origin (the answer may be slightly stranger than you
expect).

• A is semisimple, nonzero, with one eigenvector zero. The Lie algebra is the
product of the 1-dimensional abelian Lie algebra with the 2-dimensional
non-abelian Lie algebra (Bianchi type III). There are two corresponding
Lie groups.
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• A is semisimple, nonzero, with real non-zero eigenvectors (Bianchi type
VI if the eigenvalues are distinct, type V if they are the same). Here
we get an uncountable infinite family of distinct Lie algebras, as we can
change the smallest eigenvalue to anything we want, but then the second
is determined. There is only one connected group for each of these Lie
algebras. If the eigenvalues have sum 0 the Lie algebra has an extra
symmetry (Bianchi type V I0) This is the Lie algebra of isometries of 2-
dimensional Minkowski space. This also appears as the group of one of the
8 Thurston geometries, giving the solv manifolds. For example one can
take a quotient of this group by a cocompact discrete subgroup. Some of
these manifolds are the mapping cylinder of an Anosov map of the 2-torus
(given by an integral matrix A with distinct real nonzero eigenvectors
whose product is 1).

Exercise 99 Find an example of an Anosov map. Show how to construct
a cocompact discrete subgroup of the Bianchi group V I0 from any Anosov
map.

Exercise 100 Show that the outer automorphism group of this connected
Lie group is dihedral of order 8. (Some elements correspond to time re-
versal, parity reversal, and changing the sign of the metric of Minkowski
space.)

When the eigenvalues are the same the group consists of translations and
dilations of the plane.

• A is semisimple, nonzero, with non-real eigenvectors. Bianchi type VII.
Again we get an infinite family of Lie algebras. The simply connected
group has trivial center except for the following special case (Bianchi type
V II0): this is the one with imaginary eigenvalues, and is the Lie algebra
of isometries of the plane. It has an extra symmetry. There is an obvious
connected group with this Lie algebra: we can take orientation-preserving
isometries of the plane. However this group is not simply connected, as it
has homotopy type the circle, so we can also take its universal cover, or
the cover of any order 1, 2, 3, . . .. We came across this group earlier as a
solvable connected Lie group whose exponential map is not surjective.

Exercise 101 Show that the real Lie algebras of type V I0 and V II0 are
not isomorphic, but become isomorphic when tensored with the complex
numbers.

The remaining cases are whereG is not solvable, in which case it must be sim-
ple as all groups of smaller dimension are solvable. (Similarly the non-solvable
finite group of smallest order is necessarily simple.) We will postpone the classi-
fication of these as this will be easier when we have developed more theory, and
just state the result. There are 2 possible Lie algebras, su(2) (Bianchi type IX)
and sl2(R) (Bianchi type VIII). The first has simply connected group SU(2)
with center of order 2, so we get two possible Lie groups (one is SO3(R)). For
the other there are two obvious groups SL2(R) and the quotient by its center
PSL2(R). However there are infinitely many other groups because SL2(R) is
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not simply connected: its fundamental group is Z so we can take its universal
cover (which also has fundamental group Z) and quotient out by any subgroup
of Z. These covers have no faithful finite dimensional representations. The
double cover of SL2(Z) appears in the theory of modular forms of half-integral
weight and it called the metaplectic group. It has a representation called he
metaplectic representation that we will construct later in the course. The other
covers of PSL2(R) do not seem to appear very often.

The two Lie algebras have the same complexification. This means that the
corresponding real Lie algebras or groups are closely related: for example, the
finite dimensional complex representation theory of su(2) is essentially the same
as that of sl2(R). However in some ways they are quite different: for example,
the irreducible unitary representations of SU(2) are all finite dimensional, while
the non-trivial irreducible unitary representations of SL2(R) are all infinite di-
mensional.

Exercise 102 Show that the groups SU(1, 1), SL2(R), Sp2(R) (symplectic
group), SO1,2(R) all have the same Lie algebra. Which of the groups are iso-
morphic?

Exercise 103 The 3-dimensional group of orientation-preserving isometries of
2-dimensional hyperbolic space is one of the groups above. Which one? (One
way is to identify hyperbolic space with one of the components of norm 1 vectors
in R1,2.)

Exercise 104 Identify the 3-dimensional group of Moebius transformations
(invertible conformal transformations of the unit disk in the complex plane)
with one of the groups on the list above.

Exercise 105 Show that R3 with the usual cross-product of vectors is a Lie
algebra, and identify it with one of the Bianchi Lie algebras.

Exercise 106 Identify the 3-dimensional Lie algebras of matrices of the forms0 0 0
a b c
0 0 0

 ,

c 0 c
a 0 b
0 0 c


with Lie algebras on the list above.

Dimension 4: The classification can be (and has been) pushed beyond di-
mension 3, but becomes rather tiresome. The problem is that, as suggested by
the 3-dimensional case, there are huge numbers of rather uninteresting solvable
groups and Lie algebras, which just seem to form a complicated mess. In higher
dimensions one just gives up on classifying the solvable ones. We will later prove
Levi’s theorem that any finite dimensional Lie algebra is a semidirect product
of a solvable normal Lie algebra with a product of simple Lie algebras, and will
classify the simple ones. So in some sense the finite dimensional Lie algebras
can be classified modulo the solvable ones.

Exercise 107 Classify the complex Lie algebras of dimension at most 3. (The
Bianchi algebras of types VIII and IX become isomorphic when tensored with
the complex numbers.)
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Thurston conjectured (and Perelman proved) that 3-manifolds can be cut
up in a certain way into 3-manifolds with one of 8 geometries. Five of the
eight Thurston geometries in 3 dimensions are the obvious ones: 3-dimensional
flat, spherical or hyperbolic space, or the product of 2-dimensional spherical or
hyperbolic space with a line. The remaining 3 are those modeled on the 3 groups
mentioned above: the nilpotent one, the solvable one related to Minkowski
space, and the universal cover of SL2(R). (Although most of the Thurston
geometries can be modeled as left-invariant metrics on 3-dimensional groups
this is not true for all of them: there is no 3-dimensional group structure on
S2 × R.)

10 Killing form and Cartan’s criterion

At first sight one might guess that solvable groups are easier to classify than
simple ones, and 0-dimensional compact simple groups are easier to classify
than ones of higher dimension. This turns out to be completely wrong: the 0
dimensional compact simple groups are far harder to classify than the ones of
positive dimension, and the solvable ones seem hopelessly complicated. What
is the key reason why the positive dimensional simple Lie groups are so much
easier to handle? One answer is Cartan’s criterion, which implies that the Killing
form on a simple complex Lie algebra (a symmetric invariant bilinear form) is
non-degenerate.

We first figure out what it means for a bilinear form (,) on a representation
V of a Lie algebra to be invariant. For a group G acting on V , invariance
obviously means that (gu, gv) = (u, v). For a Lie algebra, we formally replace g
by 1+εa for some a in the Lie algebra (with ε2 = 0), to find that invariance means
(u, v)+ε([a, u], v)+(u, [a, v]) = (u, v), or in other words ([a, u], v)+(u, [a, v]) = 0.

If the Lie algebra G acts on a finite dimensional vector space V , we can
define a bilinear form on G by (a, b)V = TraceV (ab).

Exercise 108 Show that this form is invariant, which means ([a, b], c)V +(b, [a, c])V =
0.

A particularly important special case is where we take V to be the adjoint
representation of G. In this case the invariant bilinear form on G is called the
Killing form (a, b) = Trace(Ad(a)Ad(b)).

Example 109 The Killing form on any abelian Lie algebra is obviously just
zero. More generally, the Killing form on any nilpotent Lie algebra is identically
zero, as we can put the matrices representing it into strictly upper triangular
form, and the product of any two such matrices has trace 0. This does not mean
that these algebras cannot have non-zero invariant bilinear forms; for example,
any bilinear form on an abelian Lie algebra is invariant.

Exercise 110 Show that the kernel of an invariant symmetric bilinear form
on a Lie algebra is an ideal. In particular if the Lie algebra is simple then
the bilinear form is either zero or non-degenerate. Show that the orthogonal
complement of an ideal is an ideal.
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Exercise 111 Find the Killing form on the 2-dimensional non-abelian Lie al-
gebra, and check that it is degenerate but not identically zero.

Exercise 112 Find the Killing form on the Lie algebra su(2), and check that
it is negative definite.

Exercise 113 Find the Killing form on the Lie algebra sl2(R), and check that
it is non-degenerate and indefinite.

Exercise 114 If L is the complex Lie algebra spanned by W,X, Y, Z with re-
lations [X,Y ] = Z, [W,X] = X, [W,Y ] = −Y,Z ∈ center, find a non-degenerate
invariant symmetric bilinear form on L. Show that the bilinear form associated
to any finite-dimensional representation of L is degenerate (use Lie’s theorem
to put L in upper triangular form).

Theorem 115 (Jordan decomposition) Suppose that a is a linear transforma-
tion of a vector space V over a perfect field k. Then there is a unique way
to write a = as + an where as is semisimple, an is nilpotent, and as and an
commute.

Proof We can assume k is algebraically closed, as uniqueness of the decompo-
sition implies it is fixed by all elements of the absolute Galois group of k, and
therefore in k as k is perfect.

For existence, write V as a direct sum of the generalized eigenspaces Vλ of
a with eigenvalues λ. (Recall that v is a generalized eigenvector for eigenvalue
λ if (a− λ)nv = 0 for some positive integer n.) Then we just put as = λ on Vλ,
an = a− as and it is easy to check that an and as have the required properties.

Uniqueness is left as an exercise. �

Exercise 116 (Jordan decomposition can fail over non-perfect fields) Suppose
that V is the field Fp(x) and k the subfield Fp(x

p). Show that V is a vector
space over k of dimension p, and multiplication by x is a linear transformation
of V that cannot be written as the sum xs + xn of commuting semisimple and
nilpotent endomorphisms.

Exercise 117 (Multiplicative Jordan decomposition) Show that an invertible
linear transformation a acting on a finite dimensional vector space over a perfect
field can be written uniquely as a = asau where as is semisimple and au is
unipotent (all eigenvalues 1) and asau = auas.

Lemma 118 Suppose that M ⊆ gl(V ) is the normalizer of a subspace G of
gl(V ), for a complex vector space V . If a is in the kernel of the form (, )V on
M ×M , then a is nilpotent.

Proof The semisimple part as of a also lies in M because Ad(as) = Ad(a)s.
If b is in M and Ad(c) is a polynomial in Ad(b) then c is also in M .

Suppose that a has eigenvalues αi. Suppose that φ is any additive (possibly
not R-linear) function from the rational vector space spanned by the αi. The
eigenvalues of Ad(a) are αi−αj , so there is a polynomial p such that p(αi−αj) =
φ(αi) − φ(αj), as whenever two of the terms αi − αj are equal, so are the
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corresponding terms φ(αi) − φ(αj) by linearity of φ. So the element c with
eigenvalues φ(αi) is in M because Ad(c) has eigenvalues φ(αi) − φ(αj) so is
p(Ad(a). But then

∑
αiφ(αi) = (a, c) = φ(0) = 0. Taking φ to be complex

conjugation shows that
∑
|αi|2 = 0, so all the αi are zero. So as = 0 and a is

nilpotent. �

A little more effort show that the same result holds over fields of character-
istic 0, but we will not use or prove this.

Theorem 119 Cartan’s criterion for a faithful representation. Suppose that G
is a subalgebra of gl(V ) with (a, b)V = 0 for all a, b ∈ G, where V is a finite
dimensional complex vector space. Then G is solvable.

Proof Let M be the normalizer of G. Then (m, [g1, g2]) = ([m, g1], g2) = 0 for
gi ∈ G, so (M, [G,G]) = 0. By the previous lemma this implies that all elements
of [G,G] are nilpotent. Engel’s theorem then implies that [G,G] is nilpotent, so
G is solvable.

�

Exercise 120 Suppose that G is a subalgebra of gl(V ) where V is a finite
dimensional complex vector space. Show that G is solvable if and only if
(a, b)V = 0 for all a, b ∈ [G,G], (Use Cartan’s criterion above and Lie’s the-
orem.)

Theorem 121 Cartan’s criterion for the Killing form. If G is a finite dimen-
sional Lie algebra over a field of characteristic 0 whose Killing form is 0, then
G is solvable.

Proof We apply Cartan’s criterion for the adjoint representation. There is
a slight glitch because G need not act faithfully on the adjoint representation
because its center acts trivially on G. However this is not a big deal, because we
find that G/center is solvable, which immediately implies that G is also solvable.

�

Cartan’s criterion as stated above does not give a necessary and sufficient
condition for a Lie algebra to be solvable, because the Killing form on a solvable
Lie algebra need not be zero. It is often stated as the following variation, which
does give a necessary and sufficient condition.

Exercise 122 Cartan’s criterion, necessary and sufficient form. If G is a fi-
nite dimensional Lie algebra over a field of characteristic 0, then the following
conditions are equivalent:

• G is solvable

• (a, b) = 0 if a is in [G,G]. In other words [G,G] is in the kernel of the
Killing form.

• (a, b) = 0 if a and b are both in [G,G].

(For one implication use Lie’s theorem, and for another use Cartan’s criterion
and the fact that if [G,G] is solvable then so is G.
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Example 123 A nilpotent Lie algebra has a Killing form that is identically
zero. The converse is not true. Suppose that V is a finite dimensional vector
space with and automorphism A, and we take the Lie algebra G that is a
semidirect product of V with a 1-dimensional Lie algebra whose action on V is
given by A. Then G is nilpotent if and only if A is a nilpotent endomorphism.
The Killing form contains V in its kernel, so vanishes on G × G if (A,A) = 0.
But (A,A) = Trace(A2), so if we take A to be any endomorphism whose square
has trace 0 but is not nilpotent we get a non-nilpotent Lie algebra whose Killing
form vanishes.

Exercise 124 Find a non-nilpotent 2 by 2 real matrix A whose square has
trace 0.

Exercise 125 Show that for the Lie algebra gln(k) with ei the matrix with
just one non-zero entry, a 1 in position i on the diagonal, we have (ei, ej) =
2n − 2 if i = j and −2 if i 6= j. Deduce that the Killing form on sln(k) is 2n
times the symmetric bilinear form associated to the standard representation,
but the Killing form on gln(R) is not a multiple of the form of the standard
representation and has a non-trivial kernel.

Exercise 126 If k is a field of characteristic 2 then the semidirect product
gl2(k).k2 is solvable. The Killing form is not identically zero on its derived
algebra sl2(k).k2.

Exercise 127 Let G be the Lie algebra slp(Fp) of 2 by 2 matrices over the field
of p elements. Show that G is simple if p > 2. Show that the Killing form of
G is identically 0. Show that Trace(AB) is a non-degenerate invariant bilinear
form on G.

Exercise 128 Suppose G is the Lie algebra over a field of characteristic p > 0
with basis ai for i ∈ Z/pZ and bracket [ai, aj ] = (i− j)ai+j . Show that G is a
simple Lie algebra but has no non-zero invariant bilinear form.

Lemma 129 (Dieudonne) Suppose that a finite dimensional Lie algebra over
any field of any characteristic has a non-degenerate bilinear form, and no abelian
ideals. Then it is a direct sum of simple subalgebras.

Proof Fix a minimal ideal M . The derived ideal [M,M ] is contained in M and
cannot be 0 as M is non-abelian, so M = [M,M ] is perfect. The orthogonal
complement N of M is also an ideal as the bilinear form is invariant. It cannot
contain M as otherwise we would have (x,m) = (x,

∑
[ai, bi]) =

∑
([x, ai], bi) =

0 so M would be in the kernel of (, ) which is not possible. So N ∩M = 0 as
it is a proper ideal of the minimal ideal M . So G splits as the direct sum of M
and N , so M is simple, and continuing by induction so is N . �

Exercise 130 Show that if L is a Lie algebra with an invariant symmetric
bilinear form (, ) then L[t]/(tn) has an invariant symmetric bilinear form given
by the coefficient of tn−1 of the bilinear form on L[t]/(tn) with values that are
truncated power series. If the form on L is non-degenerate show that the form
on L[t]/(tn) is also non-degenerate. Find an example of a finite-dimensional
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complex Lie algebra with a non-degenerate symmetric bilinear form that is not
a sum of abelian and simple Lie algebras.

Exercise 131 What is wrong with the following “proof” of the false result that
a finite-dimensional complex Lie algebra L with a non-degenerate symmetric
bilinear form is a sum of abelian and simple Lie algebras: take any ideal of L,
and write L as the sum of the ideal and its orthogonal complement (which is
also an ideal). By repeating this we can write L as a sum of ideals with no
proper subideals, so L is a sum of abelian and simple Lie algebras.

Corollary 132 (Cartan’s criterion for semisimplicity) For a complex Lie alge-
bra G the following conditions are equivalent:

1. G has no nonzero solvable ideals

2. G has no non-zero abelian ideals

3. G has non-degenerate Killing form

4. G is a direct sum of simple Lie algebras (in other words G is semisimple)

Proof If the Killing form is degenerate, then its kernel is an ideal, and is
solvable by one form of Cartan’s criterion. So if the algebra has no nonzero
solvable ideals then the Killing form is non-degenerate. Conversely if the Killing
form is nondegenerate and A is an abelian ideal, then for any a ∈ A and g ∈ G,
Ad(a)Ad(g) has square 0 so has trace 0 and therefore a = 0 as the Killing form
is non-degenerate. So all Abelian ideals are 0,and therefore all solvable ideals
are 0.

We have seen that if the Killing form is non-degenerate then there are no
abelian ideals, so if the Killing form is non-degenerate then by the previous
lemma the Lie algebra is a sum of simple Lie algebras.

If the algebra is a sum of simple subalgebras, it is obvious that it has no
nonzero solvable ideals.

�

11 Cartan subalgebras, Cartan subgroups and
maximal tori

The Lie algebra gln has a subalgebra H of diagonal matrices, and under the ac-
tion of this subalgebra gln splits as the sum of eigenspaces. The zero eigenspace
is just H, while the other eigenspaces just correspond to the off-diagonal entries
of gln. The subalgebra H is an example of a Cartan subalgebra, and we want
to find a similar subalgebra for any Lie algebra. The first guess is to take a
maximal abelian subalgebra, but this does not work: the algebra of matrices

of block form

(
0 A
0 0

)
is abelian but does not act nicely on the rest of the Lie

algebra (and has dimension much larger than that of the diagonal matrices).

Definition 133 A toral subalgebra of a Lie algebra is an abelian subalgebra that
acts semisimply on the adjoint representation.
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Definition 134 A Cartan of a Lie algebra is a self-centralizing nilpotent sub-
algebra. (Self-centralizing means that it contains its centralizer.)

For semisimple Lie algebras, maximal toral subalgebras and Cartan subalgebras
will turn out to be the same. In general it is really the maximal toral subalgebras
that are important. It seems to be a historical accident that Cartan subalgebras
have this rather unintuitive definition. The properties of being nilpotent or self
normalizing are not really that important or easy to use. The really impor-
tant property is the semisimplicity, which means that one can decompose the
(complex) Lie algebra into eigenspaces.

Exercise 135 Find maximal toral subalgebras for the algebra of all matrices,
the algebra of upper triangular matrices, and the algebra of strictly upper tri-
angular matrices (0’s on the diagonal).

Theorem 136 The centralizer of a toral subalgebra of G is a Cartan subalgebra
is self normalizing.

Proof
Take any abelian subalgebra H of the Lie algebra G, and decompose G into a

direct sum of generalized eigenspace of H (acting on G by the adjoint represen-
tation). The eigenvalues are elements of the dual of H. If Gλ is the generalized
eigenspace for some eigenvalue λ, then [Gλ, Gµ] ⊆ Gλ+µ. In particular G0 is a
self-normalizing subalgebra of G containing H. If in addition all elements of H
are semisimple, then H lies in the center of G0 as generalized eigenvectors (with
eigenvalue 0) are honest eigenvectors. �

For semisimple Lie algebras we will later see that a maximal toral subalgebra
is its own normalizer (so is a Cartan subalgebra). In general this is not true:

Exercise 137 Show that a subalgebra of a nilpotent Lie algebra is toral if and
only if it is contained in the center. So the center is the unique maximal toral
subalgebra, and its normalizer is the whole algebra.

This exercise is a bit misleading. There is a subtle problem in that the definition
of a maximal toral subgroup of an algebraic group does not quite correspond to
maximal toral subalgebras of the Lie algebra. This is because a toral subgroup
of an algebraic group has elements that are semisimple. In (say) the group of
unipotent upper triangular matrices, the only semisimple element is 1, so the
maximal toral subgroup is trivial. However the maximal toral subalgebra of
its Lie algebra is the center which is not trivial. This is related to the fact
that it is ambiguous whether elements of the center of a Lie algebra or group
should be thought of as semisimple or unipotent/nilpotent. For example, in the
Heisenberg algebra, the center looks nilpotent in finite dimensional (algebraic)
representations, but looks semisimple in its standard infinite dimensional repre-
sentation. The Heisenberg algebra is trying hard to be semisimple in some sense;
in fact it can be thought of as a sort of degeneration of a semisimple algebra.
For semisimple lie algebras or groups this problem does not arise: “maximal
toral” means the same whether one defines it algebraically or analytically.
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Exercise 138 Show that sl2(R) has two maximal toral subalgebras that are
not conjugate under any automorphism. (Take one to correspond to diagonal
matrices, and the other to correspond to a compact group of rotations.)

Theorem 139 If a finite dimensional complex Lie algebra is semisimple, then
the normalizers of the maximal toral subalgebras are abelian

Proof Suppose H is a maximal toral subalgebra, and G0 its normalizer, so that
G0 is nilpotent. Since G0 is solvable it can be put into upper triangular form, so
the Killing form restricted to G0 has [G0, G0] in its kernel. On the other hand,
any invariant bilinear form vanishes on (u, v) if u and v have eigenvalues that
do not sum to 0, so G0 is orthogonal to all other eigenspaces of H. So [G0, G0]
is in the kernel of the Killing form. By Cartan’s criterion, this implies that it
vanishes, so G0 is abelian. �

Remark 140 There is an analogue of Cartan subgroups for finite groups. A
subgroup of a finite group is called a Carter subgroup (not a misprint: these are
named after Roger Carter) if it is nilpotent and self-normalizing. Any solvable
finite group contains Carter subgroups, and any two Carter subgroups of a finite
group are conjugate. However anyone with plans to classify the finite simple
groups by copying the use of Cartan subgroups in the classification of simple
Lie groups should take note of the following exercise:

Exercise 141 Show that the simple group A5 of order 60 does not have any
Carter subgroups.

The analogues of Cartan subgroups for compact Lie groups are maximal
tori. In fact these are the subgroups associated to Cartan subalgebras of the
Lie algebra. Every element of a compact connected Lie group is contained in a
maximal torus, and the maximal tori are all conjugate.

Warning 142 In a compact connected Lie group, maximal tori are maximal
abelian subgroups, but the converse is false in general: maximal abelian sub-
groups of a compact connected Lie group are not necessarily maximal tori. This
is a common mistake. In particular, although every element is contained in a
torus, it need not be true that every abelian subgroup is contained in a torus.

Exercise 143 Show that the subgroup of diagonal matrices of SOn(R) for n ≥
3 is a maximal abelian subgroup but is not contained in any torus.

12 Unitary and general linear groups

The fundamental example of a Lie group is the general linear group GLn(R).
There are several closely related variations of this:

• The complex general linear group GLn(C)

• The unitary group Un

• The special linear groups or special unitary groups, where one restricts to
matrices of determinant 1
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• The projective linear groups, where one quotients out by the center (di-
agonal matrices)

Exercise 144 Show that the complex Lie algebras gln(R) ⊗ C, gln(C), and
un(R)⊗ C are all isomorphic. We say that gln(R) and un(R) are real forms of
gln(C).

The general linear group has a rather obvious representation on n-dimensional
space. Therefore it also acts on the 1-dimensional subspaces of this, in other
words n − 1-dimensional projective space. The center acts trivially, so we get
an action of the projective general linear group PGLn(R) on Pn−1. There is
nothing special about 1-dimensional subspaces: the general linear group also
acts on the Grassmannian G(m,n−m) of m-dimensional subspaces of Rn. The
subgroup fixing one such subspace is the subgroup of block matrices ( ∗ ∗0 ∗ ), so
the Grassmannian is a quotient of these two group.

Exercise 145 Show that the Grassmannian is compact. (This also follows from
the Iwasawa decomposition below).

More generally still, we can let the general linear group act on the flag mani-
folds, consisting of chains of subspaces 0 ⊂ V1 ⊂ V2 · · · , where the subspaces
have given dimensions. The extreme case is when Vi has dimension i, in which
case the subgroup fixing a flag is the Borel subgroup of upper triangular ma-
trices. In general the subgroups fixing flags are called parabolic subgroups; the
corresponding quotient spaces are projective varieties.

The Iwasawa decomposition for the general linear group is G = GLn(R) =
KAN where K = On(R) is a maximal compact subgroup, A is the abelian
subgroup of diagonal matrices with positive coefficients, and N is the unipotent
subgroup of unipotent upper triangular matrices. For the general linear group,
the Iwasawa decomposition is essentially the same as the Gram-Schmidt process
for turning a base into an orthonormal base. This works as follows. Pick any
base a1, a2, . . . of Rn; this is more or less equivalent to picking an an element
of the general linear group. Now we can make the base orthogonal by adding a
linear combination of a1 to a2, then adding a linear combination of a1, a2 to a3,
and so on. This operation corresponds to multiplying the base by an element N
of the unipotent upper triangular matrices. Next we can make the elements of
the base have norm 1 by multiplying them by positive reals. This corresponds
to acting on the base by an element of the subgroup A of diagonal matrices with
positive entries. We end up with an orthonormal base, that corresponds to an
element of the orthogonal group.

Exercise 146 Show that GLn(R) is homeomorphic as a topological space to
K × A×N and deduce that it has the same homotopy type as the orthogonal
group. Show that GL3(R) has a fundamental group of order 2. (The corre-
sponding simply connected group is not algebraic.)

Exercise 147 Show that the average of any positive definite inner product on
Rn under a compact subgroup of GLn(R) is invariant under the compact sub-
group. Deduce that the maximal compact subgroups of GLn(R) are exactly the
subgroups conjugate to the orthogonal group. (A similar statement is true for
all semisimple Lie groups: the maximal compact subgroups are all conjugate.)
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Exercise 148 Show that GLn(C) = KAN where K is the unitary group, A is
the positive diagonal matrices, and N is the upper triangular complex unipotent
matrices. Show that SLn(C) has a similar decomposition with K the special
unitary group. Show that SL2(C) has the same homotopy type as a 3-sphere.

Exercise 149 Show that the unitary group acts transitively on the full flag
manifold of Cn. What is the subgroup of the unitary group fixing a full flag?

The diagonal matrices of GLn(R) form a Cartan subgroup.

Exercise 150 Find two non-isomorphic Cartan subgroups of GL2(R).

We recall that a root space is an eigenspace for a non-zero eigenvalue of a Cartan
subalgebra. For the general linear group the root spaces just correspond to the
off-diagonal matrix entries. If αi is the value of the ith diagonal element of a
matrix, then the roots of GLn(R) are the linear forms αi − αj for i 6= j. For
example the roots system of GL2(R) is two opposite points, the roots system
of GL3(R) is a hexagon, and the root system of GL4(R) is the centers of the
edges of a cube. These root systems are very symmetric, and are acted on by
S2, S3, and S4. This can be seen by identifying the symmetric groups with the
permutation matrices, that normalize the diagonal matrices and therefore act
on the root systems. In general the Weyl group is a quotient N/H where H is a
Cartan subalgebra and N is a group normalizing it; for the general linear group
the group H is the diagonal matrices, the group N is the monomial matrices,
and the Weyl group is the symmetric group.

Warning 151 For the general linear group the Weyl group is a subgroup, but
this is not always true; in general the Weyl group is only a subquotient. For
example, for the group SL2(R), the Weyl group has order 2 and acts on the
diagonal matrices by inversion, but SL2(R) has no element of order 2 acting in
this way (though it does have such an element of order 4).

Exercise 152 Show that the Lie algebra sln(R) is simple for n ≥ 2. (Show that
any ideal must contain an eigenvalue of the Cartan subalgebra, then show that
a non-zero element of a root space leads to a non-zero element of the Cartan
subalgebra, and show that elements of the Cartan subalgebra with 2 distinct
entries lead to elements of root spaces. By repeating these operations show that
the ideal generated by any non-zero eigenvector is the whole Lie algebra.)

Exercise 153 If k is a field of characteristic p dividing n, show that the Lie
algebra sln(k) is not simple. Where does the proof in the previous exercise
break down? Show that the center is 1-dimensional and the quotient psln(k) by
the center is simple unless p = n = 2.

Exercise 154 Most of the time, one expects an algebraic group over some field
to be simple or solvable if and only if the corresponding Lie algebra has the
same property. However there are exceptions to this: show that

• The group PSL2(F2) is solvable, and the Lie algebra psl2(F2) is solvable.

• The group PSL2(F3) is solvable, and the Lie algebra psl2(F3) is simple.
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• The group PSL2(F4) is simple, and the Lie algebra psl2(F4) is solvable.

• The group PSL2(F5) is simple, and the Lie algebra psl2(F5) is simple.

Exercise 155 Show that the general linear group has the Bruhat decomposi-
tion GLn(R) = dwBwB as a disjoint union of double cosets of B, where the
union is over the n! elements w of the Weyl group, and B is the Borel sub-
group of upper triangular matrices. (If g is an element of GLn(R), pick the first
nonzero entry in the bottom row and multiply on the left and right by elements
of B to clear out its row and column. Then pick the first nonzero element on
the next to last row, and carry on like this to get a permutation matrix.)

Exercise 156 Show that the Bruhat decomposition induces a decomposition
of the full flag manifold G/B is the disjoint union of n! affine spaces of various
dimensions. For GL3 show that these dimensions are 0, 1, 1, 2, 2, 3. Use this
to calculate the cohomology groups with compact support of the space of full
flags of C3 if you know what this means.

Example 157 We can calculate the number of elements of GLn(Fq) as follows.
It is equal to the number of bases of Fnq , which is just (qn − 1)(qn − q) · · · (qn −
qn−1). This is fast but does not generalize in any obvious way to other finite
simple groups. A more complicated way to work out the order that does gener-
alize to all other finite groups of Lie type is to use the Bruhat decomposition.
For G = GLn(Fq), the order is |G/B||B| where B is the Borel subgroup of
upper triangular matrices, that has order (q − 1)nq1+2+···+(n−1, and G/B is
the full flag variety. We can work out the number of points in this by using
the Bruhat decomposition to decompose it into a union of n! affine spaces of
various dimensions. For example, for GL3 the affine spaces have dimensions 0,
1, 1, 2, 2, 3, so the flag variety has order q0 + q1 + q1 + q2 + q2 + q3. In general
these exponents are the lengths of the elements of the symmetric group (or Weyl
group) as words in the n − 1 generators (12), (23), (34), . . . (these are not all
transposition, but only the “simple” ones exchanging two adjacent numbers).

From these two examples one can see that there is some sort of relation
between the compactly generated cohomology of GLn(C) and the number of
points of GLn(Fq). This is a special case of the Weil conjectures, which say in
particular that the number of points of a variety over a finite field can be ex-
pressed in terms of the compactly supported etale cohomology groups, which in
turn have the same dimensions as the compactly supported cohomology groups
of the corresponding complex variety. In the case of varieties such as flag man-
ifolds or Grassmannians that can be written as a (set theoretic) finite disjoint
union of affine spaces the Weil conjectures are trivial to check explicitly, as they
just reduce to the case of affine space.

For a semisimple Lie group one can ask what are its “natural” actions on
mathematical objects; of course this is a rather vague question. We have seen
one answer above: the general linear group acts naturally on projective spaces,
Grassmannians, and flag manifolds. These are quotients by parabolic subgroups.
Another class of objects acted on by semisimple Lie groups are the symmet-
ric spaces. Symmetric spaces are generalizations of spherical and hyperbolic
geometry. Their definition looks a little strange at first: they are connected
Riemannian manifolds such that at each point there is an automorphism acting
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as −1 on the tangent space. Obvious examples are Euclidean space (curvature
0), spheres (positive curvature) and hyperbolic space (negative curvature), and
in general symmetric spaces should be thought of as generalizations of these
three fundamental geometries. (They account for many of the “natural” geome-
tries but not for all of them: for example, 5 or the 8 Thurston geometries in
3 dimensions are symmetric spaces, but 3 of them are not.) We may as well
assume that they are simply connected (by taking a universal cover) and irre-
ducible (not the products of things of smaller dimension). These were classified
by Cartan. The first major division is into those of positive, zero, or negative
curvature. The only example of zero curvature is the real line. Cartan showed
that irreducible simply connected symmetric spaces of negative curvature cor-
respond to the non-compact simple Lie groups: the symmetric space is just the
Lie group modulo its maximal compact subgroup. He also showed that the ones
of positive curvature correspond to the ones of negative curvature by a duality
extending the duality between spherical and hyperbolic geometry. We will look
at some examples of symmetric spaces related to general linear groups.

We first examine the symmetric space of the general linear group GLn(R)
(which is neither semisimple nor simply connected, but never mind). We saw
above that the maximal compact subgroup is the orthogonal group. The sym-
metric space GLn(R)/On(R) is the space of all positive definite symmetric bilin-
ear forms on Rn. This is an open convex cone in Rn(n+1)/2, and is an example
of a homogeneous cone. (In dimensions 3 and above it is quite rare for open
convex cones to be homogeneous). A minor variation is to replace the general
linear group by the special linear group, when the symmetric space becomes
positive definite symmetric bilinear forms of discriminant 1.

Exercise 158 Find a similar description of the symmetric space of GLn(C).

Let us look at the case n = 2 in more detail. In this case the space SL2(R)/SO2(R)
can be identified with the upper half plane, as SL2(R) acts on this by z 7→
(az + b)/(cz + d) and SO2(R) is the subgroup fixing i. This symmetric space
has a complex structure preserved by the group, so is called a Hermitian sym-
metric space. This means that we can construct lots of Riemann surfaces by
taking the quotient of the upper half plane by a Fuchsian group (a discrete
subgroup of SL2(R), such as SL2Z)). In fact any Riemann surface of negative
Euler characteristic can be constructed like this: this gives all of them except
for the Riemann sphere with at most 2 points removed or an elliptic curve. The
symmetric spaces of other real general linear or special linear groups do not
have complex structures; one reason SL2(R) does is that SL2(R) happens to be
Sp2(R), and we will see later that Sp2n(R) has a Hermitian symmetric space.
We can spot plausible candidates for Hermitian symmetric spaces as follows: for
a Hermitian symmetric space, we can fix some point x and act on its tangent
space by multiplying by complex numbers of absolute value 1. This gives a sub-
group in the center of the subgroup K fixing x isomorphic to the circle group.
This shows that we should look out for Hermitian symmetric space structures
whenever the maximal compact subgroup has an S1 factor.

The upper half plane is also a model of the hyperbolic plane. This does not
generalize to SLn(R) either: the group PSL2(R) happens to be isomorphic to
PSO+(1,2(R), and it is the groups O1,n rather than SLn that correspond to
hyperbolic spaces, as we will see when we discuss orthogonal group later on.
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Exercise 159 Polar coordinates for symmetric spaces: Show that GLn(R) =
KAK where K = On(R) is the maximal compact subgroup and A is the group
of positive diagonal matrices. Show that the element of A in this decomposition
need not be uniquely determined, but is uniquely determined up to conjugation
by an element of the Weyl group. Find a geometric interpretation of the entries
of A in terms of the image of the unit ball under an element of GLn(R).

The Cartan decomposition of the Lie algebra g = sln(R) is g = k+ p, where
k is the subalgebra of orthogonal matrices, and p is the orthogonal complement
of k under the Killing form, so is the subspace of symmetric matrices of trace
0. Warning:p is not a subalgebra! There are the +1 and −1 eigenspaces of the
Cartan involution θ.

Exercise 160 Show that the exponential map is an isomorphism from p to
its image P in G, and can be identified with the symmetric space of G. In
particular this shows that the symmetric space is contractible. For the special
linear group this is easy to see directly by identifying the symmetric space with
positive definite symmetric forms of determinant 1, but the argument using the
exponential map works for all semisimple Lie groups.

Now we look at the symmetric space of SL2(C). This turns out slightly
surprisingly to be 3-dimensional hyperbolic space. This means that one can
construct lots of hyperbolic 3-manifolds and orbifolds by taking a Kleinian group
(a discrete subgroup of SL2(C), such as SL2(Z[i]), and taking the quotient
of hyperbolic space by this subgroup. To see that its symmetric space is 3-
dimensional hyperbolic space we first construct a homomorphism from SL2(C)
to O1,3(R) as follows. The group SL2(C) acts on the space of hermitian matrices
x by g(x) = gxgt and preserves the determinant of x. However the determinant
on 2 by 2 hermitian matrices is a quadratic form of signature (1, 3) so we get
a homomorphism from SL2(C) to O1,3(R). Now the group O1,3(R) acts on
the norm 1 vectors of R1,3, which form two components, each isometric to
3-dimensional hyperbolic space. The subgroup of O1,3(R) fixing a point of
hyperbolic space is a maximal compact subgroup O1(R)×O3(R).

The group O1,3(R) is the Lorentz group of special relativity, and the local
isomorphism with SL2(C) is used a lot: for example the 2-dimensional rep-
resentation of SL2(C) and its complex conjugate are essentially the half-spin
representations of a double cover of SO1,3(R). In special relativity the symmet-
ric space appears as the possible values of the momentum of a massive particle.

(Notice by the way that whether a symmetric space has a complex structure
has little to do with whether its group has one: the symmetric space of SL2(R)
has a complex structure, but that of SL2(C) does not.)

There are several other symmetric spaces related to the general linear group.
Recall that the group GLn(R) is not the only real form of GLn(C); the group
Un(R) of elements preserving the Hermitian form z1z1 + · · · . is also a real
form. There is no particular reason why we should restrict to positive definite
Hermitian forms: we can also form the group Um,n(R) fixing a Hermitian form
on Cm+n of signature (m,n). A maximal compact subgroup of this is U(m)×
U(n). Even if we restrict to elements of determinant 1 this still has an S1 factor,
at least at the Lie algebra level, so we expect the corresponding symmetric spaces
to have complex structures.
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Exercise 161 Show directly that the symmetric space of Um,n(R) is hermitian,
by identifying it with the open subspace of the Grassmannian Gm,n(C) consist-
ing of the m-dimensional subspaces on which the Hermitian form is positive
definite.

Exercise 162 Show that the symmetric space of U1,n(R) can be identified with
the unit ball in Cn as follows: an element of the Grassmannian represented by
the point z0, z1, . . . , zn is mapped to the point (z1/z0, . . . , zn/z0) of the open
unit ball in Cn. Show that for n = 1 this is essentially the group of Moebius
transformations acting on the unit disk of the complex plane.

In particular the open unit ball in Cn is a bounded homogeneous domain: a
bounded open subset of complex affine space such that its group of automor-
phisms acts transitively. (It is not quite trivial to see that there are any exam-
ples of these: the group of affine transformations of Cn does not act transitively
on points of a bounded homogeneous domain!) In 1-dimension the Riemann
mapping theorem implies that any simply connected bounded open subset of
the complex plane is homogeneous, but in higher dimensions homogeneous do-
mains are quite rare. The non-compact Hermitian symmetric spaces give exam-
ples, and for several decades it was an open problem to find any others. This
was finally solved by Piatetski-Shapiro in 1959, who found an example of a 4-
dimensional homogeneous bounded domain that was not a Hermitian symmetric
space.

So far we have seen lots of examples of noncompact symmetric spaces, con-
structed as G/K where K is a maximal compact subgroup of G. This construc-
tion just gives the trivial 1-point space for G compact, so we need a different
way of constructing compact symmetric spaces, such as spheres. Cartan discov-
ered a duality between compact and non-compact irreducible symmetric spaces:
roughly speaking, for each non-compact symmetric space there is a correspond-
ing compact on (ignoring minor problems about abelian factors and connected-
ness). A well known special case of this is the duality between spherical and
hyperbolic geometry (or even the duality between trigonometric functions and
hyperbolic ones). This duality works as follows. Pick a non-compact symmetric
space and look at the Cartan decomposition k+p of its Lie algebra. Now change
this to the Lie algebra k+ip ⊂ g⊗C. Cartan showed that this is the Lie algebra
of a compact group, and the quotient of this group by the subgroup K is the
dual compact symmetric space. Let us find the dual compact symmetric spaces
of some of the symmetric spaces above.

Example 163 The symmetric space of GLn(R) is GLn(R)/On(R). To find the
compact dual, we first look at the Cartan decomposition gln(R) = k+ p, where
k is the Lie algebra of skew symmetric matrices, and p is the space of symmetric
matrices. Then we form the Lie algebra k + ip. This is the Lie algebra of skew
Hermitian matrices, so its Lie group is the unitary group. So the symmetric
space should be U(n)/On(R). This is the set of real forms on Cn that are
compatible with the Hermitian metric (in other words complex conjugation is
an isometry).

Example 164 The symmetric space of Um,n(R) is Um,n(R)/U(m) × U(n).
Changing Um,n(R) to its compact form gives U(m+n). So the compact form of

56



the symmetric space is U(m+n)/U(m)×U(n), in other words the Grassmannian
Gm,n(C).

Exercise 165 Show that the compact symmetric space dual to the symmetric
space of GLn(C) (the positive definite Hermitian forms) is the unitary group
Un. (Similarly all simply connected compact groups are symmetric spaces, and
are the duals of the symmetric spaces of complex Lie groups.)

We can also consider infinite dimensional unitary groups. There are two ob-
vious ways to define the infinite dimensional unitary group: we can either take
the union U(1) ⊂ U(2) ⊂ · · · , or we can take the group of all unitary automor-
phisms of an infinite dimensional Hilbert space. It is somewhat surprising (at
least to me) that these two groups re quite different. For example, the group of
all unitary operators is contractible, while the union of the finite dimensional
unitary groups has a complicated topology: its cohomology ring has generators
of degrees 1, 3, 5, ... and its odd-dimensional homotopy groups are all Z by
Bott periodicity. For example, if one wants to use the classifying space of the
infinite-dimensional unitary group in K-theory, one needs to be careful to use
the correct version of this group.

Exercise 166 Show that the union of the finite dimensional unitary groups
has a determinant homomorphism onto the circle group, while the group of all
unitary operators is perfect.

12.1 Noncommutative determinants

We would like to define an analogue of the special linear group over the quater-
nions. The general linear group GLn(H) over the quaternions does not have
a determinant map to H, but has one to R. More generally the general linear
group over any division algebra D has a determinant map to the abelianization
of D∗, called the Dieudonne determinant. This can be constructed as follows.

Take any matrix in GLn(D) and look at the first column.(
λ1 · · ·
λ2 · · ·

)
Pick some row whose first element λi is nonzero. Then make other entries of
the first column zero by subtracting multiples of row i from it. Then defined
the determinant to be (−1)i−1λi times the determinant of the matrix formed
by eliminating the first column and row i.

We claim that this is a well defined homomorphism to the abelianization
D∗/[D∗, D∗].

The key point is to prove that this is a well defined element, in other words
independent of which row we pick. To simplify notation, we will just do this
for rows 1 and 2, so suppose λ1 and λ2 are both nonzero. Then calculating the
determinant using these two rows gives the two answers

λ1 × det

row2− λ2λ
−1
1 row1

row3− λ3λ
−1
1 row1

...
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and

λ1 × det

row1− λ1λ
−1
2 row2

row3− λ3λ
−1
2 row2

...


The first matrix can be transformed into the second by multiplying the first row
by −λ1λ

−1
2 then subtracting multiples of the first row from the others. So by

induction their determinants differ by a factor of −λ1λ
−1
2 . This implies that we

get the same answer whether we use the first or the second row.
It is now easy to check that the determinant is invariant under elementary

row operators, and is multiplied by λ if a row is multiplied by λ. Since these
operations generate GLn(D) the determinant is multiplicative.

Warning 167 The Dieudonne determinant of
(
a b
c d

)
is not in general given

by ad − bc (this is Cayley’s definition of the determinant for non-commutative
rings). For example,

(
i 1
k j

)
is invertible, but ij − k1 = 0. The correct formula

(for a invertible) is ad− aca−1b.

Exercise 168 If T is an n× n quaternionic matrix, it can be interpreted as a
4n×4n real matrix. Show that its determinant as a real matrix is the 4th power
of the Dieudonne determinant. How are these related to the Study determinant,
defined by regarding T as a 2n× 2n complex matrix?

13 Orthogonal groups

Orthogonal groups are the groups preserving a non-degenerate quadratic form
on a vector space. Over the complex numbers there is essentially only one such
form on a finite dimensional vector space, so we get the complex orthogonal
groups On(C) of complex dimension n(n− 1)/2, whose Lie algebra is the skew
symmetric matrices. Over the real numbers there are several different forms. By
Sylvester’s law of inertia the real nondegenerate quadratic forms are determined
by their dimension and signature, so we get groups Om,n(R) preserving the
form x2

1 + · · ·x2
m − x2

m+1 − · · · − x + m+ n2. If the form is positive definite
the corresponding group is compact. We have the usual variations: special
orthogonal groups SO of elements of determinant 1, and projective orthogonal
groups where we quotient out by the center±1. There are also orthogonal groups
over other fields and rings corresponding to quadratic forms, whose classification
over the rationals or number fields or the integers is a central part of number
theory. For example, the Leech lattice Λ is a 24-dimensional quadratic form
over the integers, and the corresponding orthogonal group OΛ(Z) is a double
cover of the largest Conway sporadic simple group.

We first look at a few small cases.
Dimension 0 and 1 there is not much to say: the orthogonal groups have

orders 1 and 2. They are counterexamples to a surprisingly large number of
published theorems whose authors forgot to exclude these cases.

Dimension 2: The special orthogonal group SO2(R) is the circle group S1

and is isomorphic to the complex numbers of absolute value 1. To make things
more interesting we will look at it over the rationals, in other words looks at the
group SO2(Q). The elements of this group can be identified with Pythagorean

58



triangles: integer solutions of x2 + y2 = z2 with no common factor and z > 0
(corresponding to the point x/z, y/z) ∈ SO2(Q)).

Exercise 169 Show that the points can be parametrized by t ∈ Q sup∞ by
drawing the line through (−1, 0) and (x/z, y/z) and taking the intersection
(1, t) of this with the line (1, ∗). What is the rational number t corresponding
to 32 + 42 = 52? Find the Pythagorean triangle corresponding to the square of
the group element corresponding to the (3, 4, 5) triangle.

Exercise 170 Show that under the action of SO2(C), the space C2 splits as the
sum of two 1-dimensional representations. What well-known group is SO2(C)
isomorphic to, and what are the two corresponding 1-dimensional representa-
tions of this group?

Dimension 3: We have a compact group O3(R), a complex group O3(C),
and another group O2,1(R) to investigate. We say earlier that O2,1(R) is locally
isomorphic to SL2(R).

Exercise 171 Show that O3(C) is locally isomorphic to SL2(C). (Hint: over
C the forms x2 + y2 + z2 and x2 + y2 − z2 are equivalent!)

The quaternions are a useful way to describe the compact group SO3(R) in
detail. Recall that the quaternions are a 4-dimensional division algebra over
the reals with a basis 1, i, j, k and products i2 = j2 = k2 = −1, ij = −ji = k,
jk = −kj = i, ki = −ik = j. The conjugation is defined by a+ bi+ cj + dk =
a−bi−cj−dk and the norm is defined by N(q) = qq = a2+b2+c2+d2. Since this
is real, any non-zero quaternion has an inverse q/N(q). The unit quaternions
q = a + bi + cj + dk with N(q) = qq = a2 + b2 + c2 + d2 = 1 form a group
homeomorphic to the sphere S3. This is almost the same as the orthogonal
group SO3(R. To see this consider the adjoint action γ(v) = γvγ−1 of the
unit quaternions S3 on R3, identified with the space of imaginary quaternions.
This preserves norms and is therefore a rotation, so we get a homomorphism
S3 7→ SO3(R).

Exercise 172 Show that this homomorphism is onto, and has kernel of order
2 given by {1,−1}.

This gives a fast way to multiply two rotations, since multiplying two quater-
nions takes fewer operations that multiplying two 3 by 3 matrices.

Exercise 173 The quaternions contain a copy of the complex numbers a + bi
so can be thought of as a 2-dimensional right vector space over the complex
numbers. Show that under this identification, the group S3 of unit quaternions,
acting by left multiplication on H = C2, is identified with the group SU2.

Dimension 4. Here there are 3 real orthogonal groups O4(R), O3,1(R), and
O2,2(R) to look at. We saw earlier that O3,1(R) is locally isomorphic to SL2(C),
so we will mostly ignore it.

We can also use quaternions to do the next case SO4(R). To do this, be
observe that both left multiplication x 7→ γx and right multiplication x 7→

59



xγ by unit quaternions γ preserve the norm and therefore give rotations of 4-
dimensional space (identified with the quaternions). So we get a homomorphism
S3 × S3 7→ SO4(R), taking (γ, δ) ∈ S3 × S3 to the rotation x 7→ γxδ−1.

Exercise 174 Check that this is a homomorphism onto SO4(R) with kernel
(−1,−1).

The group SO2,2(R), or rather a double cover of it, has a similar splitting.
To see this we think of R4 as the 2 by 2 matrices, with the determinant as a
quadratic form of signature (2,2). Then left and right multiplication by elements
of SL2(R) preserve this form, so we get a homomorphism from SL2(R)×SL2(R)
to O2,2(R) with kernel of order 2. We get a similar splitting of the double cover
of O4(C).

Notice that the Lie algebras of O4(R), O3,1(R), and O2,2(R) are all real forms
of O4(C), but the first and third split as a product of 2 smaller Lie algebras,
while the middle one is a simple Lie algebra.

Dimension 5: Orthogonal groups in dimension 5 are sometimes locally iso-
morphic to symplectic group; we will discuss this later when we cover symplectic
groups.

Dimension 6. The orthogonal group O6(C) is locally isomorphic to SL4(C).
To see this take the alternating square Λ2(C4). This is acted on by SL4(C) with
kernel ±1, and there is a symmetric bilinear form from Λ2(C4) × Λ2(C4) 7→
Λ4(C4). But Λ4(C4) can be identified with C in a way that is preserved by
SL4(C), as this identification is essentially a determinant. So we get a homo-
morphism from SL4(C) to SO6(C) with kernel ±1.

Exercise 175 Similarly the group SL4(R) is locally isomorphic to one of the
groups SO6(R), SO5,1, SO4,2(R), or SO3,3(R); which?

Now we will look at some of the symmetric spaces associated to orthogonal
groups, which can be thought of as the most natural things they act on. A max-
imal compact subgroup of Om,n(R) is Om(R) × On(R). The symmetric space
is easy to identify explicitly: the orthogonal group Om,n(R) acts on Rm+n, and
the maximal compact subgroup Om(R)×On(R) is just the subgroup fixing the
positive definite subspace Rm. So the symmetric space is just the Grassmannian
of maximal positive definite subspaces of Rm+n (an open subset of the Grass-
mannian of all m-dimensional subspaces). For small values of m or n this can
be described in other ways as follows.

Example 176 The orthogonal group On+1(R) is the group of isometries of
the n sphere, so the projective orthogonal group POn+1(R) is the group of
isometries of elliptic geometry (real projective space) which can be obtained
from a sphere by identifying antipodal points. (Recall that P means quotient
out by the center, of order 2 in this case.) We will show that the group of
isometries of hyperbolic geometry can be described in a similar way.

We construct a model of hyperbolic geometry. Take the indefinite space
R1,n(R) with quadratic form x2

1 − x2
2 − x2

3 − · · · . Then the norm 1 vectors
form a 2-sheeted hyperboloid, and on this hyperboloid the pseudo-Riemannian
metric of R1,n(R) restricts to a Riemannian metric. Then one of these sheets
forms a model of hyperbolic space. So just as in the elliptic case, the group
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of isometries is PO1,n(R). In the indefinite case the orthogonal group O1,n(R)
splits as a product of the center {1,−1} of order 2 and its index 2 subgroup
group O1,n(R)+ of elements that fix the two components of the hyperboloid
(these are the elements of spinor norm equal to the determinant).

Exercise 177 In R1,n there are two sorts of reflection, because we can reflect
in the hyperplanes orthogonal to either positive or negative norm vectors. What
two sorts of isometries of hyperbolic space do these correspond to?

The symmetric spaces of Om,n(R) for m (or n) equal to 2 also have a special
property. In this case the maximal compact subgroup has a factor of O2(R)
which is almost the circle group S1, which strongly suggests that this symmetric
space should be Hermitian. To see this we identify the symmetric space with an
open subset of a complex quadric as follows. The quadric is the set of points ω of
the projective space PC2,n such that (ω, ω) = 0. The open subset is the points
with (ω, ω) > 0. If ω is represented by x + iy then x2 = y2 > 0 and (x, y) = 0
so x and y form an orthogonal base for a positive definite subspace of R2,n.
Changing ω by a complex scalar does not change this 2-dimensional subspace
(though it changes the basis of course). So this identifies the symmetric space
with an open subset of a complex variety in a natural way. These symmetric
spaces turn up quite often in moduli space problems: as a typical example, the
moduli space of marked Enriques surfaces is the symmetric space of O2,10(R)
with a codimension 1 complex submanifold removed.

Exercise 178 Show that this symmetric space can also be identifies with the
points of C1,n−1 whose imaginary part lies in the interior of one of the two
cones of R1,n−1. This gives a representation of the symmetric space as a “tube
domain”, generalizing the upper half plane.

Now we will work out the roots of orthogonal groups. We first find a Cartan
subgroup of On(R). For example, we can take the group generated by rotations
in n/2 or (n − 1)/2 orthogonal planes. The problem is that this is rather
a mess as it is not diagonal (“split”). So let’s start again, this time using
the quadratic form x1x2 + x3x4 + · · · + x2m−1 + x2m. This time a Cartan
subalgebra is easier to describe: one consists of the diagonal matrices with
entries a1, 1/a1, a2, 1/a2, . . .. The corresponding Cartan subalgebra consists of
diagonal matrices with entries α1,−α1, α2,−α2, . . .. Now let’s find the roots,
in other words the eigenvalues of the adjoint representation. The Lie algebra
consists of matricesA withAJ = −JAt, or in other wordsAJ is skew symmetric,
where J is the matrix of the quadratic form, which in this case has blocks of
( 0 1

1 0 ) down the diagonal. For m = 2 the elements of the Lie algebra are
α1 0 a b
0 −α1 c d
−d −b α2 0
−c −a 0 −α2


so the roots corresponding to the entries a, b, c, d are α1 − α2, α1 + α2,

−α1 − α2,−α1 + α2, so are just ±α1 ± α2. (Notice that in this case the roots
split into two orthogonal pairs, corresponding to the fact that so4(C) is a product
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of two copies of sl2(C).) Similarly for arbitrary m the roots are ±αi±αj . This
roots system is called Dm.

Now we find the Weyl group. This consists of reflections in the roots. Such
a reflection exchanges two coordinates, and possible changes the sign of both
coordinates. So the Weyl group consist of linear transformations that permute
the coordinates and then flip the signs of an even number of them, so has order
2m−1.m!

We will now use the root systems of orthogonal groups to explain most of
the local isomorphisms and splittings we observed in low dimensions.

We first the root system to explain why orthogonal groups in 4 dimensions
tend to split. Obviously the root system of a product of 2 Lie algebras is the
orthogonal direct sum of their root systems. The root system of O4(C) happens
to be a union of 2 orthogonal pairs ±(α1 +α2) and ±(α1−α2), each of which is
essentially the roots system of SL2(C), so we expect its Lie algebra to split. We
should also explain why some orthogonal Lie algebras in 4 dimensions such as
o3,1(R) do not split. For this, we look at the action of the Galois group of C/R,
in other words complex conjugation, on the roots. For a complex Lie algebra the
roots lie in its dual. For a real lie algebra the roots need not lie in its dual: in
general they are in the complexification of its dual, and in particular are acted on
by complex conjugation. (For algebraic groups over more general fields such as
the rationals we also get actions of the Galois group on the roots.) For the split
case o2,2 this action is trivial, for the compact group o4,0 the action takes each
root to its negative, while for o3,1 the Galois group flips the two orthogonal pairs
of roots. If the Lie algebra splits as a product then the roots system is a union
of orthogonal subsystems invariant under complex conjugation, so the reason
o3,1(R) does not split is that the decomposition of the root system into two
orthogonal pairs cannot be done in a way invariant under complex conjugation.

Exercise 179 For orthogonal groups of odd dimensional spaces, use the quadratic
form x2

0 + x1x2 + x3x4 + · · ·+ x2m−1 + x2m. Show that the roots are ±αi ± αj
and ±αi. This root system is called Bm. Show that the Weyl group generated
by the reflections of roots has order 2m.m!, and is generated by permutations
and sign changes of the coordinates.

This explains why SL2(C) and SO3(C) are locally isomorphic: they have
essentially the same root system consisting of two roots of sum 0.

Exercise 180 Check directly that the root systems A3 of SL4(C) and D3 of
O6(C) are isomorphic (in other words find an isometry between the vector spaces
they generate mapping the first roots system onto the second).

We will later see that SL5(C) and Sp4(C) also have the same root system,
explaining why they are locally isomorphic.

Now we find the automorphism groups of these root systems Bn and Dn.
For Bm this is easy: the roots fall into m orthogonal pairs, so we can permute

the m pairs and swap the elements of each pair. this gives an automorphism
group 2m.m!, which is the same as the Weyl group.

For Dm the Weyl group is not the full automorphism group, because the
Weyl group 2m−1.m! can only change the sign of an even number of coordinates,
but we can also swap the signs of an odd number of coordinates to get a group
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2m.m!. In particular the root system has an automorphism of order 2 not in the
Weyl group. This corresponds to an outer automorphism of the group SO2m(C),
given by any determinant −1 automorphism of O2m(C).

Exercise 181 Why does this only apply for orthogonal groups in even dimen-
sions; in other words why do the determinant −1 elements of O2m+1(C) not
give outer automorphisms of SO2m+1(C)?

Are there any more automorphisms? The lattice Dm (meaning the lattice gen-
erated by the roots) is a lattice of determinant 4 contained in the lattice Bm of
determinant 1. If we can show that Bm is unique in some way then this will show
that the automorphism group of Dm acts on Bm, so is the automorphism group
of Bm. So let’s look at the possible integral lattices containing D4. Any such
lattices must be contained in the dual of D4, which consists of 4 cosets of D4:
all vectors have integral coordinates, or they all have half-integral coordinates.
The Bm lattice is formed by taking Dm and adding the coset with integral co-
ordinates whose sum is odd. So we look at the other two cosets, whose minimal
norm vectors are (±1/2,±1/2, ..., ) with sum either even or odd. The minimal
norm is m/4, while the minimal norm of the coset used for Bm is 1. So there are
no extra automorphisms unless possibly m/4 = 1, in other words m = 4. In this
case there are indeed extra automorphisms: we need to find an automorphisms
acting nontrivially on these cosets, and we can find such automorphisms given
by reflections in the vectors (±1/2,±1/2,±1/2,±1/2) which ave norm 1 and
inner product with each element of D4 a half integer, so reflection is indeed an
automorphism of D4.

In fact we can extend the root system D4 ⊂ B4 to a bigger root system
called F4 by adding in these 16 norm 1 roots. We will see later that this is the
root system of an exceptional Lie group. We have essentially worked out the
Weyl group of F4: it is the same as the automorphism group of the root system
D4 and so has order 23.4!.6 = 27.32.

There is another way to extend Dm to a bigger root system. If we put
m = 8 then the vectors (±1/2,±1/2, ..., ) happen to have norm 2, and all norm
2 vectors of an integral lattice are roots (meaning that their reflections act on
the lattice). So if we add one of these cosets to D8 we get an integral lat-
tice E8 with 112 + 27 = 240 vectors of norm 2. In other words the roots
are the vectors (· · · ,±1, · · · ,±1, · · · ) with two non-zero entries and the vec-
tors (±1/2,±1/2, ..., ) with even sum. This root system also corresponds to an
exceptional Lie algebra of dimension 8 + 240 = 248.

Exercise 182 Define the root systems E7 and E6 to be the roots of E8 whose
first 2 or 3 coordinates are equal. Show that E7 has 126 roots and E6 has
72 roots. (These will turn out to correspond to Lie algebras of dimensions
126 + 7 = 133 and 72 + 6 = 78.)

The lattice E8 is the smallest example of a unimodular integral positive
definite lattice that is not a sum of copies of Z. We can form similar unimodular
lattices D+

m from Dm whenever m is divisible by 4; they are even lattices if m
is divisible by 8. However if m > 8 they have the same roots as Dm so do not
give new Lie algebras or root systems.
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The lattice for m = 16 was used by Milnor to give a negative answer the
question “can you hear the shape of a drum”, in other words is a compact Rie-
mannian manifold determined by the spectrum of its Laplacian. The spectrum
of a toroidal drum is given by the number of vectors of various norms of the
corresponding lattice. The lattices E8 +E8 and D+

16 are distinct, and the theory
of modular forms shows that they have the same theta function, in other words
the same number of vectors of every norm, so the corresponding tori are not
isomorphic but have the same spectrums.

Exercise 183 Show that the root systems E8 + E8 and D16 in R16 have the
same number of roots but are not isomorphic.

14 Clifford algebras

With Lie algebras of small dimensions, we have seen that there are numerous
accidental isomorphisms. Almost all of these can be explained with Clifford
algebras and Spin groups.

Motivational examples that we’d like to explain:

1. SO2(R) = S1: S1 can double cover S1 itself.

2. SO3(R): has a simply connected double cover S3.

3. SO4(R): has a simply connected double cover S3 × S3.

4. SO5(C): Look at Sp4(C), which acts on C4 and on Λ2(C4), which is 6
dimensional, and decomposes as 5 ⊕ 1. Λ2(C4) has a symmetric bilinear
form given by Λ2(C4)⊗Λ2(C4)→ Λ4(C4) ' C, and Sp4(C) preserves this
form. You get that Sp4(C) acts on C5, preserving a symmetric bilinear
form, so it maps to SO5(C). You can check that the kernel is ±1. So
Sp4(C) is a double cover of SO5(C).

5. SO5(C): SL4(C) acts on C4, and we still have our 6 dimensional Λ2(C4),
with a symmetric bilinear form. So we get a homomorphism SL4(C) →
SO6(C), which we can check is surjective, with kernel ±1.

So we have double covers S1, S3, S3 × S3, Sp4(C), SL4(C) of the orthogonal
groups in dimensions 2,3,4,5, and 6, respectively. All of these look completely
unrelated. We will give a uniform construction of double covers of all orthogonal
groups using Clifford algebras.

Example 184 We have not yet defined Clifford algebras, but to motivate the
definition here are some examples of Clifford algebras over R.

• C is generated by R, together with i, with i2 = −1

• H is generated by R, together with i, j, each squaring to −1, with ij+ji =
0.

• Dirac wanted a square root for the operator ∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 −
∂2

∂t2

(the wave operator in 4 dimensions). He supposed that the square root is
of the form A = γ1

∂
∂x + γ2

∂
∂y + γ3

∂
∂z + γ4

∂
∂t and compared coefficients in
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the equation A2 = ∇. Doing this yields γ2
1 = γ2

2 = γ2
3 = 1, γ2

4 = −1, and
γiγj + γjγi = 0 for i 6= j.

Dirac solved this by taking the γi to be 4×4 complex matrices. A operates
on vector-valued functions on space-time.

Definition 185 A Clifford algebra over R is generated by elements γ1, . . . , γn
such that γ2

i = ±1, and γiγj + γjγi = 0 for i 6= j.

This is a rather clumsy and ad hoc definition. Let’s try again:

Definition 186 (better definition) Suppose V is a vector space over a field
K, with some quadratic form N : V → K. (N is a quadratic form if it is
a homogeneous polynomial of degree 2 in the coefficients with respect to some
basis.) Then the Clifford algebra CV (K) is the associative algebra generated by
the vector space V , with relations v2 = N(v).

Of course this definition also works for quadratic forms on modules over rings,
or sheaves over a space, and so on, and much of the basic theory of Clifford
algebras can be extended to these cases.

We know that N(λv) = λ2N(v) and that the expression (a, b) := N(a+ b)−
N(a)−N(b) is bilinear. If the characteristic of K is not 2, we have N(a) = (a,a)

2 .
Thus, we can work with symmetric bilinear forms instead of quadratic forms so
long as the characteristic of K is not 2. We will use quadratic forms so that
everything works in characteristic 2. (Characteristic 2 is notoriously tricky for
bilinear and quadratic forms and we will not be working in characteristic 2, but
if we can pick up this case for free just by using the right definition we may as
well.)

Warning 187 Some authors (mainly in index theory) use the opposite sign
convention v2 = −N(v). This is a convention introduced by Atiyah and Bott.

Some people add a factor of 2 somewhere, which usually does not matter,
but is wrong in characteristic 2.

Example 188 Take V = R2 with basis i, j, and with N(xi+ yj) = −x2 − y2.
Then the relations are (xi + yj)2 = −x2 − y2 are exactly the relations for the
quaternions: i2 = j2 = −1 and (i+ j)2 = i2 + ij + ji+ j2 = −2, so ij + ji = 0.

Remark 189 If the characteristic of K is not 2, a “completing the square”
argument shows that any quadratic form is isomorphic to c1x

2
1 + · · ·+cnx

2
n, and

if one can be obtained from another other by permuting the ci and multiplying
each ci by a non-zero square, the two forms are isomorphic.

It follows that every quadratic form on a vector space over C is isomorphic
to x2

1 + · · · + x2
n, and that every quadratic form on a vector space over R is

isomorphic to x2
1 + · · · + x2

m − x2
m+1 − · · · − x2

m+n (m pluses and n minuses)
for some m and n. Sylvester’s law of inertia shows that these forms over R
are non-isomorphic (proof: look at the largest possible dimension of a positive
definite or negative definite subspace).

We will usually assume that N is non-degenerate (which means that the as-
sociated bilinear form is non-degenerate), but one could study Clifford algebras
arising from degenerate forms. For example, the Clifford algebra of the zero
form is just the exterior algebra.
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Remark 190 The tensor algebra TV has a natural Z-grading, and to form the
Clifford algebra CV (K), we quotient by the ideal generated by the even elements
v2 − N(v). Thus, the algebra CV (K) = C0

V (K) ⊕ C1
V (K) is Z/2Z-graded. A

Z/2Z-graded algebra is called a superalgebra.

We now want to solve the following problem: Find the structure of Cm,n(R),
the Clifford algebra over Rn+m with the form x2

1 + · · ·+x2
m−x2

m+1−· · ·−x2
m+n.

Example 191

• C0,0(R) is R.

• C1,0(R) is R[ε]/(ε2−1) = R(1 + ε)⊕R(1− ε) = R⊕R. In the given basis,
this is a direct sum of algebras over R.

• C0,1(R) is R[i]/(i2 + 1) = C, with i odd.

• C2,0(R) is R[α, β]/(α2 − 1, β2 − 1, αβ + βα). We get a homomorphism
C2,0(R) → M2(R), given by α 7→

(
1 0
0 −1

)
and β 7→ ( 0 1

1 0 ). The homo-
morphism is onto because the two given matrices generate M2(R) as an
algebra. The dimension of M2(R) is 4, and the dimension of C2,0(R) is
at most 4 because it is spanned by 1, α, β, and αβ. So we have that
C2,0(R) 'M2(R).

• C1,1(R) is R[α, β]/(α2−1, β2 +1, αβ+βα). Again, we get an isomorphism
with M2(R), given by α 7→

(
1 0
0 −1

)
and β 7→

(
0 1
−1 0

)
So we have computed the Clifford algebras

m\n 0 1 2
0 R C H
1 R⊕ R M2(R)
2 M2(R)

If {v1, . . . , vn} is a basis for V , then {vi1 · · · vik |i1 < · · · < ik, k ≤ n} spans
CV (K), so the dimension of CV (K) is less than or equal to 2dimV . As usual
with objects given by generators and relations, the harder problem is showing
that it cannot be smaller.

Now let’s try to analyze larger Clifford algebras more systematically. What
is CU⊕V in terms of CU and CV ? One might guess CU⊕V ∼= CU ⊗CV . For the
usual definition of tensor product, this is false (e.g. C1,1(R) 6= C1,0(R)⊗C0,1(R)).
However, for the superalgebra definition of tensor product, this is correct. The
superalgebra tensor product is the regular tensor product of vector spaces, with
the product given by (a ⊗ b)(c ⊗ d) = (−1)deg b·deg cac ⊗ bd for homogeneous
elements a, b, c, and d. For the moment we will forget about superalgebras, and
naively calculate with the ordinary tensor product.

Let’s specialize to the case K = R and try to compute CU⊕V (K). Assume
for the moment that dimU = m is even. Take α1, . . . , αm to be an orthogonal
basis for U and let β1, . . . , βn to be an orthogonal basis for V . Then set γi =
α1α2 · · ·αmβi. What are the relations between the αi and the γj? We have

αiγj = αiα1α2 · · ·αmβj = α1α2 · · ·αmβiαi = γjαi
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since dimU is even, and αi anti-commutes with everything except itself.

γiγj = γiα1 · · ·αmβj
= α1 · · ·αmγiβj
= α1 · · ·αmα1 · · ·αm βiβj︸︷︷︸

−βjβi

= −γjγi
γ2
i = α1 · · ·αmα1 · · ·αmβiβi

= (−1)
m(m−1)

2 α2
1 · · ·α2

mβ
2
i

= (−1)m/2α2
1 · · ·α2

mβ
2
i (m even)

So the γi’s commute with the αi and satisfy the relations of some Clifford
algebra. Thus, we’ve shown that CU⊕V (K) ∼= CU (K)⊗CW (K), where W is V
with the quadratic form multiplied by

(−1)
1
2 dimUα2

1 · · ·α2
m = (−1)

1
2 dimU · discriminant(U),

and this is the usual tensor product of algebras over R.
Taking dimU = 2, we find that

Cm+2,n(R) ∼= M2(R)⊗ Cn,m(R)

Cm+1,n+1(R) ∼= M2(R)⊗ Cm,n(R)

Cm,n+2(R) ∼= H⊗ Cn,m(R)

where the indices switch whenever the discriminant is positive. Using these
formulas, we can reduce any Clifford algebra to tensor products of things like
R, C, H, and M2(R).

Recall the rules for taking tensor products of matrix algebras (all tensor
products are over R).

• R⊗X ∼= X.

• C⊗H ∼= M2(C).

This follows from the isomorphism C⊗ Cm,n(R) ∼= Cm+n(C).

• C⊗ C ∼= C⊕ C.

• H⊗H ∼= M4(R).

This follows by thinking of the action on H ∼= R4 given by (x⊗y)·z = xzy.

• Mm

(
Mn(X)

) ∼= Mmn(X).

• Mm(X)⊗Mn(Y ) ∼= Mmn(X ⊗ Y ).

Filling in the middle of the table is easy because we can move diagonally
by tensoring with M2(R). It is easy to see that C8+m,n(R) ∼= Cm,n+8(R) ∼=
Cm,n ⊗ M16(R), which gives the table a kind of mod 8 periodicity. There is
a more precise way to state this: Cm,n(R) and Cm′,n′(R) are super Morita
equivalent if and only if m− n ≡ m′ − n′ mod 8.
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We found that the structure of a Clifford algebra depends heavily on m− n
mod 8. The explanation of this was not all that satisfactory as it seemed to be
a fluke coming at the end of a long calculation. There is a hidden cyclic group
of order 8 controlling this, given by the super Brauer group of the reals. The
usual Brauer group of a field consists of the finite dimensional central division
rings, with the group product given by taking tensor products (modulo taking
matrix rings). For example, the Brauer group of the reals has order 2, with
elements the reals and the quaternions, and the Brauer group of the complex
numbers has order 1. The super Brauer group is defined similarly except we use
super division algebras: this means every nonzero HOMOGENEOUS element
is invertible. The 8 elements are represented by the reals, the quaternions, and
the algebras R[ε], C[ε], H[ε], where ε is odd, ε2 = ±1 and xε = εx for x in the
even part.

Exercise 192 Work out how the super division algebras over R correspond to
elements of a cyclic group of order 8 up to super Morita equivalence, under the
super tensor product. Find the 8 algebras underlying them if one forgets the
grading and compare these with Clifford algebras.

This mod 8 periodicity turns up in several other places:

1. Real Clifford algebras Cm,n(R) and Cm′,n′(R) are super Morita equivalent
if and only if m− n ≡ m′ − n′ mod 8.

2. Bott periodicity, which says that stable homotopy groups of orthogonal
groups are periodic mod 8.

3. Real K-theory is periodic with a period of 8.

4. Even unimodular lattices (such as the E8 lattice) exist in Rm,n if and only
if m− n ≡ 0 mod 8. More generally even integral lattices tend to have a
strong period 8 behavior: for example

∑
λ∈L′/L e

πiλ2

= e2πisignature/8
√
|discriminant|.

For 1-dimensional lattices this is more or less Gauss’s law of quadratic reci-
procity in terms of Gauss sums.

5. The Super Brauer group of R is Z/8Z.

Recall that CV (R) = C0
V (R) ⊕ C1

V (R), where C1
V (R) is the odd part and

C0
V (R) is the even part. We will need to know the structure of C0

m,n(R), which
controls special orthogonal groups in the same way that Clifford algebras control
orthogonal groups. Fortunately, this is easy to compute in terms of smaller
Clifford algebras. Let dimU = 1, with γ a basis for U and let γ1, . . . , γn an
orthogonal basis for V . Then C0

U⊕V (K) is generated by γγ1, . . . , γγn. We
compute the relations

γγi · γγj = −γγj · γγi
for i 6= j, and

(γγi)
2 = (−γ2)γ2

i

So C0
U⊕V (K) is itself the Clifford algebra CW (K), where W is V with the

quadratic form multiplied by −γ2 = −disc(U). Over R, this tells us that

C0
m+1,n(R) ∼= Cn,m(R) (mind the indices)

C0
m,n+1(R) ∼= Cm,n(R).
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Remark 193 For complex Clifford algebras, the situation is similar, but easier.
One finds that C2m(C) ∼= M2m(C) and C2m+1(C) ∼= M2m(C) ⊕M2m(C), with
C0
n(C) ∼= Cn−1(C). You could figure these out by tensoring the real algebras

with C if you wanted. We see a mod 2 periodicity now. Bott periodicity for the
unitary group is mod 2.

Exercise 194 Find the non-trivial finite dimensional super division algebra
with center C.

Clifford algebras are analogous to the algebra of differential operators, which
are given by generators xi and Di with relations that the xi commute with each
other, the Di commute with each other, and Dixj − xjDi = 1. If we put a
skew symmetric form on the vector space spanned by the xi and Di so that
〈xi, xj〉 = 0, 〈Di, Dj〉 = 0, 〈Di, xj〉 = 1 if i = j and 0 otherwise, then the
algebra of differential operators is generated by this space with the relations
ab− ba = 〈a, b〉. This is similar to Clifford algebras which (in characteristic not
2) have relations ab + ba = (a, b) for a symmetric form. If we work with super
vector spaces, then these two constructions become special cases of the same
construction.

Clifford algebras can also be obtained as a quotient of a Heisenberg superal-
gebra, in the same way that the algebra of differential operators is a quotient of
a Heisenberg algebra. So the study of Clifford algebras and their representations
is essentially the study of the Heisenberg superalgebra. This again demonstrates
that it is really more natural to work with super vector spaces rather than vec-
tor spaces when studying Clifford algebras, but we will mostly just use vector
spaces and just point out the changes needed for using superspaces.

14.1 Clifford groups, Spin groups, and Pin groups

In this section, we define Clifford groups of a vector space V with a quadratic
form over a field K, denoted ΓV (K). They are central extensions of orthogonal
groups that fit into an exact sequence

1→ K× → ΓV (K)→ OV (K)→ 1.

Definition 195 We define α to be the automorphism of CV (K) induced by −1
on V (in other words the automorphism which acts by −1 on odd elements and
1 on even elements)). The Clifford group ΓV (K) is the group of homogeneous
invertible elements x ∈ CV (K) such that xV α(x)−1 ⊆ V (recall that V ⊆
CV (K)). This also gives an action of ΓV (K) on V .

Many authors leave out the α, which is a mistake, though not a serious one,
and use xV x−1 instead of xV α(x)−1. Our definition (introduced by Atiyah,
Bott, and Schapiro) is better for the following reasons:

1. It is the correct superalgebra sign. The superalgebra convention says that
whenever you exchange two elements of odd degree, you pick up a minus
sign, and V is odd.

2. Putting α in makes the theory much cleaner in odd dimensions. For ex-
ample, we will see that the described action gives a map ΓV (K)→ OV (K)
which is onto if we use α, but not if we do not. (You get SOV (K) rather
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than OV (K) in odd dimensions without the α, which is not a disaster, but
is annoying.)

Lemma 196 The elements of ΓV (K) that act trivially on V are the elements
of K× ⊆ ΓV (K) ⊆ CV (K).

Proof Suppose a0 + a1 ∈ ΓV (K) acts trivially on V , with a0 even and a1 odd.
Then (a0 + a1)v = vα(a0 + a1) = v(a0 − a1). Matching up even and odd parts,
we get a0v = va0 and a1v = −va1. Choose an orthogonal basis γ1, . . . , γn for
V . (All these results are true in characteristic 2, but we have to work harder:
we cannot go around choosing orthogonal bases because they may not exist.)
We may write

a0 = x+ γ1y

where x ∈ C0
V (K) and y ∈ C1

V (K) and neither x nor y contain a factor of γ1,
so γ1x = xγ1 and γ1y = yγ1. Applying the relation a0v = va0 with v = γ1, we
see that y = 0, so a0 contains no monomials with a factor γ1.

Repeat this procedure with v equal to the other basis elements to show that
a0 ∈ K× (since it cannot have any γ’s in it). Similarly, write a1 = y+γ1x, with
x and y not containing a factor of γ1. Then the relation a1γ1 = −γ1a1 implies
that x = 0. Repeating with the other basis vectors, we conclude that a1 = 0.

So a0 + a1 = a0 ∈ K ∩ ΓV (K) = K×. � Now we define −T to

be the identity on V , and extend it to an anti-automorphism of CV (K) (“anti”
means that (ab)T = bTaT ). Do not confuse a 7→ α(a) (automorphism), a 7→ aT

(anti-automorphism), and a 7→ α(aT ) (anti-automorphism).
Now we define the spinor norm of a ∈ CV (K) by N(a) = aaT . We also

define a twisted version: Nα(a) = aα(a)T .

Proposition 197

1. The restriction of N to ΓV (K) is a homomorphism whose image lies in
K×. (N is a mess on the rest of CV (K).)

2. The action of ΓV (K) on V is orthogonal. That is, we have a homomor-
phism ΓV (K)→ OV (K).

Proof First we show that if a ∈ ΓV (K), then Nα(a) acts trivially on V .

Nα(a) v α
(
Nα(a)

)−1
= aα(a)T v

(
α(a)α

(
α(a)T

)︸ ︷︷ ︸
=aT

)−1

(5)

= aα(a)T v(a−1)T︸ ︷︷ ︸
=(a−1vTα(a))T

α(a)−1 (6)

= aa−1vα(a)α(a)−1 (7)

= v (8)
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So by Lemma ???, Nα(a) ∈ K×. This implies that Nα is a homomorphism
on ΓV (K) because

Nα(a)Nα(b) = aα(a)TNα(b) (9)

= aNα(b)α(a)T (Nα(b) is central) (10)

= abα(b)Tα(a)T (11)

= (ab)α(ab)T = Nα(ab). (12)

After all this work with Nα, what we’re really interested is N . On the even
elements of ΓV (K), N agrees with Nα, and on the odd elements, N = −Nα.
Since ΓV (K) consists of homogeneous elements, N is also a homomorphism from
ΓV (K) to K×. This proves the first statement of the proposition.

Finally, since N is a homomorphism on ΓV (K), the action on V preserves
the quadratic form N of V . Thus, we have a homomorphism ΓV (K)→ OV (K).

�

On V , N coincides with the quadratic form N . Some authors seem not to
have noticed this, and use different letters for the norm N and the spinor norm
N on V . Sometimes they use a poorly chosen sign convention which makes
them different.

Now we analyze the homomorphism ΓV (K) → OV (K). Lemma ??? says
exactly that the kernel is K×. Next we will show that the image is all of OV (K).
Say r ∈ V and N(r) 6= 0.

rvα(r)−1 = −rv r

N(r)
= v − vr2 + rvr

N(r)

= v − (v, r)

N(r)
r (13)

=

{
−r if v = r

v if (v, r) = 0
(14)

Thus, r is in ΓV (K), and it acts on V by reflection through the hyperplane
r⊥. One might deduce that the homomorphism ΓV (K)→ OV (K) is surjective
because OV (K) is generated by reflections. This is wrong; OV (K) is not always
generated by reflections!

Exercise 198 Let H = F2
2, with the quadratic form x2 + y2 + xy, and let

V = H ⊕H. Prove that OV (F2) is not generated by reflections.

Solution 199 In H, the norm of any non-zero vector is 1. It is immediate to
check that the reflection of a non-zero vector v through another non-zero vector
u is

ru(v) =

{
u if u = v

v + u if u 6= v

so reflection through a non-zero vector fixes that vector and swaps the two other
non-zero vectors. Thus, the reflection in H generate the symmetric group on
three elements S3, acting on the three non-zero vectors.

If u and v are non-zero vectors, then (u, v) ∈ H ⊕H has norm 1 + 1 = 0,
so one cannot reflect through it. Thus, every reflection in V is “in one of the
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H’s,” so the group generated by reflections is S3 × S3. However, swapping the
two H’s is clearly an orthogonal transformation, so reflections do not generate
OV (F2).

Remark 200 This is the only counterexample. For any other vector space and
any other non-degenerate quadratic form on this space, OV (K) is generated by
reflections. The map ΓV (K)→ OV (K) is surjective even in the example above.
Also, in every case except the example above, ΓV (K) is generated as a group
by non-zero elements of V (i.e. every element of ΓV (K) is a monomial).

Remark 201 Equation ??? is the definition of the reflection of v through r. It
is only possible to reflect through vectors of non-zero norm. Reflections in char-
acteristic 2 are strange; strange enough that people don’t call them reflections,
they call them transvections.

Definition 202

PinV (K) = {x ∈ ΓV (K)|N(x) = 1}

, and
SpinV (K) = Pin0

V (K)

, the even elements of PinV (K).

On K×, the spinor norm is given by x 7→ x2, so the elements of spinor norm 1
are = ±1. 

1 → ±1 → PinV (k) → ΩV → 1
↓ ↓ ↓

1 → k∗ → ΓV (k) → OV (k) → 1
↓ ↓ ↓

1 → k∗2 → k∗ → k∗/k∗2 → 1


where the rows are exact, K× is in the center of ΓV (K) (this is obvious,

since K× is in the center of CV (K)), and N : OV (K) → K×/(K×)2 is the
unique homomorphism sending reflection through r⊥ to N(r) modulo (K×)2.

To see exactness of the top sequence, note that the kernel of φ is K× ∩
PinV (K) = ±1, and that the image of PinV (K) in OV (K) is exactly the el-
ements of norm 1. The bottom sequence is similar, except that the image of
SpinV (K) is not all of OV (K), it is only SOV (K); by Remark ??, every ele-
ment of ΓV (K) is a product of elements of V , so every element of SpinV (K) is
a product of an even number of elements of V . Thus, its image is a product of
an even number of reflections, so it is in SOV (K).

These maps are NOT always onto, but there are many important cases when
they are, such as when V has a positive definite quadratic form. The image is
the set of elements of OV (K) or SOV (K) that have spinor norm 1 in K×/(K×)2.

What is N : OV (K)→ K×/(K×)2? It is the UNIQUE homomorphism such
that N(a) = N(r) if a is reflection in r⊥, and r is a vector of norm N(r).

Example 203 Take V to be a positive definite vector space over R. Then N
maps to 1 in R×/(R×)2 = ±1 (because N is positive definite). So the spinor
norm on OV (R) is trivial.
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So if V is positive definite, we get double covers

1→ ±1→ PinV (R)→ OV (R)→ 1

1→ ±1→ SpinV (R)→ SOV (R)→ 1

This will account for the weird double covers we saw before.
What if V is negative definite? Every reflection now has image −1 in

R×/(R×)2, so the spinor norm N is the same as the determinant map OV (R)→
±1.

So in order to find interesting examples of the spinor norm, we have to look
at cases that are neither positive definite nor negative definite.

Let’s look at Lorentz space: R1,3.
Reflection through a vector of norm < 0 (spacelike vector, P : parity rever-

sal) has spinor norm −1, det −1 and reflection through a vector of norm > 0
(timelike vector, T : time reversal) has spinor norm +1, det −1. So O1,3(R)
has 4 components (it is not hard to check that these are all the components),
usually called 1, P , T , and PT .

Example 204 The Weyl group of F4 is generated by reflections of vectors of
norms 1 and 2. It is a subgroup of O4(Q) so the spinor norm is a homomor-
phism to Q∗/Q∗2. So by combining this with the determinant map, we get a
homomorphism of this Weyl group onto the Klein 4-group (Z/2Z)2, mapping
reflections of norm 1 or norm 2 vectors onto two different non-trivial elements.
Similarly we see immediately that the Weyl group of Bn has a homomorphism
onto the Klein 4-group.

Example 205 The groups PSOn(R) are simple for n ≥ 5, so one might guess
by analogy that the groups PSOn(Q) are also simple, but the spinor norm shows
immediately that they are not. In fact the spinor norm maps On(Q) onto the
infinite index 2 subgroup of Q∗/Q∗2 represented by positive elements, so the
abelianization of PSOn(Q) is infinite.

Remark 206 In terms of Galois cohomology, there an exact sequence of alge-
braic groups (over an algebraically closed field)

1→ GL1 → ΓV → OV → 1

We do not necessarily get an exact sequence when taking values in some subfield.
If

1→ A→ B → C → 1

is exact,
1→ A(K)→ B(K)→ C(K)

is exact, but the map on the right need not be surjective. Instead what we get
is

1→ H0(Gal(K̄/K), A)→ H0(Gal(K̄/K), B)→ H0(Gal(K̄/K), C)→
→ H1(Gal(K̄/K), A)→ · · ·

It turns out that H1(Gal(K̄/K), GL1) = 1. However, H1(Gal(K̄/K),±1) =
K×/(K×)2.
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So from
1→ GL1 → ΓV → OV → 1

we get

1→ K× → ΓV (K)→ OV (K)→ 1 = H1(Gal(K̄/K), GL1)

However, taking
1→ µ2 → SpinV → SOV → 1

we get

1→ ±1→ SpinV (K)→ SOV (K)
N−→ K×/(K×)2 = H1(K̄/K, µ2)

so the non-surjectivity of N is some kind of higher Galois cohomology.

Warning 207 SpinV → SOV is onto as a map of ALGEBRAIC GROUPS, but
SpinV (K)→ SOV (K) need NOT be onto.

Example 208 TakeO3(R) ∼= SO3(R)×{±1} as 3 is odd (in generalO2n+1(R) ∼=
SO2n+1(R)× {±1}). So we have a sequence

1→ ±1→ Spin3(R)→ SO3(R)→ 1.

Notice that Spin3(R) ⊆ C0
3 (R) ∼= H, so Spin3(R) ⊆ H×, and in fact we saw that

it is S3.

14.2 Covers of symmetric and alternating groups

The symmetric group on n letter can be embedded in the obvious way in On(R)
as permutations of coordinates. Lifting this to the pin group gives a double
cover of the symmetric group, which restricts to a perfect double cover of the
alternating group if n is at least 5.

Example 209 The alternating group A5 is isomorphic to the group PSL2(F5)
which has a double cover SL2(F5). The alternating group A6 is isomorphic
to the group PSL2(F9), which has a double cover SL2(F9). (This is one way
to see the extra outer automorphisms of A6 since the group PSL2(F9) has an
outer automorphism group of order 4: we can either conjugate by elements of
determinant not a square, or apply a field automorphism of F9.)

Exercise 210 Here is another way to see the extra outer automorphisms of
S6. Show that there are 6 ways to divide the 10 edges of the complete graph
on 5 points into two disjoint 5-cycles, and deduce from this that there is a
homomorphism from S5 to S6 not conjugate to the “obvious” embedding. Then
use the fact that an index n subgroup of a group gives a homomorphism to Sn
to construct an outer automorphism of S6, taking a “standard” S5 subgroup to
one of these “exceptional” ones.

In most cases this is the universal central extension of the alternating group,
but there are two exceptions for n = 6 or 7, when the alternating group also
has a perfect triple cover.
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The triple cover of the alternating group A6 was found by Valentiner and is
called the Valentiner group. He found an action of A6 on the complex projective
plane, in other words a homomorphism from A6 to PGL3(C), whose inverse
image in the triple cover GL3(C) is a perfect triple cover of A6. Here is a
variation of his construction:

Exercise 211 Show that the group PGL3(F4) acts transitively on the ovals in
the projective plane over F4, where an oval is a set of 6 points such that no 3 are
on a line. Show that the subgroup fixing an oval is isomorphic to A6, acting on
the 6 points of the oval. Show that the inverse image of this group in GL3(F4)
is a perfect triple cover of A6.

15 Spin groups

15.1 Spin representations of Spin and Pin groups

Notice that PinV (K) ⊆ CV (K)×, so any module over CV (K) gives a repre-
sentation of PinV (K). We already figured out that CV (K) are direct sums of
matrix algebras over R,C, and H.

What are the representations (modules) of complex Clifford algebras? Recall
that C2n(C) ∼= M2n(C), which has a representations of dimension 2n, which is
called the spin representation of PinV (K) and C2n+1(C) ∼= M2n(C)×M2n(C),
which has 2 representations, called the spin representations of Pin2n+1(K).

What happens if we restrict these to SpinV (C) ⊆ PinV (C)? To do that, we
have to recall that C0

2n(C) ∼= M2n−1(C) ×M2n−1(C) and C0
2n+1(C) ∼= M2n(C).

So in EVEN dimensions Pin2n(C) has 1 spin representation of dimension 2n

splitting into 2 HALF SPIN representations of dimension 2n−1 and in ODD di-
mensions, Pin2n+1(C) has 2 spin representations of dimension 2n which become
the same on restriction to SpinV (C).

Now we give a second description of spin representations. We will just do the
even dimensional case (the odd dimensional case is similar). Suppose dimV =
2n, and work over C. Choose an orthonormal basis γ1, . . . , γ2n for V , so that
γ2
i = 1 and γiγj = −γjγi. Now look at the group G generated by γ1, . . . , γ2n,

which is finite, with order 21+2n. The representations of CV (C) correspond to
representations of G, with −1 acting as −1 (as opposed to acting as 1). So
another way to look at representations of the Clifford algebra, is to look at
representations of G.

We look at the structure of G:

(1) The center is ±1. This uses the fact that we are in even dimensions,
otherwise γ1 · · · γ2n is also central.

(2) The conjugacy classes: 2 of size 1 (1 and −1), 22n−1 of size 2 (±γi1 · · · γin),
so we have a total of 22n + 1 conjugacy classes, so we should have that
many representations. G/center is abelian, isomorphic to (Z/2Z)2n, which
gives us 22n representations of dimension 1, so there is only one more left
to find. We can figure out its dimension by recalling that the sum of the
squares of the dimensions of irreducible representations gives us the order
of G, which is 22n+1. So 22n×11+1×d2 = 22n+1, where d is the dimension
of the mystery representation. Thus, d = ±2n, so d = 2n. Thus, G, and
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therefore CV (C), has an irreducible representation of dimension 2n (as
we found earlier by showing that the Clifford algebra is isomorphic to
M2n(C)).

Example 212 Consider O2,1(R). As before, O2,1(R) ∼= SO2,1(R) × (±1), and
SO2,1(R) is not connected: it has two components, separated by the spinor
norm N . We have maps

1→ ±1→ Spin2,1(R)→ SO2,1(R)
N−→ ±1.

Spin2,1(R) ⊆ C∗2,1(R) ∼= M2(R), so Spin2,1(R) has one 2 dimensional spin rep-
resentation. So there is a map Spin2,1(R) → SL2(R); by counting dimensions
and such, we can show it is an isomorphism. So Spin2,1(R) ∼= SL2(R).

Now let’s look at some 4 dimensional orthogonal groups

Example 213 Look at SO4(R), which is compact. It has a complex spin repre-
sentation of dimension 24/2 = 4, which splits into two half spin representations
of dimension 2. We have the sequence

1→ ±1→ Spin4(R)→ SO4(R)→ 1 (N = 1)

Spin4(R) is also compact, so the image in any complex representation is con-
tained in some unitary group. So we get two maps Spin4(R)→ SU(2)×SU(2),
and both sides have dimension 6 and centers of order 4. Thus, we find that
Spin4(R) ∼= SU(2)× SU(2) ∼= S3 × S3, which give you the two half spin repre-
sentations.

So now we have done the positive definite case.

Example 214 Look at SO3,1(R). Notice that O3,1(R) has four components
distinguished by the maps det, N → ±1. So we get

1→ ±1→ Spin3,1(R)→ SO3,1(R)
N−→ ±1→ 1

We expect 2 half spin representations, which give us two homomorphisms
Spin3,1(R) → SL2(C). This time, each of these homomorphisms is an isomor-
phism (I can’t think of why right now). The SL2(C)s are double covers of simple
groups. Here, we do not get the splitting into a product as in the positive def-
inite case. This isomorphism is heavily used in quantum field theory because
Spin3,1(R) is a double cover of the connected component of the Lorentz group
(and SL2(C) is easy to work with). Note also that the center of Spin3,1(R)
has order 2, not 4, as for Spin4,0(R). Also note that the group PSL2(C) acts

on the compactified C ∪ {∞} by
(
a b
c d

)
(τ) = aτ+b

cτ+d . Subgroups of this group

are called Kleinian groups. On the other hand, the group SO3,1(R)+ (identity
component) acts on H3 (three dimensional hyperbolic space). To see this, look
at the 2-sheeted hyperboloid.

One sheet of norm −1 hyperboloid is isomorphic to H3 under the induced
metric. In fact, we’ll define hyperbolic space that way. Topologists are very in-
terested in hyperbolic 3-manifolds, which are H3/(discrete subgroup of SO3,1(R)).
If we use the fact that SO3,1(R) ∼= PSL2(R), then we see that these discrete
subgroups are in fact Kleinian groups.
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There are lots of exceptional isomorphisms in small dimension, all of which
are very interesting, and almost all of them can be explained by spin groups.

Example 215 O2,2(R) has 4 components (given by det, N); C0
2,2(R) ∼= M2(R)×

M2(R), which induces an isomorphism Spin2,2(R) → SL2(R) × SL2(R), which
gives the two half spin representations. Both sides have dimension 6 with centers
of order 4. So this time we get two non-compact groups. Let us look at the fun-
damental group of SL2(R), which is Z, so the fundamental group of Spin2,2(R)
is Z⊕ Z. As we recall, Spin4,0(R) and Spin3,1(R) were both simply connected.
This shows that SPIN GROUPS NEED NOT BE SIMPLY CONNECTED. So
we can take covers of it. What do the corresponding covers (e.g. the universal
cover) of Spin2,2(R) look like? This is hard to describe because for finite di-
mensional complex representations, we get finite dimensional representations of
the Lie algebra L, which correspond to the finite dimensional representations of
L⊗C, which correspond to the finite dimensional representations of L′ = Lie al-
gebra of Spin4,0(R), which correspond to the finite dimensional representations
of Spin4,0(R), which has no covers because it is simply connected. This means
that any finite dimensional representation of a cover of Spin2,2(R) actually fac-
tors through Spin2,2(R). So there is no way to describe these things with finite
matrices, and infinite dimensional representations are hard.

To summarize, the ALGEBRAIC GROUP Spin2,2 is simply connected (as
an algebraic group) (think of an algebraic group as a functor from rings to
groups), which means that it has no algebraic central extensions. However, the
LIE GROUP Spin2,2(R) is NOT simply connected; it has fundamental group
Z⊕ Z. This problem does not happen for COMPACT Lie groups (where every
finite cover is algebraic).

We have done O4,0, O3,1, and O2,2, from which we can obviously get O1,3

and O0,4. Note that O4,0(R) ∼= O0,4(R), SO4,0(R) ∼= SO0,4(R), Spin4,0(R) ∼=
Spin0,4(R). However, Pin4,0(R) 6∼= Pin0,4(R). These two are hard to distinguish.
We have

Take a reflection (of order 2) in O4,0(R), and lift it to the Pin groups. What
is the order of the lift? The reflection vector v, with v2 = ±1 lifts to the element
v ∈ ΓV (R) ⊆ C∗V (R). Notice that v2 = 1 in the case of R4,0 and v2 = −1 in the
case of R0,4, so in Pin4,0(R), the reflection lifts to something of order 2, but in
Pin0,4(R), we get an element of order 4!. So these two groups are different.

Two groups are isoclinic if they are confusingly similar. A similar phe-
nomenon is common for groups of the form 2 ·G ·2, which means it has a center
of order 2, then some group G, and the abelianization has order 2. Watch out.

Exercise 216 Spin3,3(R) ∼= SL4(R).

15.2 Triality

This is a special property of 8 dimensional orthogonal groups. Recall that O8(C)
has the root system D4, which has an extra symmetry of order three.

But O8(C) and SO8(C) do NOT have corresponding symmetries of order
three. The thing that does have the symmetry of order three is the spin group.
The group Spin8(R) DOES have “extra” order three symmetry. We can see it
as follows. Look at the half spin representations of Spin8(R). Since this is a spin
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group in even dimension, there are two. C8,0(R) ∼= M28/2−1(R)×M28/2−1(R) ∼=
M8(R) × M8(R). So Spin8(R) has two 8 dimensional real half spin repre-
sentations. But the spin group is compact, so it preserves some quadratic
form, so we get 2 homomorphisms Spin8(R) → SO8(R). So Spin8(R) has
THREE 8 dimensional representations: the half spins, and the one from the
map to SO8(R). These maps Spin8(R)→ SO8(R) lift to Triality automorphisms
Spin8(R)→ Spin8(R). The center of Spin8(R) is (Z/2)+(Z/2) because the cen-
ter of the Clifford group is ±1,±γ1 · · · γ8. There are 3 non-trivial elements of
the center, and quotienting by any of these gives you something isomorphic to
SO8(R). This is special to 8 dimensions.

15.3 More about Orthogonal groups

Is OV (K) a simple group? NO, for the following reasons:

(1) There is a determinant map OV (K) → ±1, which is usually onto. (In
characteristic 2 there is a similar Dickson invariant map).

(2) There is a spinor norm map OV (K)→ K×/(K×)2

(3) −1 ∈ center of OV (K).

(4) SOV (K) tends to split if dimV = 4, is abelian if dimV = 2, and trivial if
dimV = 1.

(5) There are a few cases over small finite fields where the orthogonal group
is solvable, such as O3(F3).

It turns out that they are simple apart from these reasons why they are not.
Take the kernel of the determinant, to get to SO, then take the elements of
spinor norm 1, then quotient by the center, and assume that dimV ≥ 5. Then
this is usually simple, except for a few small cases over small finite fields. If K
is a finite field, then this gives many finite simple groups.

Note that SOV (K) is NOT the subgroup of OV (K) of elements of deter-
minant 1 in general; it is the image of Γ0

V (K) ⊆ ΓV (K) → OV (K), which is
the correct definition. Let’s look at why this is right and the definition you
know is wrong. There is a homomorphism ΓV (K)→ Z/2Z, which takes Γ0

V (K)
to 0 and Γ1

V (K) to 1 (called the Dickson invariant). It is easy to check that
det(v) = (−1)Dickson invariant(v). So if the characteristic of K is not 2, det = 1
is equivalent to Dickson = 0, but in characteristic 2, determinant is a useless
invariant (because it is always 1) and the right invariant is the Dickson invariant.

Special properties of O1,n(R) and O2,n(R). O1,n(R) acts on hyperbolic space
Hn, which is a component of norm −1 vectors in Rn,1. O2,n(R) acts on the
“Hermitian symmetric space” (Hermitian means it has a complex structure, and
symmetric means really nice). There are three ways to construct this space:

(1) It is the set of positive definite 2 dimensional subspaces of R2,n

(2) It is the norm 0 vectors ω of PC2,n with (ω, ω̄) = 0.

(3) It is the vectors x + iy ∈ R1,n−1 with y ∈ C, where the cone C is the
interior of the norm 0 cone.

Exercise 217 Show that these are the same.
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15.4 Spin groups in small dimensions

Here we summarize the special properties of orthogonal and spin group is di-
mensions up to 8.

1. In 1 dimension the groups are discrete.

2. Here the special orthogonal and spin groups are abelian

3. The spin group Spin3(R) is isomorphic to the special unitary group SU2.
This is because the half-spin representation has dimension 2.

4. Spin groups have a tendency to split. The two half-spin representations
have dimension 2, so we get two homomorphisms to SL2. (Spin groups in
this dimension do not always split: for example the spin group Spin1,3(R)
of special relativity is locally isomorphic to SL2(C) which is simple modulo
its center.)

5. The spin group is isomorphic to a symplectic group Sp4. This is because
the spin representation has dimension 4 and has a skew symmetric form.

6. The spin group is isomorphic to SU4(R). This is because the half-spin
representation has dimension 4.

7. The spin group Spin7(R) acts transitively on the sphere S7 in the spin
representation (of dimension 8) and the subgroup fixing a point is the
exceptional group G2.

8. The two half-spin representations of dimension 8 have the same dimension
as the vector representation, and have symmetric invariant bilinear forms.
The spin group has a triality outer automorphism of order 3, permuting
the two half-spin representations and the vector representation.

15.5 String groups

If we start with the orthogonal group (of a finite dimensional positive definite
real vector space), it has nontrivial zeroth homotopy group, and we can kill
this by taking its connected component, the special orthogonal group. This has
non-trivial first homotopy group of order 2, and we can kill this by taking its
spin double cover. This process of killing the lowest homotopy group can be
continued further as

1 · · · → String(n)→ Spin(n)→ SO(n)→ O(n)

The first nonvanishing homotopy group of the spin group is the third homotopy
group, which is Z. The result of killing the third homotopy group of a spin
group is called a string group. At first sight this seems impossible to construct:
one problem is that any nonabelian compact Lie group has non-trivial third
homotopy group. However it is possible to kill the third homotopy group if one
allows non-compact infinite dimensional groups.

Stolz gave the following construction of the string group of a spin group G.
Take the PU bundle P over G corresponding to a generator of π3(G), where PU
is the projective unitary group of an infinite dimensional separable Hilbert space
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and is an Eilenberg-Maclane space K(Z, 2). This follows because the infinite
dimensional unitary group U is contractible, and we have a fibration

1→ Circle group→ U → PU → 1

so by the long exact sequence of homotopy groups we see that πn(S1) =
πn+1(PU). Then the string group is the group of bundle automorphisms that
act on the space G as left translations by elements of G. So we have an exact
sequence

1→ Gauge group→ String group→ Spin group→ 1

A similar construction works if the spin group is replaced by any simply
connected simple compact Lie group, since all such groups are 2-connected and
have infinite cyclic 3rd homotopy groups.

The construction of the string group from the spin group is similar to the
construction of the spin group from the special orthogonal group. In the latter
case one takes the Z/2Z bundle over SOn(R), and the spin group is the group
of bundle automorphisms lifting translations of the special orthogonal group.

In high dimensions the 4th, 5th, and 6th homotopy groups of the spin group
and string group also vanish. One can continue this process further; killing the
7th homotopy group of the string group produces a group called the fivebrane
group.

16 Symplectic groups

Symplectic groups are similar to orthogonal groups, but somewhat easier to
handle. Over a field there are usually many different non-singular quadratic
forms of given dimension, but only 1 alternating form in even dimensions, and
none in odd dimensions.

Symplectic groups in dimension 2n are easily confused with orthogonal groups
in dimension 2n+ 1. They have the same dimension n(2n+ 1), the same Weyl
group, and almost the same root system, and they are locally isomorphic for
n ≤ 2. In the early days of Lie group Killing thought at first that they were the
same. Over fields of characteristic 2 they do become essentially the same: to see
this, consider a quadratic form q in a vector space V of dimension 2n + 1. Its
associated symmetric bilinear form is alternating since the characteristic is 2, so
has a vector z in its kernel. So any rotation of V induces an linear transforma-
tion of the 2n-dimensional vector space V/z preserving its induced symplectic
form. So in characteristic 2 we get a homomorphism from an orthogonal group
in dimension 2n+ 1 to the symplectic group in dimension 2n.

We can work out the root system in much the same way that we found the
root system of an orthogonal group in even dimensions. We take the symplectic
form to be the one with blocks of

(
0 1
−1 0

)
down the diagonal. The Cartan

subalgebra is then the diagonal matrices with (α1,−α1, α2,−α2, . . .) down the
diagonal, just as for orthogonal groups in even dimensions. We get elements
±αi±αj as roots just as for even orthogonal groups, but we also get extra roots
±2αi. This root system is called Cn. It is just like Bn except that the roots
±αi are doubled to ±2αi. In particular the Weyl group is the same in both
cases and is just the group (Z/2Z)nSn of order 2nn!.
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Exercise 218 Show that if n is 1 or 2 then the root system Bn is isomorphic
to Cn (up to rescaling) but if n ≥ 3 they are different.

We recall that SP4(C) is locally isomorphic to SO5(C). Form the point of
view of SO5(C) we saw that this is related to the spin double cover of SO5(C),
which is Sp4(C) as it has a 4-dimensional spin representation with an alternating
form. We can see this more easily if we start from Sp4(C). This has a 4-
dimensional representation C4 with an alternating form. Its alternating square
has dimension 6, and has a symmetric bilinear form as the alternating 4th power
is C. However the alternating square splits as the sum of 1 and 5 dimensional
pieces, as the alternating form gives an invariant 1-dimensional piece. So Sp4(C)
has a 5-dimensional representation with a symmetric bilinear form, and therefore
has a map to the orthogonal group O5(C).

Exercise 219 Which of the three groups SO5(R), SO4,1(R), SO3,2(R) is Sp4(R)
locally isomorphic to?

There are several ways to distinguish symplectic groups in higher dimensions
from orthogonal (or rather spin) groups:

• If we know that Cartan subalgebras are all conjugate, then we can dis-
tinguish orthogonal and symplectic groups by the number of long roots
in their roots system: the orthogonal groups of dimension 2n + 1 have
2n(n − 1) long roots, while symplectic groups in dimension 2n have 2n
long roots, so if n > 2 the groups are different.

• Another way to distinguish them is to look at the dimension of the non-
trivial minuscule representation (the smallest representation on which the
center of the simply connected group acts non-trivially). For orthogonal
groups in dimension 2n + 1 this is the spin representation of dimension
2n = 2, 4, 8, 16, · · · , while for symplectic groups in dimension 2n it is the
representation of dimension 2n = 2, 4, 6, 8, · · · . Again these are different
if n > 2.

The symmetric spaces of symplectic groups are generalizations of the upper
half plane called Siegel upper half planes. The Siegel upper half plane consists
of matrices in Mn(C) whose imaginary part is positive definite (so for n = 1 this
is the usual upper half plane). We take the symplectic form given by

(
0 I
−I 0

)
where I is the n by n identity matrix. Then the action of a symplectic matrix
(A B
C D ) on an element τ of the Siegel upper half plane is given by

(A B
C D ) (τ) =

Aτ +B

Cτ +D

Exercise 220 Check that this is indeed a well defined action of the symplectic
group on the Siegel upper half plane. (One way is to use the fact that the
symplectic group is generated by matrices of the form ( I B0 I ) and

(
0 I
−I 0

)
).

We have already seen two special cases of this before: if n = 1 then the symplec-
tic group Sp2n is just SL2(R), acting on the usual upper half plane. If n = 2
then Sp2n(R) is locally isomorphic to SO3,2(R), and we have seen that groups
SOm,2(R) have Hermitian symmetric spaces.
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The theory of modular forms on the upper half plane generalizes to Siegel
modular forms on the Siegel upper half planes: for example, points of the upper
half plane modulo SL2(Z) = Sp2(Z) correspond to complex elliptic curves, while
points of the Siegel upper half plane modulo Sp2n(Z) correspond to principally
polarized complex abelian varieties. This is of course all a special case of the
Langlands program.

The symplectic group is obviously not compact. For orthogonal groups it was
easy to find a compact form: just take the orthogonal group of a positive definite
quadratic form. For symplectic groups we do not have this option as there is
essentially only one symplectic form. Instead we can use the following method of
constructing compact forms: take the intersection of the corresponding complex
group with the compact subgroup of unitary matrices. For example, if we do
this with the complex orthogonal group of matrices with AAt = I and intersect

it with the unitary matrices AA
t

= I we get the usual real orthogonal group.
In this case the intersection with the unitary group just happens to consist of
real matrices, but this does not happen in general. For the symplectic group we
get the compact group Sp2n(C) ∩ U2n(C). We should check that this is a real
form of the symplectic group, which means roughly that the Lie algebras of both
groups have the same complexification sp2n(C), and in particular has the right
dimension. We show that if V is any †-invariant complex subspace of Mk(C)
then the Hermitian matrices of V are a real form of V . This follows because
any matrix v ∈ V can be written as a sum of hermitian and skew hermitian
matrices v = (v + v†)/2 + (v − v†)/2, in the same way that a complex number
can be written as a sum of real and imaginary parts. (Of course this argument
really has nothing to do with matrices: it works for any antilinear involution †
of any complex vector space.) Now we need to check that the Lie algebra of the
complex symplectic group is †-invariant. This Lie algebra consists of matrices
a such that aJ + JaT = 0; this is obviously closed under complex conjugation,
and is closed under taking transposes if we choose J so that J2 = 1.

For orthogonal groups we can find an index 2 subgroup because the determi-
nant can be positive or negative, and one might guess that one can do something
similar for symplectic groups. However for symplectic groups the determinant
is always 1:

Lemma 221 if B is a symplectic matrix preserving the non-degenerate alter-
nating form of A, so that BABt = A, then det(B) = 1.

Proof A non-degenerate alternating form on a 2n-dimensional vector space V
gives a 2-form ω in Λ2(V ) and ω∧· · ·∧ω is a non-degenerate 2n-form preserved
by B, So B has determinant 1, as the determinant is the amount by which a
matrix multiplies a nondegenerate 2n-form. �

For example, Riemannian manifolds, where the structure group is reduced to
the orthogonal group, can be non-orientable, but symplectic manifolds, where
the structure group is reduced to the symplectic group, are always orientable.

Definition 222 An alternating form can be represented by an alternating ma-
trix A. Since this is equivalent to the standard form J with diagonal blocks(

0 1
−1 0

)
we can write the matrix as TJT t for some T . Any two matrices T differ

by a symplectic matrix that necessarily has determinant 1, so the determinant
of T depends only on A and is called the Pfaffian of the alternating matrix A.
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(More generally, the Pfaffian is really a function of two alternating forms on a
vector space, given by the determinant of a map taking one to the other.)

The Pfaffian can also be given as follows: the highest degree part of

exp(
∑

Aijωi ∧ ωj) = Pf(A)ω1 ∧ · · · ∧ ω2n

.

Exercise 223 If A is alternating and B is any matrix show that

Pf(BABt) = det(B)Pf(A)

det(A) = Pf(A)2

We can write the determinant as the square of an explicit polynomial in the
entries of A.

Lemma 224 If A is a skew symmetric matrix over a field of characteristic 0,
the Pfaffian of A is given by

ωn = 2nn!Pf(A)e1 ∧ · · · ∧ en

where ω =
∑
i,j aijei ∧ ej.

We can write this as

Pf(A) =
1

2nn!

∑
w∈S2n

ε(w)aw(1)w(2)aw(3)w(4) · · ·

and since each term on the right occurs 2nn! times, we get a definition of the
Pfaffian over any commutative ring by just summing over the permutations with
w(1) < w(3) < w(5) · · · , w(1) < w(2), w(3) < w(4), · · · .

Exercise 225 Find the Pfaffian of
0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0


Example 226 The orthogonal group acts on its Lie algebra, which is the vector
space of skew symmetric real matrices. We can ask about the invariants of
On(R) and its subgroup SOn(R) for this representation, in other words the
polynomials in the entries of A that are invariant under changing A to BAB−1

for B an orthogonal or special orthogonal matrix (so B−1 = Bt). By the formula
Pf(BABt) = det(B)Pf(A), we see that the Pfaffian is an invariant of the special
orthogonal group, but changes sign under reflections. In fact the invariants of
the special orthogonal group form a 2-dimensional module over the invariants
of the orthogonal group, with a basis given by 1 and the Pfaffian.
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16.1 Perfect matchings and domino tilings

The Pfaffian turns up in several problems of statistical mechanics, where it can
sometimes be used to give exact solutions in 2 dimensions. As an example we
will use it to count the number of perfect matchings of a bipartite planar graph.
(Bipartite means that the vertices can be colored black and white such that the
two endpoints of any edge have different colors, or equivalently that all cycles
have even length.) The idea is to write this number as the Pfaffian of a matrix,
and then evaluate the determinant of the matrix by diagonalizing it.

We can form the adjacency matrix of this graph with aij = 0, 1 counting the
number of edges from vertex ii to vertex j, and can see that the Pfaffian of this
adjacency matrix would b the number of bipartite matchings if it were not for
the signs in the Pfaffian. The idea is to cleverly change the signs of some of the
entries in the adjacency matrix to nullify the signs in the Pfaffian.

Order the vertices of the graph, and call a cycle odd or even depending on
whether as we go around the cycle we have an odd or even number of edges where
we go to a larger vertex. (This does not depend on which way we transverse
the cycle as the cycle has even length.)

Suppose we label each edge of the graph with a sign. Now we take the
adjacency matrix of the graph, and change signs of its entries as follows.

• First change the sign of aij so that it has the same sign as the correspond-
ing edge of the graph.

• Then make it antisymmetric by changing the sign of aij if i < j.

Lemma 227 Suppose that for every cycle the product of signs in the cycle of
length a is (−1)a/2+1 if the cycle is even and minus this if the cycle is odd. Then
the Pfaffian of the matrix above is (up to sign) the number of perfect matchings
of the graph.

Proof The non-zero terms of the expansion of the Pfaffian correspond to
perfect matchings. The problem is to check that any two terms have the same
sign.

Suppose that we have two perfect matchings. Color the edges of one red,
and the edges of the other blue. Then we get a collection of even length cycles,
whose edges alternate red and blue. (These are allowed to have one double edge
colored both red and blue.) We examine a single cycle v1v2 · · · v2k and check
that the sign of the term of the Pfaffian does not change if we switch from the
red to the blue edges. The sign of the red edges comes from:

• The sign of the permutation v1v2 · · · v2k.

• The number of pairs v2i−1v2i that are decreasing (using the order of the
vertices)

• The number of pairs v2i−1v2i whose edge has sign −1.

while the sign of the blue permutation comes from

• The sign of the permutation v2 · · · v2kv1.

• The number of pairs v2iv2i+1 that are decreasing (using the order of the
vertices)
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• The number of pairs v2iv2i+1 whose edge has sign −1.

So we pick up a factor of −1 as the sign of a cycle of length 2n, and a factor of
−1 each time the vertices decrease as we go around the cycle, and a factor of
−1 for each edge of the cycle whose edge has sign −1. By assumption the signs
of the edges are chosen so that these signs cancel out over every cycle. �

Exercise 228 If we have a planar bipartite graph then we can assign signs to
each edge so that the product of signs in a cycle of length a is (−1)a/2+1 if the
cycle is even and minus this if the cycle is odd. (By induction on the size of
the graph we can arrange that this is true for the cycles bounding faces of the
planar graph (remove an outer edge, add signs to the remainder of the graph,
then add a sign to the removed edge so that its face has the correct number
of signs). Then check that all cycles, not just those bounding faces, have the
correct parity of signs by induction on the number of faces inside the cycle.)

Example 229 We use this to count the number of domino tilings of a chess-
board, or more generally an m×n rectangle. The number of domino tilings of a
chessboard is the number of bipartite matchings of the graph formed by joining
all centers of squares to the centers of adjacent squares. We have to choose an
ordering of the vertices and signs for the edges satisfying the condition above.
We choose lexicographic ordering of vertices. Then every 1 by 1 square has 2
increases as we go around it, so needs an odd number of signs on its edges. We
can achieve this by putting signs on the horizontal edges of rows 2, 4, 6, . . .. We
let Qn be the n×n matrix with 1s just above the diagonal, −1 just below it, and
0s elsewhere. We let In be the n×n identity matrix. We let Fn be the diagonal
matrix whose entries alternate 1 and −1. Then the matrix whose Pfaffian we
want to evaluate is

Qn ⊗ Im + Fn ⊗Qm
Here Qn comes from the horizontal edges, Qm from the vertical edges, and Fn
comes from the fact that we twiddle the signs of the edges in even rows.

Now we find the determinant of this matrix by (almost) diagonalizing it.
First we diagonalize Qn by finding its eigenvectors. If (a1, a2, · · · ) is an eigen-
vector with eigenvalue λ, then −ak−1 + ak+1 = λak (with a0 = an+1 = 0). This
is a difference equation for ak with solution ak = zk1 − zk2 where zn+1

1 − z−n−1
2 =

an+1 = 0, z1z2 = −1, z1 + z2 = λ so z1 = e(2j+n+1)πi/2(n+1) for integers j. The
eigenvalue λ is z1 + z2 = 2i sin((2j + n+ 1)π/2(n+ 1)) = 2i cos(j/(n+ 1)).

If we replaced Fn by In we would be finished, because the vectors vi ⊗ vj
would be a set of eigenvectors for out matrix, where vi and vj run through
eigenvectors of the matrices Q. We now seem to run into a problem, because the
matrices Fn and Qn do not commute, so we cannot simultaneously diagonalize
them. However they are not too far from commuting: in fact FnQn = −QnFn.
This means that Fn switches the eigenspaces of Q with eigenvalues λ and −λ, so
(at least when λ is nonzero) we can find a basis of eigenvectors of Qn in which
Fn can be written with 2 by 2 blocks ( 0 1

1 0 ) down the diagonal.
What is really going on is that we have a representation of the algebra

generated by Qn, Qm, and Fn on a space of dimension mn, and the key point is
that this representation breaks up as a sum of small representations of dimension
at most 2.
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So the mn by mn matrix can be written with mn/2 diagonal 2 by 2 blocks,
each of the form (

2i cos(j/(n+ 1)) 2i cos(k/(m+ 1))
2i cos(k/(m+ 1)) 2i cos(j/(n+ 1))

)
down the diagonal. We could diagonalize this, but there is not much point as
all we need is its determinant which is easy to evaluate. The determinant is the
product of the determinants of all these 2 by 2 blocks, which is the square root
of

n∏
j=1

m∏
k=1

(2i cos(j/(n+ 1)))
2

+ (2i cos(k/(m+ 1)))
2

So the number of domino tilings is (up to sign) the Pfaffian, in other words the
4th root of the absolute value of this product. For example, there are 12988816
domino tilings of a chessboard.

17 Cayley numbers and G2

Definition 230 A (possibly nonassociative) algebra is called alternative if for
all a and b we have (aa)b = a(ab) and b(aa) = (ba)a.

Alternative algebras have the apparently more general property that the
subalgebra generated by any two elements is associative.

The Cayley-Dickson construction turns an algebra into another one of twice
the dimension as follows. Suppose that A is a module over some commutative
ring with a bilinear product (possibly nonassociative and non-commutative) and
an involution ∗ with (ab)∗ = b∗a∗, a∗∗ = a. For γ ∈ R we define an involution
and product on A⊕A by

(p, q)(r, s) = (pr − γs∗q, sp+ qr∗)

(p, q)∗ = (p∗,−q)

We will assume that A has an identity 1 and that a+ a∗ and aa∗ are always
multiples of 1. Then the same is true of A⊕ A. Moreover if A is commutative
and ∗ = 1 then A⊕A is commutative, and if A is commutative and associative
then A⊕A is associative, and if A is associative then A⊕A is alternative.

Starting with the real numbers, and taking γ to be 1 at every step, we get
the real numbers, the complex numbers, the quaternions, and the octonions (or
Cayley numbers), an 8-dimensional alternative algebra over the reals. We could
of course continue further to get algebras of dimension 16, 32, and so on, but it
seems to be rather hard to think of anything interesting to say about them.

We define the norm N(a) to be a∗a = aa∗. When the algebra A is alterna-
tive, we have N(ab) = N(a)N(b), and in particular the norms of elements are
closed under multiplication. If N(a) is invertible in R then a has an inverse
a−1 = a/N(a), with a−1(ab) = b = (ba)a−1. In particular the octonions form a
nonassociative division algebra.

Exercise 231 In a commutative ring, show that the set of sums of n squares
is closed under multiplication if n is 1, 2, 4, or 8. (There are no other positive
integers for which this is true for all commutative rings.)
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If we apply this construction to the complex numbers we get the quaternions,
with a basis 1, i, j, k and products i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj =
i, ki = −ik = j.

Exercise 232 Show that the manifold of octonions of norm 1 and trace 0 has an
almost complex structure (in other words each tangent space can be made into
a complex vector space in a smooth way) and is diffeomorphic to the sphere
S6. (The spheres S0, S2, and S6 are the only spheres with almost complex
structures. It is not known whether the sphere S6 has a complex structure.)

Now we investigate the automorphism group G of the octonions. It is com-
pact as it is a closed subgroup of the orthogonal group in 8 (or even 7) dimen-
sions. We start finding an upper bound on its dimension. The group G acts
on the octonions orthogonal to 1, and preserves norms, so it acts on the sphere
S6 of imaginary octonions of norm 1. Now look at the subgroup H fixing some
point i of this sphere. In turn H acts on the sphere of all points of norm 1
orthogonal to 1 and i, which is a 5-sphere S5. Fix j in this 5-sphere, with i and
j generating a copy of the quaternions. Now look at the group fixing i and j.
This acts on the sphere S3 of unit octonions orthogonal to 1, i, j, ij. Since the
octonions are generated by i, j, and a point of this 3-sphere, we see that G has
dimension at most 3 + 5 + 6 = 14.

We want to show that G has exactly dimension 14, so we need to construct
enough elements of G to show that the various actions on spheres above are
transitive, in other words we need to find some automorphisms of the Cayley
numbers. An automorphism is given by mapping (p, q) to (p, rq) for a suitable
quaternion: if we look at the formula for multiplication we see that this is an
automorphism of the octonions provided that r has norm 1.

The octonions have a basis e0 = 1, e1, · · · , e7 such that e1e2 = e4 and cyclic
permutations of (1, 2, 3, 4, 5, 6, 7) are automorphisms of the Cayley algebra. We
can identify the subspace spanned by 1, e1, e2, e4 with a copy of the quaternions.
We will show that this automorphism of order 7, together with the automor-
phisms of the form (p, q)→ (p, rq) generate the full automorphism group. In fact
we will just use this 3-dimensional group and its 6 conjugates under elements
of the cyclic group of order 7. In particular the group of automorphisms fixing
e1, e2, e4 acts transitively on the norm 1 vectors that are linear combinations of
e3, e5, e6, e7, and similarly for all cyclic permutations.

We show that the automorphism group acts transitively on the sphere S6 of
norm 1 imaginary octonions. Pick a vector in this sphere. We can first kill off
the coefficients of e5, e6, e7. Then by acting with the group fixing e6, e7, e2 we
can keep the coefficients of e6, e7 zero and kill off the coefficients of e3, e4, e

5.
Then by acting with the group fixing e4, e6, e7 we can make the vector equal to
e1. So G acts transitively on norm 1 imaginary octonions. .

Now we show that the subgroup fixing e1 acts transitively on the sphere S5

of imaginary norm 1 octonions orthogonal to e1 in a similar way. We first act
with the group fixing e1, e2, e4 to kill off the coefficients of e5, e6, e7. Then act
with the group fixing e7, e1, e3 to kill off the coefficients of e4, e5, e

6, keeping
the coefficient of e7 zero. Finally we act with the group fixing e5, e6, e1 to move
the element to e2.

The subgroup fixing the two vectors e1 and e2 (and therefore also e1e2 = e4,
acts transitively on the sphere S3 of norm 1 imaginary octonions orthogonal to
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these three vectors. So we have verified that the group G2 of automorphisms of
the Cayley numbers has dimension exactly 14.

We can read off more information about G2. We found subgroups A, B with
G/A = S6, A/B = S5, B = S3. From this we see that G2 is connected, simply
connected, and (using the exact sequence of homotopy groups of a fibration)
the second homotopy group vanishes, and the third is Z.

Obviously any automorphism of the quaternions gives an automorphism of
the octonions H ⊕H as the construction of the octonions from the quaternions
is functorial.

Exercise 233 There is an obvious guess for a maximal integral form for the
octonions, analogous to the Hurwitz quaternions, which is to take the octonions
whose coordinates are integers or half integers, such that the set with half integer
parts is empty or the image of (∞124) under Z/7Z or the complement of one of
these sets. However this does not work (and is a common error). Show that this
integral form is not closed under multiplication. Show that if we swap ∞ and
n in the set of allowed integral parts for some fixed n ∈ Z/7Z (where 1 = e∞)
we get an integral form of the octonions that is closed under multiplication.
Show that the lattice we get is the E8 lattice up to rescaling, and there are 240
integral vectors of norm 1.

Exercise 234 Show that the compact group G2 is the group of automorphisms
of R7 (with basis x0, x1, . . . , x6) preserving the element

x0∧x1∧x3+x1∧x2∧x4+x2∧x3∧x5+x3∧x4∧x6+x4∧x5∧x0+x5∧x6∧x1+x6∧x0∧x2

of ∧3(R7). The can be thought of as a sum over the 7 lines of the 7-point
projective plane of the field with 2 elements.

Exercise 235 Find a Cartan subalgebra and the root system of G2. (Start by
looking at the subgroup fixing a point of S6. This is isomorphic to SU(3), of
dimension 8, so gives the Cartan subgroup and 6 of the roots arranged as the
vertices of a hexagon. If the hexagon is written as 6 triangles, the remaining 6
roots are at the centers of the 6 triangles, so there are 6 short roots and 6 long
roots that are

√
3 times as long.)

18 Root systems and reflection groups

We have seen that simple complex Lie algebras have a root system associated
to them: this means a finite set of non-zero vectors in Euclidean space, called
roots, such that r and s are roots then (r, s) is an integer multiple of (r, r)/2
and the reflection s − 2r(r, s)/(r, r) of s in r⊥ is also a root. In particular
for every root system we have a Weyl group generated by reflections. The
correspondence between semisimple complex Lie algebras and root systems is
not quite 1:1 because the root system of a semisimple complex Lie algebra is
also reduced: this means that it r is a root then 2r is not a root. An example of
a non-reduced root system is BCn, consisting of the vectors ±xi, ±xi±xj , and
±2xi. In fact these are the only irreducible non-reduced root systems. They are
in fact roots systems of finite dimensional simple superalgebras. Most but not
all reflection groups in Euclidean space turn up as Weyl groups of Lie groups:
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the exceptions are most dihedral groups, the symmetries of an icosahedron, and
a group in 4-dimensions.

The classification of root systems and reflection groups is similar. We will
do the case of root systems all of whose roots have the same length; the general
case uses no essentially new ideas.

The first step is to consider the Coxeter diagram of a reflection group, or
the Dynkin diagram of a root system. These are defined as follows. Chop up
space by cutting along the reflection hyperplanes. The closed regions bounded
by these hyperplanes are called Weyl chambers. Any Weyl chamber is conjugate
to its neighbors by a reflection, so all Weyl chambers are conjugate by elements
of the reflection group. We pick one Weyl chamber. The Coxeter diagram has a
point for each face of the Weyl chamber, and lines between the points according
to the angle between faces. If the faces are orthogonal there are no lines, if the
faces have an angle of π/3 there is 1 line, if the faces have an angle of π/4 there
are two lines, and for other angles conventions vary. A Dynkin diagram of a
root system is like a Coxeter diagram, with some extra information to indicate
the lengths of the roots (which is not defined for arbitrary reflection groups).
Usually one draws an inequality sign on the lines to indicate the longest of
each pair of roots. (For finite root systems this gives enough information to
reconstruct the root system, though for infinite root systems one sometimes
needs more information.)

We will work out the Dynkin diagrams of the most of the root systems we
have seen.

• An: simple roots αi − αi+1

• Bn: simple roots αi − αi+1, αn

• Cn: simple roots αi − αi+1, 2αn

• Dn: simple roots αi − αi+1, αn−1 + αn

• E8 αi − αi+1, (α1 + α2 + α3 + α4 + α5 − α6 − α7 − α8)/2

Exercise 236 what happens if there are 4, 6, 7, or 8 minus signs in this
last simple root? Why do these not give Dynkin diagrams for the E8 root
system?

• F4: α1 − α2, α2 − α3, α3, −(α1 + α2 + α3 + α4)/2.

• G2:

An, Bn, Cn, Dn, G2

These Dynkin diagrams explain the numerous local isomorphisms between
small simple Lie groups.

• The Dynkin diagrams of A1, B1, and C1 are all points, corresponding to
the fact that SL2, O2,1, and Sp2 are locally isomorphic.

• The Dynkin diagrams of B2 and C2 are isomorphic, corresponding to the
local isomorphism of SP4 and O3,2.
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• The Dynkin diagrams of Bn and Cn are almost the same, explaining why
the Lie groups of Sp2n and O2n+1 have the same dimension and the same
Weyl group.

• The Dynkin diagram of D2 is two points, corresponding to the fact that
O2,2 locally splits as SL2 × SL2.

• The Dynkin diagram of D3 is isomorphic to A3, corresponding to the local
isomorphism of SL4 and O3,3.

• The Dynkin diagram of D4 has an extra automorphism of order 3, corre-
sponding to triality of Spin8.

• The Dynkin diagrams of An and Dn have automorphisms of order 2, cor-
responding to outer automorphisms of SLn+1 and O2n given by matrices
of determinant −1. (Similarly E6 has an outer automorphism.)

Coxeter diagrams also make sense for reflection groups not associated to Lie
groups, and for infinite reflection groups in Euclidean or hyperbolic space,

Example 237 The Coxeter diagram of the rotations of an icosahedron is

Example 238 The group GL2(Z) is a reflection group acting on the upper half
plane (considered as a quotient of the non-real complex numbers by complex
conjugation) and is therefore a hyperbolic reflection group. A Weyl chamber
consists of the complex numbers with 0 ≤ <(z) ≤ 1/2, |z| ≥ 1, so the Coxeter
diagram is (Notice that two of the sides only meet at infinity, so the angle
between them is zero.)

Example 239 Conway found the following stunning example of a Dynkin di-
agram. The 26 dimensional even Lorentzian lattice II1,25 is acted on by a
hyperbolic reflection group generated by the reflections of its norm −2 vectors.
The Dynkin diagram of this reflection group is the affine Leech lattice. The re-
action of many mathematicians to this statement is to regard it as nonsense, on
groups that a Dynkin digram is a graph, not a lattice in Euclidean space. How-
ever the Dynkin diagram is really the set of simple roots of a root system, and
in particular is a metric space. (The graph is just a convenient way of describing
this metric space). The Leech lattice is also a metric space, and Conway showed
these two metric spaces are isometric. The isometry can be described explicitly
as follows: the lattice II1,25 is isomorphic to II1,1 ⊕ Λ(−1) where Λ(−1) is the
Leech lattice with norms multiplied by −1, so we can write an element of the
lattice as (m,n, λ) ∈ Z⊕Z⊕Λ, with norm 2mn− λ2. The simple roots are the
vectors (1, λ2/2 − 1, λ) for λ ∈ Λ. It is straightforward to show that these are
some of the simple roots of a Weyl chamber; the hard part of Conway’s theorem
is to show that there are no further simple roots, which follows easily from the
rather deep fact that the Leech lattice has covering radius

√
2.

We will classify the connected Dynkin diagrams X of finite reflection groups
such that all roots have the same length 2. The general case is similar but has
more cases to check. To do this we look at the affine diagrams of An, Dn, and
En. For each of these there is a positive linear combination of roots with norm
0, so X cannot contain any of these affine diagrams.

90



Since X does not contain affine An it has no cycles, so is a tree.
Since X does not contain affine D4, all vertices have valence at most 3.
Since X does not contain affine Dn for n ≥ 5, there is at most one vertex of

valence 3.
So either X is a line (in other words An) or it has one vertex of valence 3,

and 3 branches of lengths a, b, c ≥ 1.
Since X does not contain affine E6, not all of a, b, c are at least 2, so one,

say a, must be 1.
If another of b, c is also 1 then X is a Dn diagram, so we can assume b and

c are both at least 2.
Since X does not contain affine E7, b and c cannot both be at least 3, so

one of them, say b must be 2.
Since X does not contain affine E8, c must be at most 4. So the only

remaining possibilities are a = 1, b = 2, c = 2, 3, 4 which give the E6, E7, and
E8 Dynkin diagrams.

Exercise 240 Classify the Dynkin diagrams of finite reflection groups that may
contain roots of different lengths. The main change is that there is more than
one affine Dynkin diagram associated to a finite Dynkin diagram with roots of
different lengths.

There are several generalizations of this classification. First, one can classify
the finite reflection groups without worrying about roots. This amalgamates the
Bn and Cn cases, and introduces some reflection groups that do not correspond
to Lie algebras: the dihedral groups in dimension 2, and two reflection groups H3

(symmetries of an icosahedron) and H4 in dimensions 3 and 4. More generally
Shephard and Todd classified the finite complex reflection groups, finding 3
infinite series and 34 exceptions. There have been several attempts to find
algebraic objects generalizing Lie algebras corresponding to these more general
reflection groups, but as far as I know no-one has yet come up with a really
compelling answer. One generalization that does correspond to Lie algebras is
Euclidean or hyperbolic root systems, which correspond to Kac-Moody algebras.

19 Quivers and tilting

We will describe an unexpected connection between representations of quivers
and simple Lie algebras. To summarize, the quivers with a finite number of
indecomposable representations correspond to certain semisimple Lie algebras,
the indecomposable representations correspond to positive roots, and the irre-
ducible representations correspond to simple roots.

Definition 241 A quiver is a finite directed graph (possible with multiple edges
and loops). A representation of a quiver (over some fixed field) consists of a
vector space for each vertex of the graph and a linear map between the corre-
sponding vector spaces for each edge.

Example 242 Representations of a point are just vector spaces. Representa-
tions of a point with a loop are vector spaces with an endomorphism. Over
an algebraically closed field the indecomposable representations are classified
by Jordan blocks. Representations of 2 points joined by a line are just linear
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maps of vector spaces. There are 3 indecomposable representations: a map
from a 0-dimensional space to a 1-dimensional one, a map from a 1-dimensional
space to a 0-dimensional one, and a map from a 1-dimensional space onto a
1-dimensional one. More generally, stars with n incoming arrows correspond to
n maps to a vector space. When n = 2 there are 6 indecomposable representa-
tions, and when n = 4 there are 12. When n = 4 there is a qualitative change:
there are now infinitely many indecomposables. For example we can take 4
1-dimensional subspaces of a 2-dimensional space. The first two determine a
base (0, 1) and (1, 0), the third is spanned by (1, 1) and determines the ratio
between the two bases, but nor the 4th space can be spanned by (1, a) for any
a, so we get a 1-parameter family of indecomposables. Although there are an
infinite number of indecomposables, it is not hard to classify them explicitly:
it is a “tame” problem. For stars with 5 incoming vertices the indecomposable
representations are “wild”: there is no neat description of them. We will see
that the cases with a finite number of indecomposables correspond to Dynkin
diagrams of the finite dimensional semisimple Lie algebras with all roots the
same length, and the tame cases correspond to affine Dynkin diagrams.

The representations of a quiver are the same as modules over a certain ring
associated with the quiver. This ring has an idempotent for each vertex, with
the idempotents commuting and summing to 1. There is also an element for
each edge, subject to some obvious relations. The algebra is finite dimensional
if the quiver contains no cycles.

There are two titling functors we can apply to modules over quivers:

• If a vertex a is a source, then we can change all the arrows to point into
a, and change the vector space of a to be Coker(Va 7→ ⊕a→bVb).

• If a vertex a is a sink, then we can change all the arrows to point out of
a, and change the vector space of a to be Ker(⊕b→aVb 7→ Va)

The functors take representations of a quiver to representations of a different
quiver, with a source changed to a sink or a sink changed to a source. They
are almost but not quite inverses of each other. They are inverses provided
Va 7→ ⊕a→bVb is injective, or ⊕b→aVb 7→ Va is surjective. In particular they are
inverses of each other on indecomposable modules, except for the special case
of indecomposable modules of total dimension 1.

The idea is that we try to classify irreducible modules by repeated applying
tilting functors, trying to make the module vanish. If we succeed then we
can recover the original module from a 1-dimensional module by applying the
“almost inverse” tilting functors in the opposite order. We will see that we can
do this provided the quiver is one of the diagrams An, Dn, E6, E7, and E8,

Take a vector space spanned by the vertices of a quiver, and give it an inner
product such that the vertices of a quiver have norm 2, and their inner product
is minus the number of lines joining them. Then the dimension vector of a
quiver can be represented by a point in this space in the obvious way, and the
effect of tilting by a source or sink a is just reflection in the hyperplane a⊥

(except on the vector a itself).
We want to find a sequence of tiltings so that the dimension vector has a

negative coefficient. It is easy enough to find a sequence of reflections of simple
roots that do this: the problem is that we have a constraint that we can only
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use a reflection of a simple root if it is a source or a sink for the quiver. To do
this we will use Coxeter elements.

A Coxeter element of a reflection group is a product of the reflections of
simple roots in some order.

Lemma 243 If a Coxeter element of a reflection group fixes a vector then the
vector is orthogonal to all simple roots..

Proof If a vector a =
∑
anvn is fixed by a Coxeter element (for simple roots

vi) then the reflection of vi is the only one that can change the coefficient of vi,
so it must fix a. So a is fixed by all reflections of simple roots, and is therefore
orthogonal to all simple roots, so is 0. �

Corollary 244 If σ is a Coxeter element of a finite reflection group and a is a
non-zero vector, then σk(a) has a negative coefficient for some k.

Proof Otherwise we could find a non-zero fixed vector a+σ(a) +σ2(a) + · · ·+
σh−1(a), where h is the order of the Coxeter element. �

Exercise 245 Show that if a Coxeter diagram of a reflection group is a tree
then any two Coxeter elements are conjugate, and in particular have the same
order (called the Coxeter number).

Exercise 246 Find the order of the Coxeter elements of An.

We now construct a special Coxeter element σ associated to a given quiver as
follows. First take the reflection of some source, change the source to a sink, and
then mark that vertex as used. Keep repeating this until all vertices have been
used. The result is the original quiver, as each edge has had its direction changed
twice. So we have found a sequence of reflections of sources that preserves the
quiver. This means that we can keep on repeating the sequence of reflections of
the Coxeter element, and every time we will be reflecting in some source.

We can now show that the indecomposable representations of any quiver of
type An, Dn, or En correspond to the positive roots of the associated root sys-
tem: in fact we can apply tiltings until the dimension vector becomes a simple
root, when it is trivial to find the unique indecomposable. Take the dimension
vector a of any indecomposable representation. As σk(a) has negative coeffi-
cients for some k, we can find a finite sequence of tiltings so that some coefficient
of the dimension vector becomes negative, which means that there is some se-
quence of tiltings reducing the dimension vector to a simple root. In particular
the dimension vector must have been a positive root, and there is a unique in-
decomposable representation with this dimension vector (given by applying the
sequence of tiltings in reverse order to the representation corresponding to a
simple root).

For affine root systems this argument fails but only just: the inner product
space spanned by simple roots has a 1-dimensional subspace that has inner
product 0 with all vectors, and the dimension vector of an indecomposable is
either conjugate to a simple root by a series of tiltings, or is in this 1-dimensional
subspace. We saw an example of the latter for the root system of affine D4.
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Exercise 247 If a quiver contains a cycle show that it has an infinite number
of inequivalent indecomposable representations. Show more precisely that there
are an infinite number of dimension vectors corresponding to indecomposable
representations, and (over infinite fields) there is a dimension vector with an
infinite number of corresponding indecomposable representations.

For the affine diagrams of types An, Dn, E6, E7, E8 there are an infinite number
of indecomposables, but their classification is tame, meaning roughly that it can
be described explicitly. The dimension vectors just correspond to the positive
roots of affine Kac-Moody algebras. For non-affine diagrams the classification
is wild and very hard to describe. For example for a point with two loops the
representations are just pairs of matrices acting on a vector space, which are
notoriously hard to classify.

20 Representation theory

A representation of a group is an action of a group on something, in other words
a homomorphism from the group to the group of automorphisms of something.

The most obvious representations are permutation representations: actions
of a group on a (discrete) set. For example the group of rotations of a cube has
order 24, and has several obvious permutation representations: it can act on
faces, edges, vertices, diagonals, pairs of opposite faces, and so on.

For another example, the group SL2(R) acts on the real projective line, and
on the upper half plane. These sets carry topologies, which we should take into
account when defining representations.

Let us try to classify all permutation representations of some group G . First
of all, if the group G acts on some set X, then we can write X as the disjoint
union of the orbits of G on X, and G is transitive on each of these orbits.
So this reduces the classification of all permutation representations to that of
transitive permutation representations. Next, given a transitive permutation
representation of G on a set X, fix a point x ∈ X and write Gx for the subgroup
fixing x. Then as a permutation representation, X is isomorphic to the action
of G on the set of cosets G/Gx. If we choose a different point y, then Gx is
conjugate toGy (using some element ofG taking x to y), so we see that transitive
permutation representations up to isomorphism correspond to conjugacy classes
of subgroups of G.

Exercise 248 Classify the transitive permutation representations of the group
S4 up to isomorphism. (There are such representations on 1, 2, 3, 4, 6, 6, 6, 8,
12, 12, 24 points.)

More generally we can ask for representations on a set preserving some struc-
ture, such as a topology, metric, measure, and so on. By far the most important
such structure is that of a vector space over a field: such representations are
called linear representations, or sometimes just representations. (It was not at
all obvious that these were good things to study: people studied permutation
representations of finite groups for several decades before Frobenius started the
study of linear representations.)

Just as permutation representations can be decomposed into indecompos-
able (or transitive) ones, we can try to do the same for linear representations.
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For finite dimensional representations we can obviously write any representa-
tion as a sum of indecomposable ones, where “indecomposable” means that it
cannot be written as a sum of two non-zero representations. Unlike the case
of permutation representations this decomposition need not be unique, even
for the trivial group: a vector space can usually be written as a direct sum of
1-dimensional spaces in more than 1 way. In infinite dimensions a represen-
tation cannot always be decomposed into indecomposables: the theory of von
Neumann algebras of types II and III is all about this phenomenon.

A linear representation is called irreducible if it is non-zero and has no sub-
representations other than 0 and itself. Obviously any irreducible representation
is indecomposable, but the converse need not hold.

Example 249 For quivers, the irreducible representations are those of total
dimension 1, while the indecomposables can be much more complicated, as in
the previous lecture. The representation of the integers on R2 taking n to ( 1 n

0 1 )
is indecomposable but not irreducible. The finite group Z/pZ acting on the
2-dimensional vector space F2 by the same formula is indecomposable but not
irreducible.

Example 250 Suppose we look at (representations of the trivial group on)
finitely generated abelian groups. The indecomposable things are the groups
Z and Z/pnZ for primes p, while the irreducible things are the groups Z/pZ.
In particular there is an indecomposable object that cannot be broken up into
irreducibles.

So in general indecomposable things need not be irreducible. The problem
is the following: given a subrepresentation A → B can we always find a com-
plement, in other words a representation C so that B is the sum of A and C?If
we can always do this, then obviously indecomposables and irreducibles are the
same. There is one very important case when we can always do this: when the
representation B is finite dimensional and unitary, in other words the group
action preserves a positive definite Hermitian inner product. Then we can just
take C to be the orthogonal complement of A. (In infinite dimensions we need
to add some further conditions: the space B should be complete, in other words
a Hilbert space, and the subspace A should be closed.) This is a major reason
why unitary representations are so popular: we do not have to deal with the
hard problem of indecomposables that are not irreducible.

In general we say that a representation is completely reducible if it is a sum
of irreducible representations.

Theorem 251 Any finite-dimensional complex representation of a finite group
is completely reducible.

Proof The idea is to show that the representation V of the finite group G
is unitary. So choose any old positive definite Hermitian inner product. The
problem is that this inner product need not be invariant under the group action.
However we can make it invariant under the group action by averaging over the
group G: we take all images of the inner product under the action of G and take
their average. A slightly subtle point is that this average is still positive definite
(and in particular non-zero) which follows from positive definiteness. So the
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representation has an invariant positive definite inner product and is therefore
completely reducible. �

We can use this to classify all finite-dimensional complex representations of
a finite abelian group. The irreducible representations are easy to find: they
are all 1-dimensional because any commuting operators on a finite-dimensional
complex vector space have a common eigenvector. The 1-dimensional repre-
sentations of a group form a group under tensor product, called the character
group.

Exercise 252 Show that if a finite abelian group is a direct sum of cyclic groups
of orders a, b, c, ... then its character group can also be written in this form.
(This result is a bit misleading: although a finite abelian group and its character
group are isomorphic, there is usually no natural isomorphism between them.)

So since we know the irreducible finite-dimensional representations of a finite
abelian group, and we know that every finite dimensional representation is a sum
of irreducibles, this classifies all finite-dimensional representations of a finite
abelian group.

Example 253 We find some irreducible representations of the non-abelian fi-
nite group S3 of order 6. There are two obvious 1-dimensional representations:
the trivial one, and the “sign representation” where even and odd elements act
as 1 and −1. There is also a 2-dimensional (real) representation: think of S3

acting on the 3 corners of an equilateral triangle with center 0. These are all
the irreducible representations, though to see this we need some more theory.

We will need to use duals of representations. These can get rather confusing
because there are in fact 8 different natural ways of constructing a new repre-
sentation from an old one, many of which have been called the dual. The three
main ways are as follows:

• The complex conjugate of a representation V : keep the same G-action,
but change the action of i to −i. If we represent the elements of G by
complex matrices, this corresponds to taking the complex conjugate of a
matrix.

• Change the left action on V to a right action. If we define vg = gv with
does not work (why?) but we get a right action by putting vg = g−1v.
(This is really using the antipode of the group ring of G thought of as a
Hoof algebra: any left module over a Hopf algebra can be turned into a
right module in a similar way.) This corresponds to taking inverses of a
matrix.

• The usual vector space dual of V is a representation, but we have to
be careful how we define the G-action. Putting (gf)(v) = f(gv) fails.
However we can make the dual into a right G-module by putting (fg)(v) =
f(gv). This operation corresponds to taking transposes of a matrix.

By combining these three operations in various ways we can construct other
representations. For example if we want the dual to be a left module, we first
construct the dual as a right module, then change it to a left module, so we
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use the transpose inverse of matrices. If we want the Hermitian dual as a right
module we take the complex conjugate of the dual; if we like we can turn this
into a left module by taking inverses as well. (Physicists like to leave it as a
right module in their bra-ket notation, while mathematician like to make it into
a left module.)

For finite (and compact) groups all irreducible complex representations are
unitary (or rather can be made unitary in a way that is unique up to multiplica-
tion by non-zero scalars). If we work with unitary representations then taking
conjugate inverse transpose leaves everything fixed there are only 4 things we
can do, and if we stick to left modules this leaves just two things: V and its
dual, which can be given by taking complex conjugates. However if we work
with non-unitary representations then there are still 4 left modules we can con-
struct from V and taking ordinary or Hermitian duals is no longer the same as
taking complex conjugates.

Example 254 The G to be the circle group R/2πZ. Then its irreducible rep-
resentations are 1-dimensional and are given by x 7→ einx for integers n. There
functions form an orthonormal base for the L2 functions on G (using Lebesgue
measure divided by 2π), and in particular every L2 function can be written as a
linear combination of them: this is just its Fourier series expansion. In this case
the dual of a representation is given by the complex conjugate, as we expect for
compact groups.

Exercise 255 Show that the representations of a finite abelian group give an
orthonormal basis for the functions on the group in a similar way.

We would like to generalize this to all finite (and compact) groups: in other
words find an orthonormal basis for functions on G related to the irreducible
representations.

Lemma 256 (Schur’s lemma). Suppose V and W are irreducible representa-
tions of a group G over some field k. Then the algebra of linear transformations
of V that commute with G is a division algebra over k. The space of linear
transformations commuting with G from V to W is 0 if V is not isomorphic to
W .

Proof This is almost trivial: suppose T is any endomorphism commuting with
G. Then the image and kernel of T are invariant subspaces, so must be 0 on
the whole space. So either T is 0, or it has zero kernel so is an isomorphism and
has an inverse. �

For complex representations the only finite dimensional division algebra over
C is C, so the space of linear maps from V to itself is 1-dimensional. Over other
fields more interesting things can happen:

Example 257 If G is the group of order 4 acting on the real plane by rotations,
then the algebra of endomorphisms commuting with is is the algebra of complex
numbers. This also gives an example of a representation that is irreducible but
not absolutely irreducible: it becomes reducible over an algebraic closure.
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Example 258 If G is the quaternion group of order 8 acting by left multiplica-
tion on the quaternions (thought of as a 4-dimensional real vector space) then
the algebra commuting with it is the algebra of quaternions (acting by right
multiplication in itself).

If G is a finite group we can construct its group ring C[G]: this is the complex
algebra with basis G and multiplication given by the product of G. Alternatively
we can think of it as functions on G with the product given by convolution: this
definition generalizes better to Lie groups. The regular representation of G is
the action of G on its group algebra by left multiplication.

The functions 〈gv, w〉 are called matrix coefficients of the representation: if
we choose a basis for V and the dual basis for W they the endomorphisms of
V are given by matrices, and the representation of G is given by matrix-valued
functions of G. We will now show that these matrix coefficients are mostly
orthogonal to each other under the obvious inner product on C[G] where the
elements of G form an orthonormal base.

Lemma 259 Suppose the representation V does not contain the trivial repre-
sentation. Then

∑
g〈gv, w〉 = 0 for any v ∈ V , w ∈ V ∗.

Proof The vector
∑
g gv is fixed by G and is therefore 0, so has bracket 0 with

any w. �

Lemma 260 If the irreducible representations V and W are not dual, then
matrix coefficients of V are orthogonal to matrix coefficients of W under the
symmetric inner product on C[G].

Proof By assumption V ⊗W does not contain the trivial representation (using
Schur’s lemma) so∑

g∈G
〈g(a), c〉〈g(b), d〉 =

∑
g∈G
〈g(a× b), c× d〉 = 0

�

The character of the dual of a unitary representation is given by taking the
complex conjugate, so we get:

Lemma 261 If V and W are irreducible and not isomorphic, then the matrix
coefficients of V and W are orthogonal under the hermitian inner product of
C[G].

Exercise 262 If V is an irreducible complex representation with some basis
show that the sum of matrix coefficients

∑
g∈G gijg

−1
kl is |G|/ dim(V ) if i = l,

j = k and 0 otherwise. (This is similar to the proof when we have two different
representations, except that now there is a non-trivial map from V to V that
makes some of the inner products of matrix coefficients non-zero.)

We give the group ring the Hermitian scalar product such that the elements
of G are orthogonal and have norm 1/|G|. To summarize: if we take a repre-
sentative of each irreducible representation of G and take an orthonormal base
of each representation, then the matrix coefficients we get form an orthogonal
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set in the group ring of G. The norms are given by 1/dim (if we normalize the
measure on G so that G has measure 1: this generalizes to compact groups).

Definition 263 The character of a representation is the function from G to C
given by the trace.

The character is just the sum of the diagonal entries of a matrix, so by the
orthogonality for matrix coefficients we see that the characters of irreducible
representations form an orthonormal set of irreducible functions on G. Char-
acters are rather spacial functions on G because they are class functions: this
means they only depend on the conjugacy class of an element of G (which follows
from the fact that matrices g−1hg and h have the same trace).

Exercise 264 If V and W are representations, show that V ⊗W is a represen-
tation whose character is the product of the characters of V and W .

Exercise 265 If G acts on a set S, form a representation of G on the vector
space with basis S. Show that the character of this representation is given by
taking the number of fixed points of an element of G. Show that this rep-
resentation always contains the trivial 1-dimensional representation as a sub-
representation. How many times does the trivial 1-dimensional representation
occur?

Exercise 266 Show that the character of the symmetric square of a represen-
tation with character χ is given by (χ(g)2 +χ(g2))/2 and find a formula for the
character of the alternating square. (If g has eigenvalues λi, then the eigenvalues
on the symmetric square or alternating square are λiλj for i ≤ j or i < j.)

The character table is almost unitary except that we have to weight the
columns by the sizes of the conjugacy classes. The transpose of a unitary matrix
is also unitary, so the columns of a character table are orthogonal (for the
hermitian inner product) and have norms given by |G|/size of conjugacy class
which is just the order of the centralizer of an element of the conjugacy class.
The orthogonality of characters makes it very easy to work with representations.
For example:

• We can count the number of times an irreducible representation occurs in
some representation by taking the inner product of their characters.

• A representation is irreducible if and only if its character has norm 1.

• Two representations are isomorphic if and only if they have the same char-
acter. (The analogue of this fails in cases when we do not have complete
reducibility, such as modular representations of finite groups.)

We can use this to decompose the regular representation: its character is |G|
at the identity and 0 elsewhere. So its inner product with the character of any
irreducible representation V is dim(V ), so V occurs dim(V ) times. In particular
|G| =

∑
dim(V )2, and we can use this to check that a list of irreducibles is

complete.
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Theorem 267 The number of irreducible characters of a finite group is equal
to the number of conjugacy classes, and the irreducible characters form an or-
thonormal basis for the class functions.

Proof The irreducible characters are orthogonal class functions, so it is suf-
ficient to show that the number of conjugacy classes is at most the number of
irreducible representations. The key point is to observe that any class function
is in the center of the group ring and so by Schur’s lemma acts as a scalar on any
irreducible representation. If the number of conjugacy classes were greater than
the number of irreducibles, we could therefore find a non-zero class function
acting as 0 on all irreducibles, and therefore as 0 in the regular representation,
which is nonsense. �

It is natural to ask if there is a canonical correspondence between irreducibles
and conjugacy classes. At first glance, the answer seems to be obviously no. For
example, for infinite compact groups the number of conjugacy classes cane un-
countable while the number of irreducibles is countable, and for even the cyclic
group of order 3 there is no canonical way to match up the irreducibles with
elements of the group. However a close look show that in many cases there does
indeed seem to be some sort of natural correspondence. For example, for sym-
metric groups the conjugacy classes correspond to partitions, and we will later
see the same is true for their representations. An even deeper look shows that
representations of semisimple Lie groups (and automorphic forms) correspond to
conjugacy classes of their “Langlands dual group” though this correspondence
need not be 1:1 in general. This is closely related to Langlands functoriality: if
the correspondence were 1:1 (which it is not in general) then a homomorphism
of Langlands dual groups would induce a map between representations or au-
tomorphic forms on different groups. This is expected to hold and is known as
Langlands functoriality.

We can describe the irreducible representations of a group most conveniently
by giving their character tables: These are just square matrices giving the values
of the characters on the conjugacy classes.

One reason why character tables are useful is that they are usually easy to
compute. (This only applies to complex character tables: modular character
tables are far harder to compute.)

Examples: We compute the character tables of S3, S4, S5 using ad hoc meth-
ods. (In fact we will see later how to compute the characters of all symmetric
groups in a uniform way.)

We can guess the character table of SU(2). has an obvious 2-dimensional
representation. Its conjugacy classes correspond to diagonal matrices with en-
tries u, u−1 for u of absolute value 1, except that we can exchange the entries by
conjugating by ( 0 i

i 0 ) (generating the Weyl group: note that there is no matrix of
order 2 in SU(2) swapping the entries). The trace of this on the 2-dimensional
representation is just u + u−1. We can also take the representation consisting
of polynomials of degree n on this 2-dimensional representation. This has a
basis xn, xn−1y, . . . , yn on which the trace is un + un−2 + · · ·u−n, so this is
the character of this n + 1-dimensional representation. So the characters are
given by (un+1 − u−n−1)/(u− u−1), which will turn out to be a special case of
the Weyl character formula. We will soon see that these are all the irreducible
representations.
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What about orthogonality of characters? The characters are orthogonal even
functions on the unit circle if we change the measure by a factor of −(u−u−1)2.
Where has this funny-looking factor come from? The answer is that we should
really be integrating over the whole of SU(2), not just over the torus. While
the torus does contain a representative of each conjugacy class, we cannot just
change integrals of class functions on the group to integrals over the torus,
because some conjugacy classes are in some sense bigger than others. The
factor −(u−u−1)2 accounts for the fact that some conjugacy classes are bigger,
and is essentially the Weyl integration formula for SU(2).

Let us check directly that this is indeed the right factor for converting in-
tegrals of class functions into integrals over the torus. To see this it is easiest
to identify SU(2) with the sphere of unit quaternions, so its maximal torus is
the circle of quaternions eix. Two unit quaternions are conjugate if and only if
they have the same real part. So to each element u = eix of the circle S1 we
get a 2-sphere of unit quaternions conjugate to it. The volume of this 2-sphere
is 4π sin(x)2, so we see that if f is a class function then∫

S3

f(g)dg =
4π sin(x)2

2

∫
x mod 2π

f(eix)dx

The factor of 2 in the denominator comes from the fact that there are 2 points
in S1 for most conjugacy classes, and is the order of the Weyl group.

We can now check directly that we have found an orthonormal base for the
class functions on S3, because the functions un+1 − u−n−1 form an orthogonal
basis for the odd functions on the unit circle.

This shows that the representations we have found are irreducible because
their characters have norm 1 (when the measure on the group is normalized
to have volume 1). We can also check directly that the representations are
irreducible. For example, any nonzero subrepresentation splits as a sum of
eigenspaces of the torus S1, in other words a sum of spaces generated by mono-
mials xnyn−i, and if we are given such a monomial we can recover the other
eigenspaces by acting on it with suitable elements of SU(2) and then taking
eigenspaces again.

We will restate the relation between representations of S3 and its torus in a
way that generalizes to compact groups:

• Conjugacy classes of S3 correspond to elements of the torus modulo the
action of the Weyl group.

• The irreducible representations of the torus form a lattice acted on by the
Weyl group.

• The irreducible representations of the compact group correspond to orbits
of the Weyl group on representations of the torus on which the Weyl group
acts faithfully.

• There is a fudge factor relating integration of class functions on the group
to integration of Weyl-invariant functions on the torus.

• The character of a representation is an alternating sum over the Weyl
group divided by the square root of the fudge factor. (It seems to be a
lucky coincidence that the fudge factor for S3 happens to be a square: in
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fact this always happens, essentially because the roots of a Lie group come
in opposite pairs.)

• Orthogonality for characters of S3 reduces to orthogonality of characters
on the torus. Completeness of characters of S3 reduces to completeness
for functions on the torus that are alternating under the action of the
Weyl group.

Example 268 We can decompose tensor products and symmetric squares of
representations by calculating characters. For example, the tensor product of
the 6 and 3 dimensional representations is the sum of the 4, 6, and 8 dimensional
representations, and the symmetric square of the 6-dimensional representation
is the sum of the 9, 5, and 1-dimensional representations.

The characters of SU(2) are unimodal. This means the coefficient of qn is at
least that of qn+2 whenever n ≥ 0. They are also symmetric under changing q to
q−1. Unimodal polynomials often turn out to be characters of representations
of SU(2).

Example 269 Show that the Hopf manifold C2/(x, y) = (2x, 2y) is not Kaehler.
The underlying topological space is S1×S3, so the character of its cohomology
ring is 1 + q+ q3 + q4 which is not unimodal: there is a gap at q2. However they
theory of Kaehler manifolds shows that the cohomology is a representation of
SU(2) with the various cohomology groups corresponding to the eigenspaces of
a torus. So the character of the cohomology ring has to be a character of SU(2)
(shifted by a power of q).

Exercise 270 The Gaussian binomial coefficients (or q-binomial coefficients)
are given by

(1− q)(1− q2) · · · (1− qn)

(1− q)(1− q2) · · · (1− qk)× (1− q)(1− q2) · · · (1− qn−k)

Show that they are (up to a power of q) characters of SU(2) (in fact the k exterior
power of the n-dimensional irreducible character), and therefore unimodal.

We show that we can find any irreducible representation V inside the regular
representation. For this we pick any nonzero vector w in the dual of V . Then
we can map any vector v ∈ V to the function on G taking g to w(g(v)). This
embeds the representation V into the group ring, so we can find all irreducible
representations by decomposing the regular representation. In fact we can do
better than this. Instead of fixing w we can do this simultaneously for all w in
the dual, and we get a linear map from V ⊗ V ∗ = End(V ) to the group ring.
Moreover the group ring is not just a representation of G, but of G×G, because
G can act by multiplication on either the left or the right and these two actions
commute.

So for each irreducible representation V we can find an image of End(V )
inside the group ring. There are two natural questions: is the map from End(V )
to the group ring injective, and is the group ring the direct sum of these spaces?
Over general fields the answer to both questions is no. For example, over the
real numbers this fails even for the cyclic group of order 3 which has irreducible
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representations of dimensions 1 and 2, and over algebraically closed fields of
positive characteristic dividing the order of G it fails badly because the group
ring of G has a large radical (a nilpotent ideal). However it does hold over the
complex numbers: the group ring is the direct sum of matrix rings of irreducible
representations.

Example 271 In particular this shows that the sum of the squares of the ir-
reducible complex representations of a finite group is the order of the group.
This sometimes gives a quick way to check that we have found all irreducible
representations.

Remark 272 This generalizes to compact (Lie) groups when it is called the
Peter-Weyl theorem: the space of L2 functions on a compact group splits as
a direct sum of spaces naturally isomorphic to the endomorphism rings of the
irreducible representations. In general the representation theory of compact Lie
groups is rather similar to the representation theory of finite groups. For non-
compact groups the result can fail drastically: there are sometimes irreducible
unitary representations that cannot be seen inside the regular representation,
and this is one reason why finding the irreducible unitary representations of a
non-compact Lie group can be rather hard. (In technical terms the support
of the Plancherel measure need not be the whole space of unitary irreducible
representations.)

Remark 273 This is all closely related to the Wedderburn structure theorem
for finite-dimensional semisimple algebras over a field. This says that such an
algebra is a direct sum of matrix algebras over division rings. The group ring of
a finite group over a field of characteristic 0 is semisimple so splits as a direct
sum of matrix algebras over division rings, where each matrix algebra Mn(D)
corresponds to an irreducible representation of dimension n dim(D) where the
algebra of endomorphisms commuting with G is the division algebra D. So the
order of the group is the sum of numbers n2d corresponding to representations
of dimension nd. Over the complex numbers the division algebras D are all just
the complex numbers and the numbers d are all 1.

21 Schur indicator

Complex representation theory gives a good description of the homomorphisms
from a group to a special unitary group. The Schur indicator describes when
these are orthogonal or quaternionic, so it is also easy to describe all homomor-
phisms to the compact orthogonal and symplectic groups (and a little bit of
fiddling around with central extensions gives the homomorphisms to compact
spin groups). So the homomorphisms to any compact classical group are well
understood. However there seems to be no easy way to describe the homomor-
phisms of a group to the exceptional compact Lie groups.

We have several closely related problems:

• Which irreducible representations have symmetric or alternating forms?

• Classify the homomorphisms to orthogonal and symplectic groups
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• Classify the real and quaternionic representations given the complex ones.

Suppose we have an irreducible representation V of a compact group G. We
study the space of invariant bilinear forms on V . Obviously the bilinear forms
correspond to maps from V to its dual, so the space of such forms is at most
1-dimensional, and is non-zero if and only if V is isomorphic to its dual, in other
words if and only if the character of V is real. We also want to know when the
bilinear form is symmetric or alternating. These two possibilities correspond
to the symmetric or alternating square containing the 1-dimensional irreducible
representation. So (1, χS2V −χΛ2V ) is 1, 0, or −1 depending on whether V has
a symmetric bilinear form, no bilinear form, or an alternating bilinear form. By
the formulas for the symmetric and alternating squares this is given by

∫
G
χg2,

and is called the Schur indicator. We have just seen that it vanishes if and only
if the character of V has a non-real value.

Exercise 274 If G is a finite group of odd order, show that the map taking
g to g2 is a bijection, and deduce that the Schur indicator of any non-trivial
irreducible representation is 0. Using the fact that the degree of an irreducible
character divides the order of the group, show that the number of elements of
G is equal to the number of conjugacy classes mod 16.

Exercise 275 Find the Schur indicators of the irreducible representations of
SU(2).

Lemma 276 For an irreducible representation V of a compact group the fol-
lowing conditions are equivalent

• V has Schur indicator 1

• V has has a nonzero invariant symmetric bilinear form

• V has an invariant real form

• V has an invariant antilinear involution

• V is reducible as a real representation.

Proof It is obvious that real forms correspond to (fixed points of) antilinear
involutions. If V has a real formW , then a non-zero invariant symmetric bilinear
form of W (which always exists as G is compact: take an average of any positive
definite form) gives one on V . Conversely if V has a non-zero invariant bilinear
form (a, b) then we can normalize it so that <(a, a) ≤ 〈a, a〉 with equality holding
for some non-zero a. Then the a for which equality holds form a subspace (as
it is the kernel of a positive semidefinite real bilinear form). This subspace is a
real form of V . �

Lemma 277 If V is an irreducible representation of a compact group then the
following conditions are equivalent:

• V has Schur indicator −1

• V has a nonzero invariant skew symmetric form
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• The underlying real representation of V has a quaternionic structure.

Proof The existence of a nonzero invariant bilinear form on V is equivalent to
the existence of an invariant antilinear map j on V , by putting (a, b) = 〈a, bj〉.
We consider the real algebra generated by i and j. This is either the quaternions
or the 2 by 2 matrices over the reals, and the latter case corresponds to V
being reducible over the reals. We have seen that the case when V is reducible
corresponds exactly to the case when the bilinear form is symmetric, so the case
when V is quaternionic corresponds exactly to the case when the bilinear form
is antisymmetric. �

To summarize, the real irreducible representation can be read off from the
complex ones as follows:

• Complex irreducible representations of complex dimension d with real
character and Schur index +1 give a real irreducible representation of
real dimension d as a real form.

• Complex irreducible representations of complex dimension d with non-real
character occur in complex conjugate pairs. The underlying real represen-
tations of these two complex representations are isomorphic and give an
irreducible real representation of dimension 2d, with a complex structure
(or more precisely two different complex structures).

• Complex irreducible representations of complex dimension d with Schur
indicator −1 have d even, and the underlying real vector space is an irre-
ducible real representation with a quaternionic structure or real dimension
2d divisible by 4.

In practice real representations are most common and quaternionic ones
tend to be rare.

Example 278 The groups D8 and Q8 have the same character table. However
the 2-dimensional representations behave differently: one is real and the other
is quaternionic.

Example 279 We find the real (orthogonal) representations of SU(2). The
Schur indicator of the n + 1-dimensional irreducible complex representation is
(−1)n: we can evaluate this either by decomposing the virtual character qn +
· · · q−n as a linear combination of characters, or by computing the integral∫

S1

(q2n + q2n−4 + · · · )(q − q−1)2 −1

2× 2π
dx

where q = eix. So the real representations have dimensions 1, 3, 4, 5, 7, 8, 9,..
and the ones of dimension divisible by 4 are quaternionic.

Exercise 280 Let G be a non-cyclic finite group of rotations in 3-dimensional
space (so G is dihedral or the rotations of a Platonic solid). Show that its
inverse image in S3 is a group of order 2|G| that has an irreducible 2-dimensional
complex representation with Schur index −1.
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Exercise 281 By the Wedderburn structure theorem, the real group algebra
of G is a sum of matrix algebras over real division algebras, corresponding to
the various real irreducible representations of G. Tensoring with C gives the
complex group ring, which decomposes as a sum of matrix algebras over C,
corresponding to the complex irreducible representations of C. Show that this
is equivalent to the description of the real representations in terms of the Schur
indicator.

22 Representations of SL2

Finite dimensional complex representations of the following are much the same:
SL2(R), sl2R, sl2C (as a complex Lie algebra), su2R, and SU2. This is because
finite dimensional representations of a simply connected Lie group are in bi-
jection with representations of the Lie algebra. Complex representations of a
REAL Lie algebra L correspond to complex representations of its complexifica-
tion L⊗ C considered as a COMPLEX Lie algebra.

Note that complex representations of a COMPLEX Lie algebra L⊗C are not
the same as complex representations of the REAL Lie algebra L⊗C ∼= L+L. The
representations of the real Lie algebra correspond roughly to (reps of L)⊗(reps
of L).

Strictly speaking, SL2(R) is not simply connected, which is not important
for finite dimensional representations.

Set Ω = 2EF + 2FE +H2 ∈ U(sl2R). The main point is that Ω commutes
with sl2R. You can check this by brute force:

[H,Ω] = 2 ([H,E]F + E[H,F ])︸ ︷︷ ︸
0

+ · · ·

[E,Ω] = 2[E,E]F + 2E[F,E] + 2[E,F ]E

+ 2F [E,E] + [E,H]H +H[E,H] = 0

[F,Ω] = Similar

Thus, Ω is in the center of U(sl2R). In fact, it generates the center. This does
not really explain where Ω comes from. Why does Ω exist? The answer is that it
comes from a symmetric invariant bilinear form on the Lie algebra sl2R given by
(E,F ) = 1, (E,E) = (F, F ) = (F,H) = (E,H) = 0, (H,H) = 2. This bilinear
form is an invariant map L ⊗ L → C, where L = sl2R, which by duality gives
an invariant element in L⊗L, which turns out to be 2E⊗F + 2F ⊗E+H⊗H.
The invariance of this element corresponds to Ω being in the center of U(sl2R).

The bilinear form on SL2(R) in turn can be constructed as (a, b) = TraceV (ab)
for some representation V . When V is the adjoint representation this is the
Killing form. By a deep theorem of Cartan this form is non-degenerate when
the Lie algebra is semisimple, though of course for SL2(R) this is easy to check
directly.

Since Ω is in the center of U(sl2R), it acts on each irreducible representation
as multiplication by a constant. We can work out what this constant is for the
finite dimensional representations. Apply Ω to the highest vector wn:

(2EF + 2FE +HH)wn = (2n+ 0 + n2)wn

= (2n+ n2)wn
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So Ω has eigenvalue 2n+n2 on the irreducible representation of dimension n+1.
Thus, Ω has DISTINCT eigenvalues on different irreducible representations,
so it can be used to separate different irreducible representations. For more
general semisimple Lie groups, the Casimir operator may take the same value
on different irreducible representations, though it always distinguishes the trivial
1-dimensional representation from the others.

Theorem 282 Finite dimensional representations of the complex Lie algebra
sl2(C) are completely reducible.

This is the key property that makes the representation theory easy. In particular
the representation theory of this non-abelian Lie algebra is easier than that of
apparently simpler algebras such as the abelian Lie algebra R2 (classification of
2 commuting matrices is a hard problem).
Proof We will give two proofs of this result, both of which use important ideas.

For the first proof, we use the fact that all finite dimensional representations
of compact groups are completely reducible. Since the finite dimensional com-
plex representations of the complex Lie algebra sl2(C) are “the same” as the fi-
nite dimensional complex representations of the real Lie algebra of SU(2), which
are in turn the same as the finite-dimensional representations of the compact
group SU(2), its finite dimensional representations are completely reducible.
(Its infinite dimensional representations are quite unlike those of SU(2), and
are not completely reducible.) This is Weyl’s famous unitarian trick.

The second proof uses the Casimir operator, and illustrates how to use ele-
ments of the center of the UEA. This is an algebraic proof, that also works for
some infinite dimensional Lie algebras when the “analytic” proof fails. The key
point is that the Casimir operator can be used to separate the different irre-
ducible representations, and in particular can separate the trivial representation
from the others.

The key case is to show that if we have an exact sequence of modules

0→ V →W → C → 0

with V simple, then it splits. If V is the trivial 1-dimensional module, then this
follows because SL2(C) is prefect: it has no nontrivial 2-dimensional represen-
tations that are strictly upper triangular. If V is nontrivial we use the Casimir
operator: it has different eigenvalues for V and C, so W can be split as the
sum of eigenspaces of the Casimir, and this splitting is invariant under sl2(C)
because the Casimir commutes with sl2(C).

The general case follows from the key case above by linear algebra as follows.
Any exact sequence of the form

0→ V →W → C → 0

for a possibly reducible V splits by induction on the length of V : we can split
off a top irreducible component of V and work down. Now if we have a general
exact sequence of the form

0→ X → Y → Z → 0

We want to find a splitting of this sequence, which is given by a sl2(C)-invariant
map from Y to X that is the identity on X. we let V be the subspace of
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HomC(Y,X) of elements that act as a constant on X ⊆ Y , and let W be the
codimension 1 subspace of elements where this constant is 0, so we have an
exact sequence

0→ V →W → C → 0.

This splits, in other words we get a map from C to W whose image is fixed by
sl2(C), in other words a sl2(C) linear map from Y to X that is a (nonzero!)
constant on X. This gives the desired splitting of

0→ X → Y → Z → 0.

�

There are two properties of sl2(C) that make the proof of complete reducibil-
ity work: first, it is perfect, so extensions of trivial modules split, and second it
has a Casimir element that separates the trivial module from others. The proof
works for any other Lie algebra with these two properties, which we will later
see includes all finite dimensional semisimple complex Lie algebras. For SL2

the Casimir operator distinguishes any two non-isomorphic finite dimensional
representations, but this is no longer true for higher rank Lie algebras: there can
be several different irreducible representations with the same eigenvalue for the
Casimir operator. However there are “higher Casimir” operators in the center of
the universal enveloping algebra that separate all finite dimensional irreducible
representations.

Complete reducibility is quite rare: in general it fails for infinite dimen-
sional Lie algebras, or simple Lie algebras in positive characteristic, or infinite
dimensional representations of simple complex Lie algebras.

Exercise 283 Find an infinite dimensional representation of sl2(C) that is not
completely reducible. Find a perfect finite dimensional complex Lie algebra
whose finite dimensional representations are not completely reducible.

Exercise 284 Show that the adjoint representation of sln(Fp) on gln(Fp) is
not completely reducible if p divides n.

Exercise 285 Show that if the finite dimensional representations of a finite
dimensional Lie algebra over some field are completely reducible, then the Lie
algebra is a direct sum of simple Lie algebras.

Exercise 286 Classify the finite dimensional indecomposable representations
of the 1-dimensional abelian complex Lie algebra. What does this have to do
with Jordan blocks of the Jordan normal form of a matrix?

We will now find the irreducible finite dimensional representations of the Lie
algebra sl2R, which has basis H =

(
1 0
0 −1

)
, E = ( 0 1

0 0 ), and F = ( 0 0
1 0 ). H is a

basis for the Cartan subalgebra
(
a 0
0 −a

)
. E spans the root space of the simple

root. F spans the root space of the negative of the simple root. We find that
[H,E] = 2E, [H,F ] = −2F (so E and F are eigenvectors of H), and we can
check that [E,F ] = H.

The Weyl group is generated by ω =
(

0 1
−1 0

)
and ω2 =

(−1 0
0 −1

)
.

Let V be a finite dimensional irreducible complex representation of sl2R.
First decompose V into eigenspaces of the Cartan subalgebra (weight spaces)
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(i.e. eigenspaces of the element H). Note that eigenspaces of H exist because
V is finite dimensional and complex. Look at the LARGEST eigenvalue of H
(exists since V is finite dimensional), with eigenvector v. We have that Hv = nv
for some n. Compute

H(Ev) = [H,E]v + E(Hv)

= 2Ev + Env = (n+ 2)Ev

So Ev = 0 (otherwise it would be an eigenvector of H with higher eigenvalue).
[E,−] increases weights by 2 and [F,−] decreases weights by 2, and [H,−] fixes
weights.

We have that E kills v, and H multiplies it by n. What does F do to v?
What is E(Fv)?

EFv = FEv + [E,F ]v

= 0 +Hv = nv

In general, we have

H(F iv) = (n− 2i)F iv

E(F iv) = (ni− i(i− 1))F i−1v

F (F iv) = F i+1v

So the vectors F iv span V because they span an invariant subspace. This gives
us an infinite number of vectors in distinct eigenspaces of H, and V is finite
dimensional. Thus, F kv = 0 for some k. Suppose k is the smallest integer such
that F kv = 0. Then

0 = E(F kv) = (nk − k(k − 1))EF k−1v︸ ︷︷ ︸
6=0

So nk − k(k − 1) = 0, and k 6= 0, so n− (k − 1) = 0, so k = n+ 1 . So V has
a basis consisting of v, Fv, . . . , Fnv. The formulas become a little better if we

use the basis wn = v, wn−2 = Fv,wn−4 = F 2v
2! ,

F 3v
3! , . . . ,

Fnv
n! .

This says that E(w2) = 5w4 for example. So we’ve found a complete de-
scription of all finite dimensional irreducible complex representations of sl2R.

These representations all lift to the group SL2(R): SL2(R) acts on homo-
geneous polynomials of degree n by

(
a b
c d

)
f(x, y) = f(ax+ by, cx+ dy). This is

an n+ 1 dimensional space, and we can check that the eigenspaces are xiyn−i.

Corollary 287 The Cartan subalgebra H acts semisimply on any finite-dimensional
representation.

Proof First notice that this is quite subtle (from an algebraic point of view): for
example, the elements E and F which look rather similar toH in the relations for
sl2(R) do not act semisimply: in fact they are nilpotent on any finite-dimensional
representation. The fact that H acts semisimply follows from the fact that we
have checked this explicitly on the finite dimensional irreducible representations,
and any finite dimensional representation is a direct sum of irreducible ones. �
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We have implicitly constructed Verma modules. We have a basis

wn, wn−2, . . . , wn−2i, . . .

with relations
H(wn−2i) = (n− 2i)wn−2i

,
Ewn−2i = (n− i+ 1)wn−2i+2

, and
Fwn−2i = (i+ 1)wn−2i−2

. These are obtained by copying the formulas from the finite dimensional case,
but allow it to be infinite dimensional. This is the universal representation
generated by the highest weight vector wn with eigenvalue n under H (highest
weight just means E(wn) = 0).

For general semisimple groups, a Verma module is the universal module
generated by a highest weight vector: a vector that is an eigenvector of the
Cartan subalgebra (eigenvalue=weight) and killed by positive root spaces. They
are easy to handle because one can start at the highest weight vector and work
down. Any finite-dimensional irreducible module has a highest weight, so is a
quotient of some Verma module. This suggests that it is useful to study the
submodule structure of Verma modules. In general this is quite complicated:
the solution involves Kazhdan-Lusztig polynomials, but for SL2(R) it is much
easier and we can do it as follows.

We can start by asking when a Verma module Vλ with some highest weight
λ is irreducible. So it has a basis vλ, vλ−2, . . ., If we have some submodule W
then by decomposing W into eigenspaces of H we may assume that W contains
some eigenvector vµ. Take µ to be as large as possible, so µ is killed by E. So
we want to solve the following problem: which vectors vµ are highest weight
vectors? This is easy using the explicit formula Ewλ−2i = (λ − i + 1)wλ−2i+2

for the action of E: we see that it is only possible if λ − i + 1 = 0 (or i = 0)
for some positive integer i. So generically Verma modules are irreducible: the
only exceptions are the modules Vλ for λ a non-negative integer, which have a
unique nonzero proper submodule isomorphic to V−λ−2.

There is an alternative argument for testing when one Verma module is
in another, which generalizes better to higher rank Lie algebras. For this we
observe that the Casimir operator acts on a Verma module as multiplication by
a scalar, so one Verma module maps non-trivially to another only if they have
the same eigenvalue for the Casimir. To calculate this eigenvalue it is enough
to do so for the highest weight vector, as this generates the Verma module and
the Casimir commutes with the Lie algebra. To compute the eigenvalue on the
highest weight vector it is convenient to rewrite the Casimir as

Ω = 2EF + 2FE +H2 = 2FE + 2[E,F ] + 2FE +H2 = 4FE +H2 + 2H

because the term FE vanishes on the highest weight vector. So if the highest
weight is λ, then the Casimir acts as multiplication by λ2 + 2λ = (λ+ 1)2 − 12.
So if there is a non-zero map between two Verma modules with highest weights
λ, µ then (λ+1)2 = (µ+1)2, in other words λ+1 and µ+1 are conjugate under
the Weyl group {±1}. For higher rank Lie algebras the analogous theorem says
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that two Verma modules with highest weights λ and µ have the same eigenvalues
for ALL Casimir operators if and only if λ + ρ and µ + ρ are conjugate under
the Weyl group, where ρ is a vector called the Weyl vector, equal to half the
sum of the positive roots.

The quotient Vλ/V−λ−2 is the finite dimensional module of dimension λ+ 1.
So we get an exact sequence

0→ V−λ−2 → Vλ → (λ+ 1)− dim rep

Verma modules are rank 1 free modules over the universal enveloping algebra
of F , with character qλ/(1 − q2). If we pretend we do not know the character
of the finite dimensional modules, we can work it out from this resolution by
Verma modules by taking the alternating sum over the characters of the Verma
modules, so we get (qλ − q−λ−2)/(1 − q2). The number of Verma modules
appearing in this resolution is the order of the Weyl group. In fact if we look
at the character formulas∑

w e
w(λ+ρ)∏

α>0 e
ρ(1− e−α)

=
∑
w

ew(λ+ρ)−ρ∏
α>0(1− e−α)

we see that it is expressing the character of a finite dimensional representation
as an alternating sum of characters of Verma modules with highest weights
w(λ+ ρ)− ρ, coming from a resolution.

The factor q − q−1 in the denominator of the character formula appears
for completely different reasons in these two approaches to the representation
theory. In the analytic approach where we integrate over compact groups, q−q−1

appears as the square root of the fudge factor needed to convert integrals over
the group to integrals over the Cartan subgroup. In the algebraic approach, it
appears as the inverse of the character of a Verma module.

Some things go wrong in infinite dimensions.

Warning 288 Representations corresponding to the Verma modules with this
Cartan subalgebra never lift to representations of SL2(R), or even to its univer-
sal cover. The reason: look at the Weyl group (generated by

(
0 1
−1 0

)
) of SL2(R)

acting on 〈H〉; it changes H to −H. It maps eigenspaces with eigenvalue m
to eigenvalue −m. But if we look at the Verma module, it has eigenspaces
n, n− 2, n− 4, . . . , and this set is obviously not invariant under changing sign.
The usual proof that representations of the Lie algebra lifts uses the exponen-
tial map of matrices, which doesn’t converge in infinite dimensions. However,
Verma modules using the compact Cartan subalgebra rather than the split one
do sometimes lift to representations of the group, called holomorphic discrete
series representations.

Remark 289 The universal cover S̃L2(R) of SL2(R), or even the double cover
Mp2(R), has no faithful finite dimensional representations. Proof Any finite
dimensional representation comes from a finite dimensional representation of
the Lie algebra sl2R. All such finite dimensional representations factor through
SL2(R). �
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There is an obvious integral form of the UEA of SL2, given as the one
generated by E, F and H, in other words the UEA of the Lie algebra over the
integers. However this is not really a very good integral form: for example,
its dual (a commutative ring) ought to be something like a completion of a
coordinate ring of the group, but is not. The right integral form was found
by Chevalley, and can be motivated by trying to find an integral from that
preserves the obvious integral form of the finite-dimensional representations.

Exercise 290 Show that the elements En/n!, Fn/n! preserve the integral forms
of finite dimensional representations and Verma modules given above. (The
integral form of Verma modules is not the one generated by the action of F on
the highest weight vector!)

So Chevalley’s integral form of the universal enveloping algebra is the subalgebra
generated by these elements. It has the useful property that coefficients of
exp(tE) and exp(tF ) are in the integral form. Since E and F act nilpotently on
finite dimensional representations this means that exp(tE) and exp(tF ) make
sense over any commutative ring.

Exercise 291 Show that Hn/n! does not usually preserve the integral form of
finite dimensional representations, but that

(
H
n

)
does. Show that these elements

are in the integral form generated by En/n! and Fn/n!.

Exercise 292 Show that the dual of the integral form above is a power series
ring in 3 variables. (The integral form is a cocommutative Hopf algebra, so its
dual is a commutative ring.)

23 Infinite dimensional unitary representations

Last lecture, we found the finite dimensional (non-unitary) representations of
SL2(R).

23.1 Background about infinite dimensional representa-
tions

(of a Lie group G) What is an infinite dimensional representation?

1st guess Banach space acted on by G?

This is no good for the following reasons: Look at the action of G on the
functions on G (by left translation). We could use L2 functions, or L1 or
Lp. These are completely different Banach spaces, but they are essentially
the same representation.

2nd guess Hilbert space acted on by G? This is sort of okay.

The problem is that finite dimensional representations of SL2(R) are NOT
Hilbert space representations, so we are throwing away some interesting
representations.
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Solution (Harish-Chandra) Take g to be the Lie algebra of G, and let K be the
maximal compact subgroup. If V is an infinite dimensional representation
of G, there is no reason why g should act on V .

The simplest example fails. Let R act on L2(R) by left translation. Then
the Lie algebra is generated by d

dx (or i ddx ) acting on L2(R), but d
dx of an

L2 function is not in L2 in general.

Let V be a Hilbert space. Set Vω to be the K-finite vectors of V , which
are the vectors contained in a finite dimensional representation of K. The
point is that K is compact, so V splits into a Hilbert space direct sum
finite dimensional representations of K, at least if V is a Hilbert space.
Then Vω is a representation of the Lie algebra g, not a representation of G.
Vω is a representation of the group K. It is a (g,K)-module, which means
that it is acted on by g and K in a “compatible” way, where compatible
means that

1. they give the same representations of the Lie algebra of K.

2. k(u)v = k(u(k−1v)) for k ∈ K, u ∈ g, and v ∈ V .

The K-finite vectors of an irreducible unitary representation of G is AD-
MISSIBLE, which means that every representation of K only occurs a
finite number of times. The GOOD category of representations is the
representations of admissible (g,K)-modules. It turns out that this is a
really well behaved category.

We want to find the unitary irreducible representations of G. We will do
this in several steps:

1. Classify all irreducible admissible representations of G. This was solved
by Langlands, Harish-Chandra et. al.

2. Find which have Hermitian inner products ( , ). This is easy.

3. Find which ones are positive definite. This is very hard, and has not been
solved for all simple Lie groups, though it has been done for some infinite
series such as general linear groups. We will only do this for the simplest
case: SL2(R), which is much easier than most other cases.

23.2 The group SL2(R)
We found some generators (in Lie(SL2(R))⊗C last time: E, F , H, with [H,E] =
2E, [H,F ] = −2F , and [E,F ] = H. We have that H = −i

(
0 1
−1 0

)
, E =

1
2

(
1 i
i −1

)
, and F = 1

2

(
1 −i
−i −1

)
. Why not use the old

(
1 0
0 −1

)
, ( 0 1

0 0 ), and ( 0 0
1 0 )?

Because SL2(R) has two different classes of Cartan subgroup:
(
a 0
0 a−1

)
,

spanned by
(

1 0
0 −1

)
, and

(
cos θ sin θ
− sin θ cos θ

)
, spanned by

(
0 1
−1 0

)
, and the second one

is COMPACT. The point is that non-compact (abelian) groups need not have
eigenvectors on infinite dimensional spaces. An eigenvector is the same as a
weight space. The first thing you do is split it into weight spaces, and if your
Cartan subgroup is not compact, you cannot get started. We work with the
compact subalgebra so that the weight spaces exist.

Given the representation V , we can write it as some direct sum of eigenspaces
of H, as the Lie group H generates is compact (isomorphic to S1). In the finite
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dimensional case, we found a HIGHEST weight, which gave us complete control
over the representation. The trouble is that in infinite dimensions, there is no
reason for the highest weight to exist, and in general they do not as there may
be an infinite number of eigenvalues.

A good substituted for the highest weight vector: Look at the Casimir oper-
ator Ω = 2EF + 2FE +H2 + 1. The key point is that Ω is in the center of the
universal enveloping algebra. As V is assumed admissible, we can conclude that
Ω has eigenvectors (because we can find a finite dimensional space acted on by
Ω). As V is irreducible and Ω commutes with G, all of V is an eigenspace of
Ω. We will see that this gives us about as much information as a highest weight
vector.

Let the eigenvalue of Ω on V be λ2 (the square will make the most interesting
representations have integral λ; the +1 in Ω is for the same reason).

Suppose v ∈ Vn, where Vn is the space of vectors where H has eigenvalue n.
In the finite dimensional case, we looked at Ev, and saw that HEv = (n+2)Ev.
What is FEv? If v was a highest weight vector, we could control this. Notice
that Ω = 4FE + H2 + 2H + 1 (using [E,F ] = H), and Ωv = λ2v. This says
that 4FEv + n2v + 2nv + v = λ2v. This shows that FEv is a multiple of v.

Now we can draw a picture of what the representation looks like: There is a
basis . . . vn−2, vn, vn+2, . . ., with

• Hvn = nvn

• Evn = some multiple of vn+2

• Fvn = some multiple of vn−2

Thus, Vω is spanned by Vn+2k, where k is an integer. The non-zero elements
among the Vn+2k are linearly independent as they have different eigenvalues.
The only question remaining is whether any of the Vn+2k vanish.

There are four possible shapes for an irreducible representation

• infinite in both directions:

• a lowest weight, and infinite in the other direction:

• a highest weight, and infinite in the other direction:

• we have a highest weight and a lowest weight, in which case it is finite
dimensional

We will see that all these show up. We also see that an irreducible representation
is completely determined once we know λ and some n for which Vn 6= 0. The
remaining question is to construct representations with all possible values of
λ ∈ C and n ∈ Z. n is an integer because it must be a representations of the
circle group.

We can write down explicit representations as follows, by copying the for-
mulas for Verma modules and not cutting them off at the highest weight. We
get a representation with basis vi where i runs through either all even integers
or all odd integers, and the action is given by

• Hvn = nvn

• Evn = λ+n+1
2 vn+2

114



• Fvn = λ−n−1
2 vn−2

It is easy to check that these maps satisfy [E,F ] = H, [H,E] = 2E, and
[H,F ] = −2F

Problem: These may not be irreducible, and we want to decompose them
into irreducible representations. The only way they can fail to be irreducible if
if Evn = 0 of Fvn = 0 for some n (otherwise, from any vector, we can generate
the whole space). The only ways that can happen is if

n even: λ an odd integer
n odd: λ an even integer.

What happens in these cases? The easiest thing is probably just to write out
an example.

Example 293 Take n even, and λ = 3, so we have two submodules: one with
basis v4, v6, · · · , and the other with basis v−4, v−6, . . .. So V has two irreducible
subrepresentations V− and V+, and V/(V−⊕V+) is an irreducible 3 dimensional
representation with basis v−2, v0, v2.

Example 294 If n is even, but λ is negative, say λ = −3, we get a subrepre-
sentation with basis v−2, v0, v2.

Here we have an irreducible finite dimensional representation. If we quotient
out by that subrepresentation, we get V+ ⊕ V−. So this is like the previous
example, except that it has been turned upside down.

In particular we can see that the representations are not completely reducible
in general.

There is one case when something slightly different happens:

Exercise 295 Show that for n odd, and λ = 0, then V splits are a direct sum
of two irreducible submodules: V = V+⊕V−. (These are called limits of discrete
series representations.)

So we have a complete list of all irreducible admissible representations:

1. if λ 6∈ Z, we get one representation (remember λ ≡ −λ). This is the
bi-infinite case.

2. Finite dimensional representation for each n ≥ 1 (λ = ±n)

3. Discrete series for each λ ∈ Zr {0}, which is the half infinite case: we get
a lowest weight when λ < 0 and a highest weight when λ > 0.

4. two “limits of discrete series” where n is odd and λ = 0.

Which of these can be made into unitary representations? H† = −H, E† =
F , and F † = E. If we have a Hermitian inner product ( , ), we see that

(vj+2, vj+2) =
2

λ+ j + 1
(Evj , vj+2)

=
2

λ+ j + 1
(vj ,−Fvj+2)

= − 2

λ+ j + 1

λ− j − 1

2
(vj , vj) > 0
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So we want −λ−1−j
λ+j+1 to be real and positive whenever j, j + 2 are non-zero

eigenvectors. So

−(λ− 1− j)(λ+ 1 + j) = −λ2 + (j + 1)2

should be positive for all j. Conversely, when we have this condition, the rep-
resentations have a positive semi definite Hermitian form.

This condition is satisfied in the following cases:

1. λ2 ≤ 0. These representations are called PRINCIPAL SERIES represen-
tations. These are all irreducible except when λ = 0 and n is odd, in which
case it is the sum of two limits of discrete series representations

2. 0 < λ < 1 and j even. These are called COMPLEMENTARY SERIES.
They are annoying, and you spend a lot of time trying to show that they
don’t occur in cases you are interested in, such as the Selberg conjecture.

3. λ2 = n2 for n ≥ 1 (for some of the irreducible pieces).

If λ = 1, we get a 1-dimensional subrepresentation, which is unitary, and
the quotient is the sum of two Verma modules (discrete series representa-
tions).

We see that we get two discrete series and a 1 dimensional representation,
all of which are unitary

For λ = 2 (this is the more generic one), we have a 2-dimensional middle
representation (where (j + 1)2 < λ2 = 4 that is not unitary, which we
already knew. So the discrete series representations are unitary, and the
finite dimensional representations of dimension greater than or equal to 2
are not.

Summary: the irreducible unitary representations of SL2(R) are given by

1. the 1 dimensional representation

2. Discrete series representations for any λ ∈ Z r {0}

3. Two limit of discrete series representations for λ = 0

4. Two series of principal series representations:

j even: λ ∈ iR, λ ≥ 0
j odd: λ ∈ iR, λ > 0

5. Complementary series: parametrized by λ, with 0 < λ < 1.

There seems to be a puzzle here: the discrete series representations of the
group are (completions of) Verma modules, whereas we claimed earlier that
Verma modules were never associated to representations of the group. The
difference is that we are looking at Verma modules for different Cartan subal-
gebras. For the split Cartan subalgebra there is a Weyl group element acting as
−1 on the Lie algebra, which implies that representations of the group cannot be
Verma modules whose weights are not invariant under −1. On the other hand,
for the compact Cartan subalgebra there is no element of the group acting as −1
on its Lie algebra, so this argument no longer applies, and we can have Verma
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modules that are (essentially) representations of the group, at least if we take a
completion of them.

The unitary representations have an obvious topology (for general groups
there is also such a topology, called the Fell topology). This topology is not
Hausdorff: for example, the two limits of discrete series representations are limits
of the same continuous series representations, and the two smallest discrete
series representations and the trivial representation are all some sort of limit of
complementary series representations as λ tens to 1.

The nice stuff that happened for SL2(R) breaks down for more complicated
Lie groups. In particular if the rank is grater than 1 then the Casimir eigenvalue
does not unambiguously determine what the analogues of the operators FE and
so on do.

Representations of finite covers of SL2(R) are similar, except j need not be

integral. For example, for the double cover ŜL2(R) = Mp2(R), 2j ∈ Z.

Exercise 296 Find the irreducible unitary representations of Mp2(R).

Random things not covered: Plancherel measure for SL2(R) (note that 1
is not in the support!), holomorphic modular forms are highest weights for
discrete series representations, Maass wave forms are eigenvectors for principal
series representations, characters of representations.

24 Serre relations

We now construct all the simple complex Lie algebras using the Serre relations.
The Cartan matrix of a root system with simple roots ri is given by aij =
2(ri, rj)/(ri, ri); these numbers are the integers that appear when reflecting rj
in the hyperplane of ri.

Suppose that aij is a Cartan matrix. We can recover the Lie algebra with
this matrix as the Lie algebra generated by elements hi, ei, fi subject to the
following Serre relations:

[ei, fj ] = hiif i = j, 0otherwise (15)

[hi, ej ] = aijej (16)

[hi, fj ] = −aijej (17)

ad(ei)
1−aijej = 0 (18)

ad(fi)
1−aijfj = 0 (19)

As usual when objects are defined using a presentation it is easy to find
an upper bound on the size of the object but harder to find a lower bound
on the size. In particular the main problem with the algebra defined by the
Serre relations is to show that it does not collapse to zero. We will do this in
two steps: first show that in the algebra generated by the first 3 relations the
elements hi are linearly independent by finding some explicit representations of
it, then showing that the ideal generated by the last two relations has trivial
intersection with the subalgebra H spanned by the hi.

So we first forget about the last two relations. Suppose that we have a
graded lie algebra, and let F , H and E be the pieces of degree −1, 0, 1. Then
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• H is a Lie algebra

• E and F are representations of H

• we have a map E ⊗ F 7→ H of H-modules.

Typical example: H=diagonal matrices, E=the things just above the diag-
onal, and F=things just below. In applications, H will be the (abelian) Cartan
subalgebra, E with be the sum of the simple root spaces, and F with be the
sum of the root spaces of minus the simple roots.

Conversely given the data above, we want to construct a graded Lie algebra
G. Obviously we can define a universal such G by generators and relations, and
the problem is to see what its structure is: in particular is is not obvious that
G is nonzero!

We first bound G from above, which is straightforward.

Lemma 297 The obvious vector space map from Free(F ) ⊕ H ⊕ Free(E) to
G is onto, where Free means “free Lie algebra generated by a vector space”.

Proof This is easy: just check that the image of this map is closed under
brackets by elements of E, F , and H, by induction on length. �

Now we have to show that this map is injective, and in particular that G
does not collapse to nothing. As usual, the best way to show that something
given by generators and relations is non-zero is to construct a representation of
it. The idea is to construct representations as some sort of Verma modules: in
other words we have a “lowest weight space” V acted on by H and killed by
F , where V is any representation of H. This gives the action of F and H, but
we have no idea what E does. We try to build a representation by letting the
action of E be as free as possible: in other words we take TE ⊗ V where TE is
the tensor algebra of E (the UEA of the free Lie algebra generated by E). First
we need a lemma for constructing operators on TE:

Lemma 298 Suppose that E is the free associative algebra generated by ele-
ments ei, and we are given operators bi on E and an element e of E. Then
there is a unique operator b such that b(1) = e and [b, ei] = bi.

Proof The algebra E has a basis of elements ei1ei2 · · · ein for n ≥ 0. We define
b by induction on the length n of a basis element by putting

b(1) = e

for the basis element of length 0, and

b(ei · · · ) = eib(· · · ) + bi(· · · )

on elements of positive length. �

So if we know that action of some operator on V , and we are given its
commutators with elements of E (which should of course depend linearly on
E), then we get a unique operator on TE ⊗ V . This immediately gives us
operators on TE⊗V corresponding to elements of H and F , using the fact that
we know [h, e] and then [f, e]. To finish the proof that we have a representation,
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we need to check that [h1, h2] and [h, f ] have the right values. The idea for
doing this is that if two operators on TE ⊗ V are the same on V and have the
same commutators with elements of E, then they are equal. If we write x′ for
the operator on TE ⊗ V corresponding to x, this means we have to check that
[h′1, h

′
2] = [h1, h2]′ and [h, f ]′ = [h′, f ′]. For both identities it is immediate that

they coincide on V , so we just have to check the commutators with and e ∈ E
are the same. This follows from

[e′, [h′1, h
′
2]] = [[e′, h′1], h′2]+[h′1, [e

′, h′2]] = [[e, h1]′, h′2]+[h′1, [e, h2]′] = [[e, h1], h2]′+[h1, [e, h2]]′ = [e, [h1, h2]]′ = [e′, [h1, h2]′]

since we know that ′ is a homomorphism brackets of type [E,H].

Exercise 299 Do the case of [h, f ]′ = [h′, f ′] in the same way.

Exercise 300 Where did the proof use the fact that the map from E⊗F 7→ h
is a homomorphism of H-modules?

In particular we see that Free(E) acts freely on these modules so maps
injectively into G, and by taking V to be any faithful representation of H we
see that H also maps injectively into G. To summarize, we have proved:

Theorem 301 Suppose given a Lie algebra H, and H-modules E and F to-
gether with a map of H-modules from E ⊗ F to H. Then E, F , and H are the
pieces of degree 1, −1 and 0 of a graded Lie algebra G, and the positive part of
G is the free Lie algebra on E. Moreover if V is any representation of H, we
can extend it to a representation of G on TE ⊗ V so that F kills V and E acts
in the obvious way by left multiplication.

Lemma 302 Suppose that g is the Lie algebra generated by elements generated
by elements hi, ei, fi subject to the following relations:

[ei, fj ] = hiif i = j, 0otherwise (20)

[hi, ej ] = aijej (21)

[hi, fj ] = −aijej (22)

Then g can be graded as g = ⊕gm, where g+ = ⊕m>0gm is the subalgebra
generated by the ei, g− = ⊕m>0gm is the subalgebra generated by the fi, and g0

is the subalgebra generated by the hi and is abelian.

Proof This is a fairly straightforward check.
We define the grading by giving each ei degree 1, each fi degree −1, and

each hi degree 0. This defines a grading as all the relations are homogeneous.
(More generally, we could give ei and positive degree di provided we give fi
degree −di, which is occasionally useful.)

The fact that the subalgebra H generated by the elements hi is abelian
follows from

[hi, hj ] = [hi, [ej , fj ]] = [[hi, ej ], fj ] + [ej , [hi, fj ]] = [aijej , fj ] + [ej , [−aijfj ] = 0

so all the elements hi commute with each other, and in particular H is spanned
by the elements hi.
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If we write E, F , and H = g0 for the subalgebras generated by the elements
ei, fi, and hi then the defining relations imply [fi, E] ⊆ E, [fi, E] ⊆ H ⊕ E,
[fi, H] ⊆ F , so the subspace E⊕H ⊕F is closed under fi. Similarly it is closed
under ei and is therefore equal to g as these elements generate g. �

Now we come to the first key point, which is showing that the algebra g does
not collapse.

Lemma 303 The elements hi of the Lie algebra g are linearly independent.

Proof This follows from the previous theorem. �

The Lie algebras we get like this are usually infinite dimensional, as they
contain free lie algebras on E. The key idea is that if we have a subspace X of
Free(E) that is mapped to itself by F and H, then the subspace it generates
under the action of E is still acted on by F and H, so is an ideal of G contained
in Free(E), and therefore having zero intersection with H. So if we can find
such subspaces X we can reduce the size of G. In general there need not be any
such subspaces, but for the special case of the Serre relations we can find some.

The final step is to include the relations ad(ei)
1−aijej = 0 ad(fi)

1−aijfj = 0
and in particular we need to show that these do not cause the Lie algebra to
collapse to 0.

Lemma 304 If i 6= j then the element ad(ei)
1−aijej = 0 of E is is killed by fk.

Proof It is obviously killed by fk if k is not i or j, as then fk commutes with
both ei and ej .

To show that it is killed by fj we have two cases depending on whether aij
is 0 or not.

[fj [ei, [· · · [ei, ej ] · · · ] = [ei, [· · · [ei, [fj , ej ] · · · ] (23)

= −[ei, [· · · [ei, hj ] · · · ] = aij [ei, . . . , , ei] · · · ] (24)

If aij = 0 this vanishes as it contains a factor of aij , while if aij > 0 it vanishes
because 1− aij ≥ 2 so it contains a term [ei, ei].

Finally we show that ad(ei)
1−aijej = 0 is killed by fi, which is where we need

to use the funny-looking exponent 1 − aij . For this we look at the subalgebra
generated by ei, fi, and hi, which is isomorphic to sl2. Moreover the element ej
is killed by fi so generates a Verma module for sl2. The lowest weight ej of this
Verma module has eigenvalue aij for hi, so by the theory of sl2 Verma modules,
the element ad(ei)

nej = 0 for n > 0 is killed by fj if (and only if) n = 1− aij .
�

Theorem 305 In the Lie algebra defined by the Serre relations, the elements
hi, ei, and fi are linearly independent.

Corollary 306 Each of the copies of sl2 spanned by ei, fi, hi act on the Lie
algebra as a sum of finite dimensional representations.

Proof This follows by first checking that each generator of the Lie algebra
lies in a finite dimensional representation (using the extra Serre relations) then
showing that the elements of the Lie algebra with this property are closed under
the Lie bracket. �
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Corollary 307 The action of each Lie algebra sl2 spanned by ei, fi, hi lifts to
an action of the Lie group SL2. In particular the Weyl group element

(
0 1
−1 0

)
acts on the Lie algebra, and acts on the Cartan subalgebra as the reflection of
the corresponding simple root, so we get an action of the Weyl group on the
roots.

This is enough to show that the Lie algebra is finite dimensional: more
precisely every root is conjugate to a simple root under the Weyl group and
therefore has multiplicity 1. (This fails for infinite root systems: for general
Kac-Moody algebras there are more roots that are not conjugate to simple
roots, called imaginary roots, and they can have multiplicity greater than 1.)

Example 308 We can work this out explicitly for the rank 2 algebras, and
write down explicit bases.

Theorem 309 Every root is conjugate to a simple root under the Weyl group.

Proof We need to use the fact that to root system and Weyl group are fi-
nite: the theorem fails for infinite dimensional Kac-Moody algebras, which have
“imaginary” roots not conjugate to simple roots. In particular there is a positive
definite quadratic form preserved by the Weyl group. Look at the Weyl cham-
ber W of the simple roots, and its dual convex cone C generated by the simple
roots. Any positive root is contained in C, and its orthogonal complement has
codimension at least 2 in W unless the root is simple. The conjugates of the
Weyl chamber W under the Weyl group cover the whole space, so if a root is not
conjugate to a simple root under the Weyl group, its orthogonal complement
has codimension at least 2 in the whole space , which is impossible. �

To summarize, we have an explicit description of the Lie algebra: it is a sum
of the Cartan subalgebra H (with basis hi), and a 1-dimensional root space for
each root of the root system, for which we can easily write down an explicit
basis element if we want to.

Exercise 310 Show that the Lie algebra constructed from an irreducible finite
crystallographic root system is simple. (Irreducible means that it is not the sum
of two orthogonal root systems: in the case the Lie algebra splits as the direct
sum of corresponding Lie algebras.) The idea is to look at eigenvectors of the
Cartan subalgebra. If α is some eigenvalue of some element in an ideal, then
show that so is β for and β not orthogonal to α.

Much, but not all, of this theory works for infinite root systems, and the
corresponding Lie algebras are called Kac-Moody algebras. We still get an
action of the Weyl group on the roots, but as mentioned above roots need not
be conjugate to simple roots: the proof above fails because the union of Weyl
chambers need not cover space when the Weyl group is infinite.

25 The Weyl groups of exceptional groups

We use a vector notation in which powers represent repetitions: so (18) =

(1, 1, 1, 1, 1, 1, 1, 1) and (± 1
2

2
, 06) = (± 1

2 ,±
1
2 , 0, 0, 0, 0, 0, 0).

Recall that E8 has the Dynkin diagram
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where each vertex is a root r with (r, r) = 2; (r, s) = 0 when r and s are
not joined, and (r, s) = −1 when r and s are joined. We choose an orthonormal
basis e1, . . . , e8, in which the roots are as given.

We want to figure out what the root lattice L of E8 is (this is the lattice
generated by the roots). If we take {ei − ei+1} ∪ (−15, 13) (all the A7 vectors
plus twice the strange vector), they generate the D8 lattice = {(x1, . . . , x8)|xi ∈
Z,

∑
xi even}. So the E8 lattice consists of two cosets of this lattice, where

the other coset is {(x1, . . . , x8)|xi ∈ Z + 1
2 ,

∑
xi odd}.

Alternative version: If we reflect this lattice through the hyperplane e⊥1 , then
we get the same thing except that

∑
xi is always even. We will freely use both

characterizations, depending on which is more convenient for the calculation at
hand.

We should also work out the weight lattice, which is the vectors s such that
(r, r)/2 divides (r, s) for all roots r. Notice that the weight lattice of E8 is
contained in the weight lattice of D8, which is the union of four cosets of D8:

D8, D8 + (1, 07), D8 + ( 1
2

8
) and D8 + (− 1

2 ,
1
2

7
). Which of these have integral

inner product with the vector (− 1
2

5
, 1

2

3
)? They are the first and the last, so the

weight lattice of E8 is D8 ∪D8 + (− 1
2 ,

1
2

7
), which is equal to the root lattice of

E8.
In other words, the E8 lattice L is unimodular (equal to its dual L′), where

the dual is the lattice of vectors having integral inner product with all lattice
vectors. This is also true of G2 and F4, but is not in general true of Lie algebra
lattices.

The E8 lattice is even, which means that the inner product of any vector
with itself is always even.

Even unimodular lattices in Rn only exist if 8|n (this 8 is the same 8 that
shows up in the periodicity of Clifford groups). The E8 lattice is the only
example in dimension equal to 8 (up to isomorphism, of course). There are two
in dimension 16 (one of which is L ⊕ L, the other is D16∪ some coset). There
are 24 in dimension 24, which are the Niemeier lattices. In 32 dimensions, there
are more than a billion!

The Weyl group of E8 is generated by the reflections through s⊥ where s ∈ L
and (s, s) = 2 (these are called roots). First, let’s find all the roots: (x1, . . . , x8)
such that

∑
x2
i = 2 with xi ∈ Z or Z+ 1

2 and
∑
xi even. If xi ∈ Z, obviously the

only solutions are permutations of (±1,±1, 06), of which there are
(

8
2

)
×22 = 112

choices. In the Z + 1
2 case, we can choose the first 7 places to be ± 1

2 , and the
last coordinate is forced, so there are 27 choices. Thus, we get 240 roots.

Let’s find the orbits of the roots under the action of the Weyl group. We
don’t yet know what the Weyl group looks like, but we can find a large subgroup
that is easy to work with. Let’s use the Weyl group of D8, which consists of the
following: we can apply all permutations of the coordinates, or we can change
the sign of an even number of coordinates (e.g., reflection in (1,−1, 06) swaps
the first two coordinates, and reflection in (1, −1, 06) followed by reflection in
(1, 1, 06) changes the sign of the first two coordinates.)

Notice that under the Weyl group of D8, the roots form two orbits: the set

which is all permutations of (±12, 06), and the set (± 1
2

8
). Do these become

the same orbit under the Weyl group of E8? Yes; to show this, we just need
one element of the Weyl group of E8 taking some element of the first orbit to

the second orbit. Take reflection in ( 1
2

8
)⊥ and apply it to (12, 06): you get
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( 1
2

2
,− 1

2

6
), which is in the second orbit. So there is just one orbit of roots under

the Weyl group.
What do orbits of W (E8) on other vectors look like? We’re interested in

this because we might want to do representation theory. The character of a
representation is a map from weights to integers, which is W (E8)-invariant.
Let’s look at vectors of norm 4 for example. So

∑
x2
i = 4,

∑
xi even, and

xi ∈ Z or xi ∈ Z + 1
2 . There are 8 × 2 possibilities which are permutations of

(±2, 07). There are
(

8
4

)
× 24 permutations of (±14, 04), and there are 8 × 27

permutations of (± 3
2 ,±

1
2

7
). So there are a total of 240 × 9 of these vectors.

There are 3 orbits under W (D8), and as before, they are all one orbit under the

action of W (E8). Just reflect (2, 07) and (13,−1, 04) through (1
2

8
).

Exercise 311 Show that the number of norm 6 vectors is 240 × 28, and they
form one orbit

(If you’ve seen a course on modular forms, you’ll know that the number of
vectors of norm 2n is given by 240×

∑
d|n d

3. If we let call these cn, then
∑
cnq

n

is a modular form of level 1 (E8 even, unimodular), weight 4 (dimE8/2).)
For norm 8 there are two orbits, because we have vectors that are twice a

norm 2 vector, and vectors that are not. As the norm gets bigger, there are a
large number of orbits.

What is the order of the Weyl group of E8? We’ll do this by 4 different
methods, which illustrate the different techniques for this kind of thing:

(1) This is a good one as a mnemonic. The order of E8 is given by

|W (E8)| = 8!×
∏(

numbers on the

affine E8 diagram

)
× Weight lattice of E8

Root lattice of E8

= 8!× (1.2.3.4.5.6.4.2.3)× 1

= 214 × 35 × 52 × 7

These are the numbers giving highest root.

We can do the same thing for any other Lie algebra, for example,

|W (F4)| = 4!× (1.2.3.4.2)× 1

= 27 × 32

(2) The order of a reflection group is equal to the products of degrees of the
fundamental invariants. For E8, the fundamental invariants are of degrees
2,8,12,14,18,20,24,30 (primes +1).

(3) This one is actually an honest method (without quoting weird facts). The
only fact we will use is the following: suppose G acts transitively on a set
X with H = the group fixing some point; then |G| = |H| · |X|.
This is a general purpose method for working out the orders of groups.
First, we need a set acted on by the Weyl group of E8. Let’s take the
root vectors (vectors of norm 2). This set has 240 elements, and the Weyl
group of E8 acts transitively on it. So |W (E8)| = 240 × |subgroup fixing
(1,−1, 06)|. But what is the order of this subgroup (call it G1)? Let’s find
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a set acted on by this group. It acts on the set of norm 2 vectors, but the
action is not transitive. What are the orbits? G1 fixes s1 = (1,−1, 06).
For other roots r, G1 obviously fixes (r, s). So how many roots are there
with a given inner product with s?

(s, r) number choices
2 1 s

1 56 (1, 0,±16), (0,−1,±16), ( 1
2 ,−

1
2 ,

1
2

6
)

0 126
−1 56
−2 1 −s

So there are at least 5 orbits under G1. In fact, each of these sets is
a single orbit under G1. How can we see this? Find a large subgroup
of G1. Take W (D6), which is generated by all permutations of the last
6 coordinates and all even sign changes of the last 6 coordinates. It is
generated by reflections associated to the roots orthogonal to e1 and e2

(those that start with two 0s). The three cases with inner product 1 are
three orbits under W (D6). To see that there is a single orbit under G1, we
just need some reflections that mess up these orbits. If we take a vector

( 1
2 ,

1
2 ,±

1
2

6
) and reflect norm 2 vectors through it, this mixes up the orbits

under W (D6), so we get exactly 5 orbits. So G1 acts transitively on these
orbits.

In fact G1 is the Weyl group of E7, as we will see during the calculation.
We also obtain the decomposition of the Lie algebra E8 under the action
of E7: it splits as representations of dimensions 1, 56, 133, 1, 56, 1. If we
look a bit more closely we see that in fact there is a subgroup E7× SL2,
and E8 decomposes as 133⊗1⊕56⊗2⊕1⊗3. One can see directly from the
roots that the 56 dimensional representation has an invariant bilinear form
induced by the Lie bracket of E8. The 56 dimensional representation of E7

has the special property that all its weights are conjugate under the Weyl
group: such representations are called minuscule, and tend to be rather
special: they include spin representations and some vector representations.

We’ll use the orbit of the 56 vectors r with (r, s1) = −1. Let G2 be
the generated by reflections of vectors orthogonal to s1 and s2 where
S2 = (0, 1,−1, 0, 0, 0, 0, 0).

We have that |G1| = |G2| · 56.

G2 is the Weyl group of E6. We can see that E7 decomposes under E6

as 133 = 78 + 1 + 27 + 27: we get two dual 27 dimensional minuscule
representations of E6. We can also decompose E8 as a representation of
E6, or better as a representation of E6 + sl2, and we get 240 = 78 × 1 +
27× 3 + 27× 3 + 1× 8.

Our plan is to chose vectors acted on by Gi, fixed by Gi+1 which give us
the Dynkin diagram of E8. So the next step is to try to find vectors r
such that s1, s2, r form a Dynkin diagram A3, in other words r has inner
product −1 with s2 and 0 with s1. The possibilities for r are (−1,−1, 0, 05)
(one of these), (0, 0, 1,±1, 04) and permutations of its last five coordinates

(10 of these), and (− 1
2 ,−

1
2 ,

1
2 ,±

1
2

5
) (there are 16 of these), so we get 27
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total. Then we should check that they form one orbit, which is boring so
we leave it as an exercise.

Next we find vectors r such that s1, s2, s3, r form a Dynkin diagram A4,
where s3 is of course 0, 0, 1,−1, 0, 0, 0, 0),

i.e., whose inner product is −1 with s3 and zero with s1, s2. The possi-
bilities are permutations of the last four coords of (0, 0, 0, 1,±1, 03) (8 of

these) and (− 1
2 ,−

1
2 ,−

1
2 ,

1
2 ,±

1
2

4
) (8 of these), so there are 16 total. Again

we should check transitivity, but ill not bother.

For the next step, we want vectors r such that s1, s2, s3, s4, r form a Dynkin
diagram A5; the possibilities are (04, 1,±1, 02) and permutations of the

last three coords (6 of these), and (− 1
2

4
, 1

2 ,±
1
2

3
) (4 of these) for a total of

10 vectors r, and as usual these form a single orbit under G5.

For the next step, we want vectors r such that s1, s2, s3, s4, s5, r form a
Dynkin diagram A6; the possibilities are (05, 1,±1, 0) and permutations

of the last two coords (4 of these), and (− 1
2

5
, 1

2 ,±
1
2

2
) (2 of these) for a

total of 6 vectors r, and as usual these form a single orbit under G6.

The next case is tricky: we want vectors r such that s1, s2, s3, s4, s5, s6, r
form a Dynkin diagram A7;, the possibilities are (06, 1,±1) (2 of these)
and ((− 1

2 )6, 1
2 ,

1
2 ) (just 1). The proof of transitivity fails at this point.

The group G7 we are using by now doesn’t even act transitively on the
pair (06, 1,±1) (we can’t get between them by changing an even number
of signs). What elements of W (E8) fix all of these first 6 points? We want
to find roots perpendicular to all of these vectors, and the only possibility
is (( 1

2 )8). How does reflection in this root act on the three vectors above?

(06, 12) 7→ ((− 1
2 )6, 1

2

2
) and (06, 1,−1) maps to itself. Is this last vector in

the same orbit? In fact they are in different orbits. To see this, look for
vectors completing the E8 diagram. In the (06, 1, 1) case, we can take the
vector ((− 1

2 )5, 1
2 ,

1
2 ,−

1
2 ). But in the other case, we can show that there

are no possibilities. So these really are different orbits. In other words,
there are 3 possible roots r, but these form two orbits under G7 of sizes 1
and 2.

We use the orbit with 2 elements, and check that there are no automor-
phisms fixing s1 to s7, so we find

|W (E8)| = 240× 56×
order of W (E6)︷ ︸︸ ︷

27× 16× 10× 6× 2× 1︸ ︷︷ ︸
order of W (E7)

because the group fixing all 8 vectors must be trivial. We also get that

|W (“E5”)| = 16× 10×
|W (A2×A1)|︷ ︸︸ ︷
6× 2× 1︸ ︷︷ ︸
|W (A4)|

where “E5” is the algebra with diagram (that is, D5). Similarly, E4 is A4

and E3 is A2 ×A1.

We got some other information. We found that the Weyl group of E8

acts transitively on all the configurations A1, A2, A3, A4, A5, A6, but not
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on A7. Obviously a similar method can be used to find orbits of other
reflection groups on other configurations of roots.

The sequence of numbers 1, 2 (or 3), 6, 10, 16, 27, 56, 240 tends to turn
up in a few other places, such as the number of exceptional curves on a
del Pezzo surface (blow up the plane at some points). In particular the
number 27 is the same 27 that appears in the 27 lines on a cubic surface
(=plane blown up at 6 points).

(4)

We now give the fourth method of finding the order of W (E8). Let L be the
E8 lattice. Look at L/2L, which has 256 elements. Look at this as a set acted
on by W (E8). There is an orbit of size 1 (represented by 0). There is an orbit
of size 240/2 = 120, which are the roots (a root is congruent mod 2L to it’s
negative). Left over are 135 elements. Let’s look at norm 4 vectors. Each norm
4 vector, r, satisfies r ≡ −r mod 2, and there are 240 ·9 of them, which is a lot,
so norm 4 vectors must be congruent mod 2 to other norm 4 vectors. Let’s look
at r = (2, 0, 0, 0, 0, 0, 0, 0). Notice that it is congruent to vectors of the form
(0 · · ·± 2 . . . 0), of which there are 16. It is easy to check that these are the only
norm 4 vectors congruent to r mod 2. So we can partition the norm 4 vectors
into 240 ·9/16 = 135 subsets of 16 elements. So L/2L has 1+120+135 elements,
where 1 is the zero, 120 is represented by 2 elements of norm 2, and 135 is
represented by 16 elements of norm 4. A set of 16 elements of norm 4 which are
all congruent is called a FRAME. It consists of elements ±e1, . . . ,±e8, where
e2
i = 4 and (ei, ej) = 1 for i 6= j, so up to sign it is an orthogonal basis.

Then we have

|W (E8)| = (# frames)× |subgroup fixing a frame|

because we know that W (E8) acts transitively on frames. So we need to know
what the automorphisms of an orthogonal base are. A frame is 8 subsets of the
form (r,−r), and isometries of a frame form the group (Z/2Z)8 ·S8, but these are
not all in the Weyl group. In the Weyl group, we found a (Z/2Z)7 ·S8, where the
first part is the group of sign changes of an even number of coordinates. So the
subgroup fixing a frame must be in between these two groups, and since these
groups differ by a factor of 2, it must be one of them. Observe that changing
an odd number of signs doesn’t preserve the E8 lattice, so it must be the group
(Z/2Z)7 · S8, which has order 27 · 8!. So the order of the Weyl group is

135 · 27 · 8! = |27 · S8| ×
# norm 4 elements

2× dimL

Remark 312 Conway used a similar method to calculate the order of his
largest simple group. In this case if we take the Leech lattice mod 2, it de-
composes rather like E8 mod 2 except there are 4 orbits: the zero vector, orbits
represented by a pair ±r of norm 4 vectors, orbits represented by a pair ±r of
norm 6 vectors, and orbits represented by a frame of 48 norm 8 vectors. The
subgroup fixing a frame is 212.M24, If Λ is the Leech lattice, we find the order
of its automorphism group is

|212 ·M24| ·
# norm 8 elements

2× dim Λ
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where M24 is the Mathieu group (one of the sporadic simple groups). Conway’s
simple group has half this order, as one gets it by quotienting out the center
±1. The Leech lattice seems very much to be trying to be the root lattice of the
monster group, or something like that, with its automorphism group behaving
rather like a Weyl group, but no one has really been able to make sense of this
idea.

W (E8) acts on (Z/2Z)8, which is a vector space over F2, with quadratic

form N(a) = (a,a)
2 mod 2, so we get a map

±1→W (E8)→ O+
8 (F2)

which has kernel ±1 and is surjective, as can be seen by comparing the orders
of both sides. O+

8 is one of the 8 dimensional orthogonal groups over F2. So
the Weyl group of E8 is a double cover of an orthogonal group of a vector space
over F2.

26 Invariants of reflection groups

The ring of invariants of a Weyl group turns up a lot in representation theory.
For example, Harish-Chandra showed that the center of the UEA of a semisimple
Lie algebra (the “higher Casimir s”) is isomorphic to the ring of invariants of
the Weyl group. The rational homology of the compact Lie group can be read
off from the ring of invariants of the Weyl group. Fortunately it turns out to
have a very easy structure: it is a polynomial ring. (This is unusual: rings of
invariants of finite groups are usually very complicated.)

For the reflection group Sn acting onRn the invariants are just the symmetric
functions, which form a polynomial ring generated by the usual elementary
symmetric functions.

Exercise 313 Show that the ring of invariants of the reflection group Sn =
An−1 acting on Rn−1 (identified with the vector space of vectors in Rn whose
sum of coordinates is 0) is the polynomial ring C[e2, · · · en] in n− 1 generators.

Exercise 314 Show that the rings of invariants of the reflection groups Bn and
Dn are polynomial rings, and find sets of generators.

Exercise 315 Show that the ring of invariants of the alternating group acting
on x1, · · · , xn is generated by the invariants C[e1, . . . , en] of the symmetric group
together with the invariant ∆ =

∏
i<j(xi − xj). Show that ∆2 is a polynomial

in C[e1, . . . , en] and find this polynomial explicitly when n is 2 or 3. Show that
if n = 3 the ring of invariants is not a polynomial ring.

Example 316 Suppose G is the dihedral group of order 2n acting on R2. We
will find its ring of invariants. The obvious coordinate are x and y, but it is
easier to use z = x + iy and z = x − iy as coordinates. Then one generator of
G takes z to ζz and z to ζz, while the other exchanges z and z. The ring of
invariants is generated by zz and zn + zn.
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The invariants of a finite complex reflection group form a polynomial algebra.
This was first proved by Shephard and Todd who classified all complex reflection
groups into 3 infinite series and 34 exceptional cases, and found the ring of
invariants cases by case. Shortly after Chevalley gave a uniform proof.

Lemma 317 If H is a homogeneous polynomial in I1, . . . and ∂H
∂I1

is a linear

combination of ∂H
∂I2

, . . ., then ∂H
∂I1

= 0.

Proof Look at the terms of H containing a smallest power of I1. This shows
that H must contain terms not involving I1. Moreover we get a linear relation
between the terms of ∂H

∂x2
. . . that do not involve I1. Now use induction on

H(0, I2, · · · ). � Most rings

of invariants are not polynomial rings, so we need to find and use some special
property of rings of invariants when the group is generated by reflections. The
following is the special property of rings of invariants of groups generated by
reflections that implies they are polynomial rings.

Lemma 318 If I1, . . . are homogeneous invariants of a complex reflection group
such that I1 is not in the ideal generated by I2, . . ., and there is some relations

p1I1 + p2I2 + · · · = 0

for homogeneous polynomials pi, then p1 is in the ideal generated by invariants
of positive degree.

Proof The special property of reflections that we will use is that if g is a
reflection with hyperplane f = 0 then p− gp is divisible by f . So we find

gp1 − p1

f
I1 +

gp2 − p2

f
I2 + · · · = 0

and by induction on the degree of p1 we see that gp1 − p1 is in the ideal gen-
erated by invariants of positive degree. So taking an average over g ∈ G shows
that |G|p1 is a linear combination of an invariant and an element in the ideal
generated by positive degree invariants. By assumption p1 cannot have degree
0, so must be in the ideal generated by invariants of positive degree. �

Theorem 319 (Chevalley-Shepherd-Todd) The ring of invariants of a complex
reflection group is a polynomial algebra.

Proof Pick a minimal set of homogeneous invariants I1, I2, . . . that generate the
ideal generated by positive degree invariants (so that by Hilbert’s theorem they
also generate the ring of invariants), We will show that they are algebraically
independent. Suppose that H(I1, I2, . . .) = 0 for some homogeneous polynomial
H. Then

∂H

∂I1

∂I1
∂xi

+
∂H

∂I2

∂I2
∂xi

+ · · · = 0

Choose I1 so that it is degree at least that of I2, · · · . Then ∂H
∂I1

is an invariant

polynomial in x1, . . .. It has degree at most equal to that of ∂H∂I2 , . . . so by lemma

??? is is not in the ideal generated by ∂H
∂I2

, . . .. By lemma ??? this shows that
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its coefficient ∂I1
∂xi

is in the ideal generated by invariants of positive degree. But
then

deg(I1)I1 =
∑

xi
∂I1
∂xi

is also in this ideal, contradicting the fact that I1 is not in the ideal generated
by the other invariants I2, . . .. This shows that the invariants I1, I2, . . . are
algebraically independent, so the ring of invariants is the polynomial ring in
these generators. �

Theorem 320 (Molien) If G is a finite group acting on a vector space V , then
the Poincar series of its ring of invariants S(V )G is∑

n

tn dim((SnV )G) =
1

|G|
∑
g∈G

1

det(1− tg)

Proof A single element g acting on⊕tnSn(V ) has trace 1
det(1−tg) , as one can see

by diagonalizing g. But the dimension of the invariant space of a representation
is just the average of the trace of all elements of g. �

In particular if the ring of invariants of a group is polynomial with generators
of degrees di, we find ∏ 1

1− tdi
=

1

|G|
∑
g∈G

1

det(1− tg)

because the left hand side is the Poincar series of the polynomial ring. Multi-
plying both sides by (1− t)n for n = dim(V ) we find∏ 1

1 + t+ · · ·+ tdi − 1
=

1

|G|
∑
g∈G

(1− t)n

det(1− tg)

Setting t = 1 we find all terms on the left vanish except for the term corre-
sponding to the identity element of G, so we find∏

di = |G|.

Exercise 321 By examining the derivative of both sides at t = 1 show that∑
(di − 1) = half the number of (non-trivial) reflections of G

The degrees di of the generating invariants of a Weyl group control the
corresponding compact Lie group. For example, the real cohomology of the
group is an exterior algebra on generators of degrees 2di − 1, and the center of
the UEA is a polynomial algebra generated by elements of degrees di and, the
order of a “simply connected” Chevalley group is given by q

∑
di−1

∏
(qdi − 1).

Example 322 The rings of invariants of groups that are not reflection groups
tend to be rather complicated. For example, if we take a cyclic group of order
n acting on C[x, y] where the generator multiplies both x and y by a primitive
nth root of 1, then the invariants are generated by the n+ 1 monomials xiyn−i

which is usually not a polynomial ring. There are many relations between these
generators. In general the ring of invariants of a finite group is finitely generated
by Hilbert’s theorem, but the number of generators can be very large, and is
usually much larger than the dimension of the representation.
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This still leaves the problem of finding the degrees of the polynomial genera-
tors of the Weyl groups of F4, E6, E7, E8. One way is to use the following fact:
count the number of positive roots of given height (where the simple roots have
height 1). Then the degrees of the invariants are the heights where the number
of roots drops by 1.

Exercise 323 Find the heights of the 24 positive roots of F4, and use the fact
mentioned above to show that the degrees of the fundamental invariants are
2, 6, 8, 12. If you are feeling ambitious, try E6, E7, E8.

27 Hilbert’s finiteness theorem

Given a Lie group acting linearly on a vector space V , a fundamental problem is
to find the orbits of G on V , or in other words the quotient space. For example,
one might want to find the binary forms of degree n up to equivalence under
the action of SL2. One way to attack this problem is to look at invariants: at
least formally, the functions on the quotient space V/G might be the invariant
functions S(V ∗)G on V . There are a few problems with this as shown by the
following examples:

Example 324 Suppose G is the group of non-zero reals acting on the reals,
so there are two orbits. However the ring of invariants is just R, so this does
not show both orbits. The problem arises from the fact that one orbit is in the
closure of the other, so any invariant function has the same value on both orbits
and invariant functions cannot separate them. The quotient space in this case
is not even Hausdorff. This problem does not appear if the group is compact,
so all orbits are closed. In geometric invariant theory on deals with it by only
considering “stable” or “semistable” orbits.

Example 325 Suppose G is the group of order 2 acing on the reals by −1.
The ring of invariants is a polynomial ring on 1 variable, suggesting that the
quotient space should be the real line. It is not: it is half the real line. What is
happening is that there are some orbits {ix,−ix} in C that are invariant under
complex conjugation, even though the elements in the orbits are not. In other
words the ring of invariants is not really detecting orbits of G on V , but rather
orbits of G on V ⊗ C that are defined over the reals.

To summarize, we might expect the ring of invariants to tell us what the orbits
are, provided the group is compact and its representation is complex. Otherwise
the relation between the ring of invariants and the orbits is more subtle.

We can now ask if the space of orbits, or rather the spectrum of the ring of
invariants, is an algebraic variety. It is an algebra over the complex numbers
with no nilpotents, so it comes from an algebraic variety if and only if it is
finitely generated. Hilbert proved that it was finitely generated in many cases.

We start by disposing of the standard myth about Hilbert’s finiteness theo-
rem. Gordan is supposed to have said about Hilbert’s finiteness proof “this is
not math; this is theology” as Hilbert’s proof was not constructive. It is not all
all clear if he really said this, since there is no written record of it until many
years after he died, and in any case it may have been a joking compliment rather
than a complaint, as Gordan thought highly of Hilbert’s work.
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Theorem 326 If G is a Lie group whose finite dimensional representations
are completely reducible, then the ring of invariants of G acting on a finite
dimensional vector space is finitely generated.

Proof We do the case when G is finite. A is graded by degree. Let I be ideal
generated by positive degree elements of AG. Then I is a finitely generated
ideal by Hilbert basis theorem, with generators i1, . . . , ik which we can assume
are fixed by G. We want to show that these generate AG as an algebra, which
is much stronger than saying they generate the ideal I. (Example: subring of
k[x, y] generated by xy∗ is NOT finitely generated, even though the correspond-
ing ideal is. We need to use some special property of subrings fixed by a finite
group.)

We use the Reynolds operator ρ given by taking average under action of
G (which needs char=0, though in fact Hilbert’s theorem is still true for finite
groups in positive characteristic). Key properties: ρ(ab) = aρ(b) if a fixed by
G, ρ(1) = 1. It is not true that ρ(ab) = ρ(a)ρ(b) in general. ρ is a projection of
AG modules from A to AG but is not a ring homomorphism.

We show by induction on degree of x that if x ∈ AG then it is in algebra
generated by i’s.

We know
x = a1i1 + . . .+ akik

for some a’s in A as x is in I. Apply Reynolds operator:

x = ρ(x) = ρ(a1)i1 + . . .+ ρ(ak)ik

By induction ρ(aj) is in AG as it has degree less than that of x, so x ∈ AG. �

It is astonishing that one of the biggest problems in the 19th century can
now be disposed of in a few lines of algebra. This is essentially Hilbert’s proof,
though his version of it occupied many pages. He had to develop background
results that are now standard such as his finite basis theorem, and instead of
using integration over compact groups used a more complicated operator called
Cayley’s omega process.

The simplicity of the proof may be a bit misleading: it is rather difficult
in general to find explicit generators for rings of invariants, except for a few
special cases such as reflection groups. The invariants tend to be horrendously
complicated polynomials, and the number of them needed as generators can
be enormous. In other words rings of invariants are usually too complicated
to write down explicitly. In turn this suggests that the orbit space of a vector
space under a Lie group may in general be rather complicated.

Compact groups: the proof is similar as can still integrate over the group:
Noncompact groups such as SLn(C): Use Weyl’s unitarian trick: invariant

vectors (for finite dimensional complex reps of the complex group) same as for
compact subgroup SUn, so still get Reynolds operator. Works for all semisimple
or reductive algebraic groups (key point: reps are completely reducible), but
NOT for some unipotent groups (Nagata counterexample to Hilbert conjecture).
Char p harder as groups need not be completely reducible; e.g. Z/pZ acting
on 2-dim space over Fp. Haboush proved Mumford’s conjecture giving a sort
of nonlinear analogue of Reynolds operator, which can be used to prove finitely
generated of invariants for reductive groups as in char 0.
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Example 327 Classical invariant theory: G = SL2(C) acting on

anx
n + an−1x

n−1y + . . .+ a0y
n

, A = C[a0, . . . , an]. AG is the ring of invariants of binary forms, shown to
be finitely generated by Gordan. More complicated examples in more vari-
ables shown to be finitely generated by Hilbert. Example of an invariant: the
discriminant b2 − 4ac of ax2 + bxy + cy2.

Example 328 Hilbert asked if the finiteness theorem still holds for all groups,
even if their finite dimensional representations are not completely reducible.
Nagata found a counterexample as follows. Take the group R acting on R2 by
( 1 t

0 1 ). The sum of 16 copies of this gives an action of R16 on a vector space R32.
Nagata showed that for a generic 13-dimensional subgroup G of the R16, the ring
of invariants is not finitely generated. The group G is just an abelian Lie group,
showing again that abelian Lie groups are in some ways more complicated than
the simple ones.

28 Finite dimensional representations of semisim-
ple Lie groups

We now want to study the finite dimensional representations of the semisimple
Lie groups we have constructed. There are several problems to solve:

• Find the irreducible representations.

• Find the dimension, and more generally the characters, of the irreducible
representations

• Describe the tensor products, symmetric squares, and so on of representa-
tions. In other words find the structure of the lambda-ring generated by
representations.

• Find natural geometric realizations of the representations.

We will solve the first problem, of parameterizing the irreducible represen-
tations, by showing that they correspond to weights in the fundamental Weyl
chamber (Cartan’s theorem).

If we have a representation of one of the Lie algebras we constructed from a
finite root system, then we can look at eigenvectors of the Cartan subalgebra H.
By hitting an eigenvector with elements ei as much as possible, we can assume
that the eigenvalue of the eigenvector is a highest weight, in other words the
eigenvalue is killed by all the ei and is an eigenvector of all the hi. There
is a universal module with these properties called a Verma module. We can
construct it as an induced modules

U(E,H,F )⊗U(E,H) V

where V is any 1-dimensional module over H, where we let E act trivially on
it, so is a module for the UEA U(E,H) of the subalgebra generated by E and
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H. By the PBW theorem we can see that the Verma module can be identified
with the UEA of F , so is the same size as the symmetric algebra on F .

The Verma module is of course infinite dimensional and we need to cut it
down. Look at the action of one of the SL2 subalgebras ei, hi, fi on the highest
weight vector v. This generates a Verma module for SL2, which is infinite
dimensional and usually irreducible. The only way to cut it down to something
finite dimensional is to kill off f1+2(α,αi)/(αi,αi)v, where α is the weight of v and
αi is the root of ei. So we get two necessary conditions on α for it to be the
highest weight of a finite dimensional module:

1. (α, αi) must be an integral multiple of (αi, αi)/2, in other words α must
be in the “weight lattice”

2. (α, αi) must be at least 0, in other words α must be in the fundamental
Weyl chamber.

Conversely if α satisfies these conditions then we get a finite dimensional
module by killing off all the elements f1+2(α,αi)/(αi,αi)v. The proof of this is
similar to the proof that the Lie algebras were finite dimensional: the extra
relations imply that the highest weight vector is contained in finite dimensional
representations of all the sl2’s, which implies that every vector of the represen-
tation is contained in finite dimensional sl2 modules. As before this implies that
the representations of the Lie algebras sl2 lift to representations of the groups
SL2, and therefore the Weyl group acts on the weight spaces. Just as for the
case of Lie algebras, this implies that the representation is finite dimensional.

So this gives a complete list of the finite dimensional irreducible representa-
tions, though it is not obvious what their dimensions or characters are.

We should figure out what the weight lattices are. The weight lattices all
contain the root lattices with finite index, n+ 1 for An, 2 for Bn, Cn, 4 for Dn,
(though there is a difference for n even or odd, as the quotient may be a Klein
4-group or cyclic), 1 for E8, F4, G2, 2 for E7, and 3 for E6.

In general it is not yet clear what the characters or dimensions are: this will
later be given by the Weyl character and dimension formulas. However there
are some easy cases where we can already write down the answers, where the
representation is either minuscule or a representation of SL3.

28.1 Minuscule representations.

There is one case where it is easy to work out the character of a representation:
this is when all weights are conjugate under the Weyl group, so they all have
the same multiplicity as the highest weight, which is of course 1. These are
called minuscule representations. They tend to turn up a lot as the “smallest”
representations of a group: in fact, together with the adjoint representation and
the representation with highest weight a “short” root, they account for most of
the finite-dimensional representations that people study explicitly.

Minuscule representations correspond to characters of the center of the sim-
ply connected compact group. More precisely, for each coset of the weight
lattice, pick a vector of smallest norm. This is the highest weight of a minuscule
representation.

Some authors do not count the identity representation as a minuscule rep-
resentation, which is rather like removing the zero element from a vector space.
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We can list the minuscule representations as follows:

• An: the minuscule representations are the exterior powers of the vector
representation.

• Bn: the minuscule representations are the trivial representation and the
spin representation. (The vector representation is not minuscule!)

• Cn: the minuscule representations are the trivial one and the vector rep-
resentation.

• Dn: the minuscule representations are the trivial representation, the vec-
tor representation, and the two half spin representations.

• E6: The minuscule representations are the trivial representation and the
two 27-dimensional representations, which we constructed earlier by de-
composing E8

• E7 The minuscule representations are the trivial representation and the
56 dimensional one.

28.2 Representations of SL3

For SL3 we already have enough information to find the characters of the irre-
ducible representations. The character of a Verma module is the character of a
polynomial algebra on 3 generators, so looks like:

We can also work out the character of Vλ/f
1+(λ,α1) as:

Using the fact that the character is invariant under the Weyl group, this
gives the character of the irreducible representation: it is in the convex hull of
a sort of semiregular hexagon, and the weight multiplicities increase by 1 every
time one goes 1 step further in, until one gets to the “triangle” in the center
when they become constant.

Example 329 The dimensions of the irreducible representations of dimension
at most 30 are 1, 3, 3, 6, 6, 8, 10, 10, 15, 15, 15, 15, 21, 21, 24, 24, 27, 28, 28,...
In general the dimension of the representation whose highest weight has inner
products m, n with the simple roots is (m+ 1)(n+ 1)(m+n+ 2): these factors
are the inner products of λ+ ρ with the simple roots. This is a special case of
the Weyl dimension formula.

Exercise 330 Verify that the irreducible representation of SL3 whose highest
weight has inner products m and n with the simple roots has dimension (m +
1)(n+ 1)(m+ n+ 2).

Example 331 We can decompose tensor products of representations of SL3

by calculating their characters and writing these as linear combinations of ir-
reducible characters. For example, 6 ⊗ 6 = 15 ⊕ 15 ⊕ 6, 6 ⊗ 6 = 27 ⊕ 8 ⊕ 1,
8⊗ 3 = 15⊕ 6⊕ 3 and so on,

This graphical method is fine for small representations but becomes cum-
bersome for larger representations. The Littlewood-Richardson rule is a more
efficient method for decomposing larger tensor products.
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28.3 Compact Lie algebras

The Lie algebras we have constructed are defined over the reals, but are the split
rather than the compact forms. We can get the compact forms by twisting them.
If we have any involution ω of a real Lie algebra L, we can construct a new Lie
algebra as the fixed points of ω extended as an antilinear involution to L ⊗ C.
This is using the fact that real forms of a complex vector space correspond to
antilinear involutions. The reason why we use involutions rather than elements
of some other order is related to the fact that the Galois group of C/R has order
2. More generally if we wanted to classify (say) rational Lie algebras, we would
get a problem involving non-abelian Galois cohomology groups of the Galois
group of the rationals.

Example 332 The Lie algebra of the unitary group is given by the complex

matrices A with A = −AT , so the involution in this case is A 7→ −AT .

It is obvious how to generalize this example to the Lie algebras constructed
from the Serre relations: the analogue of the transpose swaps ei and fi, so the
involution ω takes ei to −fi, fi to −ei, and hi to −hi.

To show that the corresponding Lie group is compact, it is enough to find
an invariant symmetric bilinear form on the Lie algebra that is definite, as the
Lie group is then a subgroup of the orthogonal group. The split algebra has a
symmetric bilinear form because the adjoint representation is self dual (minus a
root is still a root) and this bilinear form can be normalized so that (ei, fi) = 1.
This bilinear form is not definite: for example (ei, ei) = 0, but a straightforward
calculation shows that its twist by ω is negative definite.

An immediate consequence is that the finite dimensional representations of
all the simple Lie algebras we have constructed are completely reducible, by
Weyl’s unitarian trick: their finite dimensional representations are the same as
those of a compact group.

For a compact Lie algebra, there may be several different connected compact
Lie groups with different centers. We would like to find the simply connected
group (and check it is compact!) so that all others are quotients of it. The key
point is that the center of the simply connected compact group can be identified
with the dual of the finite group (weight lattice/root lattice).

To see this, pick a finite dimensional representation and look at a Cartan
subgroup of the group acting on this representation. Its image is isomorphic
to (Cartan subalgebra/dual of lattice generated by the weights of the repre-
sentation). Except for trivial representations, this lies between (Cartan sub-
algebra/dual of weight lattice) and (Cartan subalgebra/dual of root lattice).
So we see that the Cartan subgroup of the simply connected group is (Cartan
subalgebra/dual of root lattice) and its center is (Dual of root lattice/dual of
weight lattice), which is the dual of (Weight lattice/root lattice). (Here we
use the fact that for a compact group we can finite faithful finite dimensional
representations, and in particular can detect anything in the center using finite
dimensional representations.)

Actually we need a slight further argument: we have really only found the
maximal finite cover of a compact group. However the fundamental group of
the universal cover is finitely generated, so if their is a finite bound for the
finite covers then the maximal finite cover is the universal cover, as any finitely
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generated abelian group such that there is a bound on the sizes of its finite
quotients must be finite.

So now we can list the compact simple simply connected Lie groups:

• An: SU(n+1), center cyclic of order n+ 1.

• Bn: Spin double cover of SO(2n+ 1): center cyclic of order 2.

• Cn: Sp2n(C) ∩ U(2n): center cyclic of order 2.

• Dn: spin double cover of SO2n: center of order 4, cyclic if n is odd.

• E6: Center order 3, faithful action on the 27-dimensional representations

• E7: Center order 2, faithful action on the 56-dimensional representations

• E8, F4, G2: center order 1, faithful action on adjoint representation.

While the group (weight lattice/root lattice) detects elements of the center
that act nontrivially in finite dimensional representations, it fails to detect el-
ements that act trivially in all finite dimensional representations. This cannot
happen for compact groups, but is common for noncompact groups. We have
already seen an example of this for SL2(R), whose universal cover has an infinite
cyclic center, which is not equal to (weight lattice/root lattice). However the
calculation of the center in the non-compact case can be reduced to the compact
case, because for a real algebraic group the fundamental group is the same as
that of its maximal compact subgroup.

29 Schur indicator for compact Lie groups

In this section all representations will be finite dimensional and groups will be
compact Lie groups.

Theorem 333 For a compact simply connected Lie group, every irreducible
representation is self dual if and only if the Weyl group contains −1.

Proof If α is the highest weight of an irreducible representation, then the
lowest weight of its dual is −α. There is a unique element w of the Weyl group
taking the fundamental Weyl chamber W to −W , so −w takes α to the highest
weight of its dual. So every representation is self dual if and only if −w = 1, in
other words if W contains −1. �

Exercise 334 The element −w is an automorphism of the Dynkin diagram.
Show that it is the nontrivial automorphism for diagrams of types An (n ≥ 2),
Dn (n odd), and E6, and the identity for all other connected Dynkin diagrams.
Show that an irreducible representation is self dual if and only if its highest
weight is fixed by −w.

Next we have to figure out which of the self dual representations are real
and which are quaternionic, or in other words find out whether their invariant
bilinear forms are symmetric or alternating.
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Theorem 335 If G is a connected quasi-simple compact Lie group, there is an
element q such that an irreducible representation is real or quaternionic depend-
ing on whether q acts as +1 or −1.

Proof For the group SU2 we can check this by direct calculation: the irre-
ducible representations of even dimension have an alternating form, and those
of odd dimension have an even form. So the element q is the non-trivial element
of the center.

The idea of the proof for general compact groups is to reduce to this case
by finding a homomorphism from SU2 to G such that the restriction of any
irreducible representation V of G to this SU2 contains some irreducible repre-
sentation W with multiplicity exactly 1. Then any alternating or symmetric
form on V must restrict to an alternating or symmetric form on W , so we can
tell which by examining the action on W of the image q ∈ G of the nontrivial
element of the center of the SU2 subgroup.

We will find a suitable SU2 subgroup by constructing a basis E, F , H for
its complexified Lie algebra. We take E to be the sum

∑
αEα where the sum

is over the simple roots and Eα is some nonzero element of the simple root
space of α. We take H to be the element of the Cartan subalgebra that has
inner product 2 with every simple root, which is possible as the simple roots
are linearly independent. Finally we choose Fα in the root space of −α so that∑

[Eα, Fα] = H. Then we see that [H,E] = 2E. [E,F ] = H, and [H,F ] = −H,
so we have found an sl2 subalgebra.

This subalgebra has the property that (H,α) > 0 for every simple root α,
which implies that if β is the highest weight of the representation V , then β
restricted to 〈E,F,H〉 has multiplicity 1. So this subalgebra has the desired
property that the restriction of any irreducible representation of G has some
irreducible representation of multiplicity 1 �

The sl2 subalgebra constructed above is sometimes called a principal sl2
subalgebra.

Exercise 336 If the dual Weyl vector ρ′ has inner product 1 with all simple
roots, show that a self-dual irreducible representation with highest weight α is
real or quaternionic depending on whether it has even or odd inner product
with ρ′. (The dual Weyl vector is essentially the Weyl vector of the “dual” root
system, whose roots are the coroots of the root system, and is half the sum of
the positive coroots. It can be identified with the Weyl vector if all roots have
norm 2. It is essentially the same as the element H in the theorem above.)

Exercise 337 Find suitable elements E,F,H of Mn(C) spanning a principal
sl2 subalgebra for the case when G is SUn.

We can figure out this special element of order 2 for the various compact
simply connected quasi-simple Lie groups as follows.

An q is the element of order 2 if n ≡ 1 mod 4, otherwise q is the identity.

Bn q is the element of order 2 if n ≡ 1, 2 mod 4, otherwise q is the identity.

Cn The 2n-dimensional representation has an alternating bilinear form, so q
must be the non-trivial element of the center.

137



Dn q is an element of order 2 if n ≡ 1, 2 mod 4 otherwise q is the identity.

E7 The 56-dimensional representation has an alternating bilinear form (coming
from the Lie bracket on E8 = E7⊕56⊗2⊕sl2), so q must be the non-trivial
element of the center.

G2, F4, E6, E8 The center has no elements of order 2, so q is the identity.

Exercise 338 Which compact simply connected Lie groups have the property
that all representations have a symmetric invariant bilinear form?

For the compact connected Lie groups, for any quaternionic representation
there is an element of order 2 in the center acting as −1. This is no longer true
for quaternionic representations of finite simple groups. There are some (rare)
examples of simple finite groups (with no center) with irreducible quaternionic
representations. For sporadic finite simple groups real representations are most
common and quaternionic representations are quite rare.

30 Weyl character formula

For irreducible representations of general linear groups, we have seen that the
characters are given by Schur functions, which can be written as a quotient of
two alternating sums over the Weyl group. The Weyl character formula is a
generalization of this to all semisimple finite-dimensional complex Lie algebras.
It also works for the corresponding complex Lie groups, compact Lie groups,
and so on.

Theorem 339 Weyl character formula. If V is an irreducible representation of
the complex semisimple Lie algebra g with highest weight λ, then the character
of V is given by ∑

w∈W ε(w)ew(λ+ρ)

eρ
∏
α>0(1− e−α)

The special case of the trivial representation with highest weight 0 is the
Weyl denominator formula:∑

w∈W
ε(w)ew(ρ = e−ρ

∏
α>0

(1− eα)

In the case of the general linear group, this is just the Vandermonde identity,
as the left hand side is the expansion of the Vandermonde determinant, and
the right hand side is its expression as a product. We can use the denominator
identity to replace the denominator in the Weyl denominator formula by an
alternating sum over the Weyl group.

Example 340 For the group SL2(C), the Weyl group has order 2, and the
Weyl character formula says that the characters are given by

qn+1 − q−n−1

q−1(1− q2)
= q−n + q2−n + · · ·+ qn−2 + qn

There are several different ways to prove the Weyl character formula:
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• Weyl’s original method used the Weyl integration formula for compact Lie
groups. The denominator appears as the square root of the weight in the
Weyl integration formula.

• It can be proved using a resolution of the irreducible representation by
Verma modules. In this case the denominator of the Weyl character for-
mula is the character of a Verma module, and the sum in the numerator is
a sum over the Verma modules appearing in the resolution. Kac extended
this proof to Kac-Moody algebras.

• It can be proved by studying the Lie algebra homology of the nilradical
n of a Borel subalgebra. The denominator is then the character of the
universal enveloping algebra of n, and the sum in the numerator is a sum
over a basis for the homology groups of n.

Example 341 We calculate the characters of some representations of G2. We
have already found the first few, of dimensions 1, 7, 14. The next has highest
weight twice a shortest root. To use the Weyl character formula, observe that
it gives a recursive relation for the character multiplicities, because the product
of the character and

∑
ε(w)ew(ρ) is usually 0. This means that the alternating

sum of the multiplicities over the “dodecagons“ coming from conjugates of the
Weyl vector are 0, unless the dodecagon passes through exactly one weight.
Using this we see that the multiplicities of the vectors are 1 (2 times shortest
root) 1 (longest root) 2 (shortest root) and 3 (0), for a total dimension of 27.

We will sketch a proof using Verma modules. Recall that we constructed
the irreducible representation of a quotient of a Verma module by other Verma
modules. We know the character of a Verma module, so we can try to find the
character of the irreducible module by subtracting the characters of the Verma
modules we quotient out by:

eλ −
∑
αsimple e

λ−(2(λ,α)/(α,α)+1)α∏
α>0(1− e−α)

This gives a first approximation to the character, but is obviously wrong if the
Verma modules we quotient out by overlap. In this case we have to add back in
terms for their intersections, then subtract further terms when three intersect,
and so on. More precisely, we can write down a resolution of the irreducible
module by Verma modules, and the character will be an alternating sum of the
characters of the terms of the resolution. So far we have only found the first
two terms of the resolution.

To see how to fix this, first look at the denominator. If we rewrite it as

e−ρ
∏
α>0

(eα/2− e−α/2)

we see that it is alternating under the Weyl group apart from the factor of e−ρ

where the Weyl vector ρ is half the sum of the positive roots. Since the character
is invariant under the Weyl group, the numerator must be antiinvariant under
the Weyl group, at least if we multiply by eρ. The simplest possibility for the
numerator is then ∑

w∈W
ε(w)ew(ρ+λ
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where ε is the determinant of an element of the Weyl group. The first few terms
of this sum for w trivial or a reflection are the terms corresponding to the Verma
module we started with and the ones we quotiented out by. The problem is that
we need to rule out the possibility of having other antiinvariant terms in the
numerator such as ∑

w∈W
ε(w)ew(ρ+µ

for some other vector µ. In other words we need to show that a minimal res-
olution of the irreducible module with highest weight λ only contains Verma
modules with highest weights of the form w(λ+ ρ)− ρ.

To do this we use the Casimir element. Recall that we have a symmetric
invariant bilinear on the Lie algebra, which gives us an element of the center of
the UEA of the form

∑
aiai′ where ai forms a basis and ai′ is the dual basis.

In our case the Casimir is given by
∑
α eαe−α +

∑
hihi′. We want to apply

this to a highest weight vector of a Verma module, so we move all the vectors of
negative root spaces over to the left, picking up a term [e−α, eα] for each positive
root α. So the eigenvalue on a highest weight vector with highest weight λ is
λ2 + (λ, 2ρ) = (λ + ρ)2 − ρ2. In particular two Verma modules have the same
eigenvalue of the Casimir only if they have the same value of (λ+ ρ)2.

This is enough to complete the proof of the Weyl character formula, because
any possible highest weight µ that is in the fundamental chamber of the Weyl
group and is of the form λ− sum of positive roots satisfies (µ+ ρ)2 < (λ+ ρ)2

unless λ = µ by elementary geometry.

Example 342 We can work out the characters of representations of B2 using
the fact that the alternating sum over an octagon of the root multiplicities
is usually zero. We can also decompose representations by writing them as a
linear combination of irreducible characters, or more efficiently by observing
that the multiplicity of highest weight vectors is given by an alternating sum
over octagons. For example, 4× 10 = 20⊕ 16⊕ 4.

For rank 2 groups A2
1, A2, B2, G2, we get the multiplicities of representations

by looking at alternating sums over a square, hexagon, octagon, or dodecagon.
This polygon is easy to remember, as it starts off with the origin and the two
simple roots.

We can also work out the dimension of a representation from the Weyl
character formula. Substituting in the identity element of the group direct fails
badly, because both the numerator and the denominator have a zero of high
order (half the number of roots) at the identity. In fact, from this point of view
the identity element is the most complicated element of the group! (It is also
the place where the set of unipotent elements has the worst singularity.) So
instead we examine the asymptotic behavior of the numerator and denominator
of the Weyl character formula on a carefully chosen set of elements that tend
to the identity.

For this we use the Weyl denominator formulas∑
w∈W

ε(w)ew(ρ) = e−ρ
∏
α>0

(1− eα)
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which gives ∑
w∈W

ε(w)e(w(ρ),tβ) =
∏
α>0

(e(α/2,tβ) − e(−α/2,tβ))

for any real t and any β in the dual of the Cartan subalgebra. We rewrite
this as ∑

w∈W
ε(w)e(w(β),tρ) =

∏
α>0

t
(e(α/2,tβ) − e(−α/2,tβ))

t

and examine the behavior as t tens to 0. The right hand side behaves like

tN
∏
α>0

(α, β) + higher powers oft

so this gives the asymptotic behavior of the numerator and denominator of the
Weyl character formula on the elements tρ. We can now cancel out the factors
of tN and take the limit as t tends to 0, to find that the dimension is∏

α>0

λ+ ρ, α)

ρ, α

Example 343 We check the Weyl dimension formula on G2. If α and β are
the long and short simple roots of norms 6 and 2 then the positive roots are
β, α, α + β, α + 2β, α + 3β, 2α + 3β. Suppose the highest weight lambda has
inner product 3m with α and n with β, with m and n non-negative integers.
Then the dimension is

n+ 1

1
× 3m+ 3

3
× 3m+ n+ 4

4
× 3m+ 2n+ 5

5
× 3m+ 3n+ 6

6
× 6m+ 3n+ 9

9

For m = 0, n = 2 this gives the dimension 27 that we found earlier.

Example 344 If we take nρ as a highest weight, we see that there are irre-
ducible representations of dimension nN where N is the number of positive
roots. This is related to the Steinberg representation of a finite group of Lie
type over a field of order q, an irreducible representation of dimension qN .

For higher rank groups the Weyl character formula becomes rather unwieldy
for practical calculations because the sums over the Weyl group become large.
In this case a variation of it called the Freudenthal multiplicity formula is easier
to use. This states

(Λ + ρ)2 − (λ+ ρ)2Mult(λ) = 2
∑
α>0

∑
j>0

(λ+ jα, α)Mult(λ+ jα)

where the sums are over positive roots α and positive integers j. Moreover the
sum over the positive roots can usually be reduced in size by grouping things
into orbits under the Weyl group. The Freudenthal formula can be proved by
calculating the trace of the Casimir element on a weight space in two different
ways. On the one had the trace is given by the dimension of the roots space
times the eigenvalue Λ2 +2(Λ, ρ). On the other hand the trace of each term eifi
in the Casimir can be calculated explicitly by decomposing the representation
into a sum of SL2 modules and working out the trace on the weight spaces each
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of these; this gives terms depending on the number of times each SL2 module
occurs, which is in turn determined by the multiplicities of the weights λ + jα
for various α. Finally the terms hihi′ and ρ in the Casimir operator are easy to
deal with. Putting everything together gives the Freudenthal recursion formula.

Example 345 We will demonstrate that this really does give a practical method
by using it to calculate the character and dimension of a representation of E8

with highest weight of norm 4. There are 3 possible orbits of weights under the
Weyl group of norms 4 (2160 vectors), 2 (240 vectors), and 0 (1 vector). The
vectors or norm 4 all have multiplicity 1 as they are conjugate to the highest
weight vector. (Note that the Freudenthal formula give no information in this
case.) We need to know the Weyl vector of E8. Taking the simple roots to be
(..., 1,−1, ...) and (−1/2,−1/2,−1/2, 1/2, 1/2, 1/2, 1/2, 1/2) gives Weyl vector
(12, 11, 10, 9, 8, 7, 6, 5) of norm ρ2 = 620. The norm 4 vector in the Weyl cham-
ber is Λ = (3/2, (1/2)7) with (Λ, ρ) = 46. If λ = ((1/2)7,−1/2) is the norm 2
vector in the Weyl chamber then (λ, ρ) = 29. There are 63 positive roots having
inner product 0 with λ. So the Freudenthal formula becomes

(4 + 2× 46− 2− 2× 29)Mult(λ) = 2× 2× 63

so the multiplicity of λ is 7.
Similarly if λ = 0 we find

(4 + 2× 46− 0− 2× 0)Mult(λ) = 2× 2× 120× 7

so the multiplicity of 0 is 35. The dimension of this representation is therefore
2160× 1 + 240× 7 + 1× 35 = 3875.

Notice that for the Weyl character formula the large size of the Weyl group
was a disadvantage because we had to sum over it, but for the Freudenthal
formula the large size is an advantage, because it means there are only a few
orbits we have to sum over.

Exercise 346 Find the character of the irreducible representation with a high-
est weight vector of norm 6. Find the character of the alternating square of the
adjoint representation and find out how it splits into irreducible representations.

Example 347 We can also work out the character values of characters of E8 on
elements of finite order. To show how to do this we will do the simplest case of
the character of the adjoint representation on elements of order 2. The elements
of order dividing 2 correspond to orbits of the Weyl group on L/2L and we saw
there are 3 orbits, represented by half of vectors of norms 0, 2, 4. If β is a vector
of norm 2, then the order 2 element corresponding to β/2 acts as 1 on weight
spaces if the weight has even inner product with β and −1 if the weight has
odd inner product with β. We saw earlier that there are 1 + 56 + 134 + 56 + 1
weights having inner products 2, 1, 0,-1, -2, so the trace of the order 2 element
is 1− 56 + 134− 56 + 1 = 24. Similarly for the norm 4 vector the corresponding
order 2 element has trace 14− 64 + 92− 64 + 14 = −8.

We can use these two elements of order 2 to find the two non-compact real
forms of E8 by the usual construction: take the points of C ⊗ E8 fixed by
an antilinear involution. One of these real forms is the split form, with fixed
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point subalgebra D8, and the other is a new real form of E8 with fixed point
subalgebra E7 × SL2. So we have found the 4 simple Lie algebras associated
with E8: a complex form (of real dimension 2 × 248), a compact form, a split
form, and another form.

Example 348 What are the maximal compact subgroups of the two non-
compact real forms? Their Lie algebras are D8 and E7 × SL2, but there are
several different connected groups with these Lie algebras as their centers are
different. For the one with compact subalgebra D8, we look at the action on
the Lie algebra of E8 and see that it splits as (adjoint representation) plus (half
spin representation). So the corresponding compact subgroup is the image of
the spin group under this representation, which is the quotient of the sing group
by an element of order 2 in the center, different from the one giving the special
orthogonal group.

Exercise 349 Similarly show that the maximal compact subgroup of the other
real form is the quotient of E7×SL2(R) by the element (−1,−1) of the center.

Our method of finding the elements of order 2 in E8 was somewhat ad
hoc. There is a more systematic way of finding all elements of finite order as
follows. To find elements of order dividing n, We want to classify the elements of
1
NL/L up to conjugacy by the Weyl group, where L is the E8 lattice, as these
correspond to orbits of elements of order dividing N in a maximal torus. In
particular we can assume such an element is in the Weyl chamber, so has non-
negative inner product with all simple roots. Moreover we can assume that 0 is
the nearest lattice point. This implies that (v, α) ≤ (α, α)/2 = 1 where α is the
highest root (the root in the Weyl chamber) otherwise this root would be closer.
So if the inner products with the simple roots are ni/N , then

∑
mini/N ≤ 1

where the mi are the numbers giving the highest root as a linear combination
of the simple roots. This can be written more neatly as

∑
mini = N where we

now include m0 = 1 in the sum. This makes it easy to list the conjugacy classes
of elements of any given order in E8. For example, there are 5 classes of order
dividing 3, so 4 classes of order 3.

Exercise 350 Find the conjugacy classes of E8 of elements of order at most 6.

Example 351 There is an amusing way to calculate the order of the Weyl
group of E8 by looking at the number of elements of order dividing N for large
N . On the one hand, this number is about N8 times the index of the root lattice
in the weight lattice divided by the order of the Weyl group. On the other hand
it is the coefficient of xN in

∏
(1− xmi)−1, which is about N8/8!

∏
mi. SO the

order of the Weyl group is 8!×1×2×3×4×5×6×4×3×2. A similar method
works for other Lie algebras.

The Weyl character formula also has infinite dimensional generalizations
that we will discuss briefly. It works for some highest weight representations
of Kac–Moody algebras: these are constructed from an infinite root system in
the same way that we constructed algebras from finite root systems. To prove
the Weyl character formula we needed 3 ingredients: Verma modules, the Weyl
group,and the Casimir element. Verma modules for infinite dimensional Lie
algebras are much the same as for finite dimensional ones. To get an action of
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the Weyl group we used the fact that the representation was finite dimensional
but we did not need the full force of this: all we really needed was that the
representation is ”integrable”, in other words splits as a sum of finite dimensional
representations for each SL2, which in turn follows if the highest weight has
suitable inner product with each simple root. We can do the same if the Lie
algebra is infinite dimensional. The Casimir element is more of a problem, since
its definition for an infinite dimensional Lie algebra becomes a divergent infinite
sum. Kac discovered how to renormalize it to make sense. We first use the form
2
∑
eifi +

∑
hihi′ +

∑
[ei, fi]. All these terms except the last make sense on

a highest weight vector, but
∑

[ei, fi] is still an infinite sum of elements of the
Cartan subalgebra. it is formally a sort of Weyl vector. In finite dimensional
the Weyl vector can also be defined by (ρ, α) = (α, α)/2 for all simple roots
α, and this definition makes sense in infinite dimensions. Using this modified
definition of the Casimir element, Kac showed that it behaves like the Casimir
element for finite dimensional Lie algebras and in particular commutes with
all elements of the Lie algebra. The proof of the Weyl–Kac character formula
for integrable highest weight modules now goes through much as in the finite
dimensional case.

Example 352 The Weyl denominator formula for the affine A1 Kac-Moody
algebra is the Jacobi triple product identity∏

(1− zq2n−1)(1− z−1q2n−1)(1− qn) =
∑
n

(−1)nznqn
2

The product is over positive roots of the affine algebra SL2[t, t−1], and the sum
on the right hand side is really a sum over its Weyl group, which is the infinite
dihedral group. Not all roots are conjugate under the Weyl group to simple
roots. The infinite dihedral group is almost the integers, so sums over it can
be written as sums over the integers. More generally there is a similar identity
for every finite dimensional simple Lie algebra (or super algebra); these are the
Macdonald identities.

Example 353 Suppose that j(τ) − 744 = q−1 + 196884q + · · · =
∑
c(n)qn is

the elliptic modular function. Then

j(σ)− j(τ) = p−1
∏

m>0,n∈Z
(1− pmqn)c(mn)

is a denominator formula for an infinite dimensional Lie algebra of rank 2. Here
q = e2πiτ , p = e2πiσ, and the root multiplicities of the root (m,n) 6= (0, 0) of
the Lie algebra is c(mn). The Weyl group has order 2, and p−1 is really the
term coming from the Weyl vector.

Alternatively one can stick to finite dimensional Lie algebras, but ask for
the characters of infinite dimensional irreducible quotients of Verma modules.
As in the finite dimensional case, we can take a resolution by Verma modules.
The main problem is that we no longer have an action by the Weyl group. We
can still write the character as∑

w∈W

c(w)ew(λ+ρ)

eρ
∏
α>0(1− e−α)
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by using all the higher Casimirs, which together show that a Verma module
with highest weight µ only occurs in a minimal resolution if λ+ ρ is conjugate
to µ+ ρ. However the coefficients c(w) need no longer be ±1 as we do not have
antiinvariance under the Weyl group to determine them. They can be quite
complicated, and are given by values of Kazhdan–Lusztig polynomials (by the
Kazhdan-Lusztig conjecture, now proved).

31 Jacobi triple product identity

The denominator formula for the affine A1 algebra is the Jacobi triple product
identity ∏

(1− zq2n−1)(1− z−1q2n−1)(1− q2n) =
∑
n

(−1)nznqn
2

This function (and its generalizations for other simple groups) turns up in several
other places:

• It is the denominator formula of a Kac-Moody algebra

• It is the simplest example of a Macdonald identity: an infinite product
identity associated to a simple Lie algebra, or more generally an affine
root system.

• It is closely related to the Boson-Fermion correspondence

• It is an example of a theta function: these can be thought of as either
functions that are periodic up to elementary exponential factors, or as
sections of line bundles over elliptic curves (or abelian varieties in the
higher dimensional case)

• It is a solution of the heat equation; in fact it is essentially the fundamental
solution to the heat equation on a circle.

• By restricting to special values of z one gets modular forms.

• It is the archetypal example of a Jacobi form.

• It spans a representation of finite Heisenberg groups. This does not seem
very interesting as it is only the 1-dimensional trivial representation, but
by taking slightly more general functions one gets higher dimensional rep-
resentations.

We start by explaining the relation with the Boson-Fermion correspondence.
We rewrite it as∏

(1 + zqn−1/2)(1 + z−1qn−1/2) =
∑
m

zmqm
2 ∏

(1− qn)−1

and find a combinatorial interpretation of both sides. We suppose that we have
some fermions that can occupy energy levels n + 1/2 for any integer n, with
at most one fermion occupying each energy level. To avoid having negative
energy states we fill up all the negative energy states with a Dirac sea, and take
this to be our vacuum. Then we can either add fermions of energy 1/2, 3/2, ...
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or we can add antiparticles of energy 1/2, 3/2, ... by removing the particles of
energy 1/2, 3/2, .. from the vacuum. The total energy and particle number are
defined in the obvious way, by decreeing that the vacuum has particle number
0 and energy 0, and all other states will be obtained by adding a finite number
of fermions of particle number 1 and their antiparticles of particle number −1.
Then the total number of states of energy E and particle number N is the
coefficient of zNqE in ∏

(1 + zqn−1/2)(1 + z−1qn−1/2)

Now we count this number in a different way. First do the case of particle
number 0. We can obtain any state by of particle number 0 and energy E by
starting with the vacuum and lifting the fermions to higher energy states; think
of hitting them with photons of integral energy, each of which lifts one boson
to a higher state. The number of ways to do this is the number of partitions of
E, which is the coefficient of qE in∏

(1− qn)−1

So this verifies that the coefficient of z0 in both sides is the same. What
about other powers of z, in other words other particle numbers? For this we
use the vacuum for particle number N , where we will the states of energy
1/2, 3/2, ..., N − 1/2, which has total energy N2. So we just have to include

extra terms zNqN
2

for all integers N to account for the vacuums of non-zero
particle number.

The Boson-fermion correspondence comes from two different ways of looking
at these sets. We can take the sets as basis elements for vector spaces. Then on
the one hand we have an exterior algebra of an infinite dimensional space (which
is what you get by quantizing a space of fermions) and on the other side we get
a tensor product of a symmetric algebra (from quantizing bosons) tensors with
a direct sum of vacuum states.

Notice that for finite exterior algebras is does not really matter which state
you start with, but in infinite dimensions you get fundamentally different spaces
depending on what you take as the vacuum: for example, some spaces have all
states of positive energy, while others have states of arbitrarily large negative
energy. This is a well-known problem in quantum field theory, that spaces you
might expect to be isomorphic from analogy with finite dimensional spaces in
quantum mechanics turn out to be fundamentally different.

32 Symmetric functions and representations of
symmetric groups

Schur-Weyl duality gives a correspondence between representations of symmet-
ric and general linear groups. So in order to understand representations of
general linear groups we would like to know the representations of symmetric
groups. We will describe these using symmetric functions.
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32.1 The ring of symmetric functions

Recall that conjugacy classes of symmetric groups Sn correspond to partitions
of n. The irreducible representations can also be indexed by partitions. (Al-
though finite groups have the same number of conjugacy classes and irreducible
representations, it is not in general true that there is a natural correspondence
between them: symmetric groups are unusual in that they do have such a nat-
ural correspondence.) We will describe the representation theory in terms of
symmetric functions. More precisely, the conjugacy classes of Sn will corre-
spond to Newton’s symmetric functions of degree n, irreducible representations
of Sn will correspond to Schur polynomials of degree n, and the character table
of Sn is just the matrix for expressing Schur functions as linear combinations of
Newton’s functions.

The symmetric functions of n variables x1, . . . , xn are the polynomials in
the elementary symmetric functions e1 =

∑
xi, e2 =

∑
i<j xixj , ...., en =

∏
xi.

It is convenient to take a sort of limit as n tends to infinity and define the
ring of symmetric functions to be polynomials in an infinite number of variables
e1, e2, . . .. The point is that formulas involving symmetric functions tend to be
independent of the number of variables xi provided this number is sufficiently
large.

The ring of symmetric functions has a lot of structure:

• A commutative product

• A cocommutative coproduct

• An antipode (or involution)

• A partial ordered

• A symmetric bilinear form

• Several different natural bases

The ring of symmetric functions has several useful sets of generators and
bases.

• The elementary symmetric functions en =
∑
i1<i2<···<in xi1xi2 · · ·xin form

a generating set. The symmetric functions eλ for λ a partition form a base.
We put E(x) =

∑
eix

i =
∏

(1 + xix), so it is a power series that formally
has roots −1/xi.

• The complete symmetric functions hn =
∑
i1≤i2≤···≤in xi1xi2 · · ·xin form

a generating set. We have H(x) =
∑
hix

i =
∏

(1− xxi)−1 = 1/E(−x).

• Newton’s symmetric functions pn =
∑
i>0 x

n
i form a generating set over

the rationals, but not over the integers. We have P (x) =
∑
n>0 pnx

n =∑
i xix/(1− xix) = x d

dx log(H(x) = xH ′(x)/H(x).

• The Schur functions sλ (see later)

• The monomial functions mλ.

• The forgotten monomial functions
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Exercise 354 Show that E(−x)P (x) = −xE′(−x) and use this to prove New-
ton’s identities giving recursive formulas for the sums pi of the powers of roots
of a polynomial xn − e1x

n−1 + · · · in terms of its coefficients.

This gives at least 6 natural bases for the vector space of symmetric func-
tions. Mathematicians working on symmetric functions spend many happy
hours expressing writing the various basis elements as linear combinations or
polynomials of other basis elements.

The ring of symmetric functions has a bilinear form 〈, 〉 defined by the prop-
erty that the symmetric functions pλ form an orthogonal base or norm zλ where
zλ is the order of the centralizer of a permutation of shape λ. The reason for this
will appear later: when homogeneous symmetric functions are identified with
class functions, this inner product becomes the usual inner product of class
functions.

Exercise 355 Show that if a permutation has shape 1n12n2 · · · then zλ =
1n1n1!2n2n2! · · · .

Recall that if V is a finite dimensional vector space with a symmetric non-
degenerate inner product, then

∑
aia
′
i ∈ S2V summed over a basis ai (with a′i

the dual basis) is independent of the choice of basis. We would like to do this
for the space Λ but run into the problem that Λ is infinite dimensional. This
is easy to fix because Λ is graded with finite-dimensional piece, so we just use∑
aia
′
it

deg ai ∈ S2V [[t]] instead. This element is independent of the choice of
homogeneous basis.

Lemma 356 For any homogeneous basis of Λ, we have∑
aia
′
it

deg ai =
∏
i,j

(1− txiyj)−1

Proof We only need to check this for one choice of basis, since the left hand
side is independent of the choice of basis. Of course we use the basis ai = pλ,
a′i = pλ/zλ. The right hand side is given by

exp(
∑
i,j

∑
n>0

tnxni y
n
j /n) = exp(

∑
n

tnpn(x)pn(y)/n)

The coefficient of tm on the right is∑
|λ|=m

pλ(x)
pλ(y)

zλ

which proves the lemma as by definition pλ/zλ is a dual basis to pλ. �

The ring of symmetric functions is a Hopf algebra. The Hopf algebra struc-
ture is defined by making E(x) =

∑
eix

i grouplike (with e0 = 1), or in other
words

∆(en) =
∑

ei ⊗ en−i.

Exercise 357 Show that over the rationals, the primitive elements of this Hopf
algebra are the linear combinations of pi, and that the Hopf algebra is the
universal enveloping algebra of the abelian Lie algebra spanned by the pi.
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We know that commutative Hopf algebras should be thought of as group
schemes, so we can ask what the group scheme corresponding to the Hopf algebra
of symmetric functions looks like.

Exercise 358 Show that if G is the group scheme corresponding to the ring
of symmetric functions, then for a commutative ring R, G(R) can be identified
with the multiplicative group of power series with leading coefficient 1 and
coefficients in R.

The antipode of this Hopf algebra is given by e∗n = (−1)nhn. This is slightly
different from the involution often used on the ring of symmetric functions taking
en to hn. The two involutions differ on homogeneous elements of degree n by a
factor of (−1)n.

The ring of symmetric functions also turns up in other areas of mathematics
in different guises. Here are a few apparently unrelated objects all of which are
really the same ring, or rather Hopf algebra.

• The ring of symmetric functions

• Representations of symmetric groups

• Representations of general linear groups

• The homology of BU , the classifying space of the infinite unitary group.
(It also turns up in several other related generalized homology rings of
spectra.)

• Cohomology of Grassmannians (“Schubert calculus”)

• The universal commutative λ-ring on one generator e1

• The coordinate ring of the group scheme of power series with leading
coefficient 1 under multiplication

• The Hall algebra of finite abelian p-groups, specialized to p = 1.

• It is the underlying space of a bosonic vertex algebra on 1 variable.

• It is the ring of polynomial functors on vector spaces.

32.2 Representations of the symmetric groups

We can now describe the characters of irreducible representations of symmetric
groups in terms of the ring of symmetric functions. The idea is that we identify
class functions on Sn with homogeneous functions of degree n by the Frobenius
characteristic map taking a permutation of shape λ in Sn to the symmetric func-
tion pλ/n!. This identifies the rational class functions with rational symmetric
functions. Under this identification, the characters of irreducible representa-
tions correspond to Schur polynomials, and conjugacy classes of cycle shape λ
correspond to pλ/zλ, so the character table of Sn is given by expressing the
Schur polynomials as linear combinations of the symmetric functions pλ/zλ.

We prove this in several steps as follows:

1. Show that hn corresponds to the trivial representation of Sn
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2. Show that all homogeneous symmetric functions correspond to virtual
representations, by showing that those that do are closed under products.
In particular Schur polynomials correspond to generalized characters.

3. By the orthogonality relations, the characters are, up to sign, just the
generalized characters of norm 1. So we show that Schur functions have
norm 1, so they are irreducible characters up to sign.

4. Show that Schur polynomials are irreducible characters by showing the
sign is positive.

Lemma 359 The symmetric function hn is the character of the trivial repre-
sentation of Sn.

Proof This is similar to the proof of Newton’s identities. We have to show
that hn =

∑
|λ|=n pλ/zλ. This follows from H(x) = exp

∫
P (x)dx/x. �

Exercise 360 Check this explicitly for n = 3.

Lemma 361 If the symmetric functions a and b correspond to representations
V and W of Sm and Sn, then ab corresponds to the representation

Ind
Sm+n

Sm×SnV ⊗W

Proof This follows from the Frobenius formula for the character of an induced
representation, which states that the character of IndGH(V ) is obtained from the
character of V by smearing it over G. �

Corollary 362 Every homogeneous symmetric function is the character of a
generalized representation of a symmetric group.

Proof The symmetric functions for which this is true include hn and are
closed under addition and multiplication. The corollary now follows since the
symmetric functions hn generate the ring of all symmetric functions. �

Lemma 363 The Cauchy matrix with entries 1/(xi − yj) has determinant∏
i<j(xi − xj)(yi − yj)∏

i,j(xi − yj)

Proof If we multiply the Cauchy determinant by
∏
i,j(xi − yj) we get a

polynomial of degree n(n − 1). It vanishes whenever two of the xi or two
of the yi are equal, so must be divisible by the degree n(n − 1) polynomial∏
i<j(xi − xj)(yi − yj). As the degrees are the same, these two polynomials

must be the same up to a constant. �

Exercise 364 Evaluate the Hilbert determinant with entries 1/(i + j − 1) for
1 ≤ i, j ≤ n by expressing it in terms of a suitable Cauchy determinant.

Theorem 365 The Schur polynomials sλ = aλ+ρ/aρ form an orthonormal ba-
sis of the symmetric functions.
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Proof We have to show that∏
(1− xiyi)−1 =

∑
λ

sλ(x)sλ(y).

We will do this by evaluating the Cauchy matrix with entries (1 − xiyj)−1 in
two different ways. On one hand, by the previous lemma (changing xi to 1/xi)
it is equal to ∏

i<j(xi − xj)(yi − yj)∏
i,j(1− xiyj)

.

On the other hand, if we expand (1 − xiyj)−1 as
∑
k≥0 x

k
i y
k
j we see that the

determinant is ∑
±xλ1

1 xλ2
2 · · · y

µ1

1 yµ2

2 · · ·

where the λi are a permutation of the µi. This is equal to∑
λ

aλ(x)aλ(y)

where aλ is the determinant of the matrix with entries x
λj
i . Defining sλ =

aλ+ρ/aρ and using the fact that aρ(x) =
∏
i<j(xi − xj) by the Vandermonde

identity, putting everything together proves the identity stated in the theorem.
�

We are now almost finished, since the Schur polynomials are generalized
characters of norm 1 and are therefore irreducible characters up to sign. So
we just have to pin down a the sign. (The reason why there is a sign problem
can be understood as follows. The construction of the generalized characters
is really a special case of a more general construction where the generalized
characters appear in an alternating sum of cohomology groups. At most one
of these cohomology groups is nonzero, so the sign depends on whether it is an
even or an odd cohomology group.)

Lemma 366
〈sλ, p|λ|1 〉 > 0

Proof
�

Example 367 For the symmetric group S3, the conjugacy classes correspond
to p3

1/3! = e3
1/6, p1p2/2 = e3

1/2 − e1e2, and p3/3 = e3
1/3 − e1e2 + e3. The

characters correspond to s13 = e3
1 − 2e1e2 + e3, s12 = e1e2 − e3, and s3 = e3.

The coefficients expressing the Schur functions in terms of the Newton functions
are just the coefficients of the character table of S3

p13/3! p12/2 p3/3
e3

1/6 e3
1/2− e1e2 e3

1/3− e1e2 + e3

s13 e3
1 − 2e1e2 + e3 1 1 1

s3 e3 1 −1 1
s12 e1e2 − e3 2 0 −1
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The Schur polynomials are also the characters of the special linear groups.
In fact the Weyl character formula expresses these characters as a quotient of
two sums over the Weyl group. The Weyl group is the symmetric group, so
the sums can be written as determinants, and turn out to be aλ+ρ and aρ for a
suitable change in notation. The Schur functions are interpreted differently for
the symmetric groups and the special linear groups: for symmetric groups the
characters are given by regarding the Schur functions as linear combinations
of Newton’s symmetric polynomials (with the xi being complex numbers of
absolute value 1), while for the general linear group the Schur functions are
regarded as functions on a maximal torus.

33 Schur-Weyl duality

In this section V will be a complex vector space, and we will be studying complex
representations of the symmetric group and GLV .

The simplest case of Schur-Weyl duality is the decomposition of V ⊗ V into
the sum of the symmetric square S2V and the alternating square Λ2V . In terms
of representation theory this can be interpreted as follows. The space V ⊗V is a
representation of GLV ×S2 where GLV acts on V ⊗V by acting on each factor,
and the symmetric group S2 acts by permuting the two factors of V . Then V
splits up as the sum of two irreducible representations S2V ⊕Λ2V of GLV ×S2.
This gives a correspondence between representations of S2 and GLV , with the
trivial and alternating representations of S2 corresponding to the symmetric
square and alternating square representations of GLV .

The Schur-Weyl correspondence extends this from S2 to the symmetric group
Sn on n points. This time we use the representation of GLV × Sn on the
tensor product V ⊗ V ⊗ · · · ⊗ V , where GLV again acts in the standard way
on each factor, and the symmetric group permutes the factors. The key point
is that each of GLV and Sn generate each others commutators. This implies
that V ⊗V ⊗ · · · ⊗V is a direct sup of representations ⊕Ai⊗Bi where Ai is an
irreducible representation of GLV , Bi is an irreducible representation of Sn, and
all the Ai are distinct and all the Bi are distinct. So we get a correspondence
between some representations Ai of GLV and some representations Bi of Sn.

For any particular choice of n and V we do not usually get a 1:1 correspon-
dence between representations of GLV and Sn: one problem is that GLV has
an infinite number of irreducible representations if V is non-trivial, while Sn
has only a finite number. Another problem is that we can take inverse powers
of the determinant of GLn. However we almost get a 1:1 correspondence if we
stabilize: if we let the dimension of V become large enough we get all represen-
tations of Sn, and if we let n become large we get all representations of GLV
up to powers of the determinant.

Example 368 Suppose that V has dimension 2. Then Schur-Weyl duality for
the tensor product of n copies of V gives a correspondence between representa-
tions of SL2(C) and Sn, where the trivial representation of Sn corresponds to
the n + 1-dimensional irreducible representation of SL2(C). So we pick up all
irreducible representations of SL2(C) by just using the trivial representation of
the symmetric group and letting n tend to infinity.
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Exercise 369 If W is a complex vector space, show that the space of elements
of W ⊗W ⊗ · · · ⊗W fixed by the symmetric group Sn is spanned by elements
of the form w ⊗ w ⊗ · · · ⊗ w.

The key result needed for Schur-Weyl duality is the following:

Theorem 370 Any endomorphism of V ⊗ V ⊗ · · · ⊗ V that commutes with Sn
is a linear combination of endomorphisms given by elements of GLn(V ).

Proof We want to show that the space of elements of End(V ⊗n) fixed by the
symmetric group is spanned by GLV . But End(V ⊗n) = End(V )⊗n so by the
previous exercise the space of elements fixed by Sn is spanned by elements of the
form w ⊗ w ⊗ · · · ⊗ w for w ∈ End(V ), or in other words any endomorphism of
V ⊗n commuting with Sn is a linear combination of elements of End(V ) acting
on it. Since GLV is dense in End(V ) this proves the theorem. �

Theorem 371 Suppose that M is an algebra of endomorphisms of H = Cn
containing 1 and closed under taking adjoints. Then M = M ′′

Proof Suppose v ∈ H. Then Mv is fixed by M ′. Also we can write H as a
direct sum H = Mv⊕Mv⊥, and the orthogonal projection e onto Mv is in M ′
as M is closed under adjoints. So M ′′ maps Mv to Mv as it commutes with e.
So M ′′v = Mv. (It is obvious that M ′′v ⊆Mv because 1 ∈M .)

Now look at the action of M on H ⊕H · · · ⊕H (n copies of H). The things
commuting with M are just n by n matrices with coefficients in M ′, so the
double commutant M ′′ is the same as for M acting on H. So M(v1⊕· · ·⊕vn) =
M ′′(v1 ⊕ · · · ⊕ vn). In other words, for any finite number of vectors, and any
element of M , we can find an element of M ′′ having the same effect on these
vectors. Since H is finite-dimensional this proves that M ′′ = M .

�

Exercise 372 Find a subalgebra A of M2(C) containing 1 such that A′′ is not
equal to A.

Exercise 373 Suppose that M is a von Neumann algebra on a Hilbert space
H (possibly infinite dimensional). This means that M is an algebra of bounded
operators containing 1 that is weakly closed and closed under taking adjoints.
Show that M ′′ = M .

Exercise 374 Suppose that M is any collection of functions from a set H to
itself. Show that M ⊆M ′′ and M ′ = M ′′′.

Two algebras acting on a vector space each of which is the centralizer of the
other occurs quite often, and can be a very powerful technique for constructing
representations of groups. For example, a von Neumann algebra M can be
defined as a *-algebra of endomorphisms of a Hilbert space such that M = M ′′,
where ′ means take the commutant. The theory of dual reductive pairs depends
on finding two subgroups of a metaplectic group each of which generates the
commutant of the other acting on the metaplectic representation. Some of
the work on the Langlands program that tries to associate a representation
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of a reductive group to a representation of a Galois group tries to do this by
finding a representation of (reductive group) times (Galois group) such that
each generates the commutator of the other, in which case one can hope to get
a suitable correspondence between their representations.

34 Littlewood-Richardson rule

Given two representations of U(n) we would like to decompose their tensor prod-
uct into a sum of irreducible representations. This is solved by the Littlewood-
Richardson rule. Irreducible polynomial representations correspond to parti-
tions λ with at most n rows, and the tensor product of partitions corresponds
to taking products of the Schur functions (which are essentially the characters
of the representations). So we want to write the product SλSµ of any two Schur
polynomials explicitly as a linear combination

∑
ν c

ν
λµSν of Schur polynomi-

als. The numbers cνλµ are called Littlewood-Richardson coefficients, and the
Littlewood-Richardson rule is a combinatorial rule for calculating them.

The following proof of the Littlewood-Richardson rule (from Stembridge) is
short but rather mysterious. It is really a special case of a more general re-
sult proved using crystal graphs. It may give a misleading idea of how hard
the Littlewood Richardson rule was to prove: it took four decades to find the
first complete proof, and several further decades for find some of the more re-
cently short proofs. Altogether more than a dozen mathematicians contributed
significantly to finding the proof given here.

Recall that a semistandard tableau is an assignment of positive integers to
a Young diagram such that all rows are non-strictly increasing and all columns
are strictly increasing.

The Bender-Knuth involution is an involution depending on a pair of consec-
utive integers (k, k+ 1) that acts on the semistandard tableaux, and exchanges
the numbers of ks and (k + 1)s. It acts as follows. First pair off as many ks as
possible with a k + 1 below them. The leftover k s and (k + 1)s form several
disjoint rows of the form kkk · · · k(k + 1) · · · (k + 1). If such a row has a copies
of k and b copies of k + 1, change some entries so it has b copies of k and a
copies of k+ 1. This produces another semistandard tableau where the number
of copies of k and k + 1 has been exchanged.

Definition 375 The Schur function sλ is defined to be
∑
T x

ω(T ), where the
sum is over all semistandard tableaux of weight λ.

Lemma 376 The Schur functions are symmetric polynomials.

Proof The Bender-Knuth involutions show that the number of tableaux of
some weight is invariant under permutations of the weight. �

We write T≥j for the tableau formed by the columns j, j + 1, . . . of T , and
defined T>j , T<j , and so on in a similar way. The weight ω(T ) of a tableau T is
(number of 1’s in T , number of 2’s, ....)∈ Zn. So the Young diagram λ + ω(T )
is formed by adding a box to the first row for every 1 in T , a box to the second
row for every 2 in T , and so on. The Weyl vector ρ is (n−1, n−2, · · · , 0) ∈ Zn.
We think of partitions into at most n parts as non-increasing sequences in Zn.
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We define aλ to be
∑
w∈Sn ε(w)xw(λ), where ε = ±1 is the sign of the permu-

tation w. In particular aλ is alternating under permutations of λ and vanishes
if two elements of λ are equal.

The Littlewood-Richardson rule will follow easily from the following result:

Theorem 377
aλ+ρsµ =

∑
T

aλ+ω(T )+ρ

where the sum is over all semistandard tableaux T of shape µ such that for all
j, λ+ ω(T≥j) is a partition.

Proof Since sµ is symmetric, we have

aλ+ρsµ =
∑
T

aλ+ω(T )+ρ

where the sum is over all semistandard tableaux T . The core part of the proof
is to show that the terms such that for some j, λ + ω(T≥j) is not a partition
cancel out in pairs or are zero, which we will do using Bender-Knuth involutions
to pair them off.

Fix some j and k. We concentrate on the tableaux T such that λ+ ω(T≥j)
is not a partition and λ+ω(T≥i) is a partition for any i > j. We further restrict
to the set X of T such that k is the smallest number with λk + ωk(T≥j >
λk+1 + ωk+1(T≥j . This implies that column j of T contains a k + 1 and does
not contain a k, and that T>j has the same number of ks and (k + 1)s.

We define an involution ∗ on this set of T by fixing T≥j and acting as a
Bender-Knuth involution (k, k+1) on T<j . This takes elements of X to elements
of X because ∗ does not change T≥j , and row j of T does not contain k (so that
∗ keeps the rows monotonic).

We check that the term corresponding to T cancels out with the term cor-
responding to ∗T . The transposition (k, k + 1) of Sn fixes λ + ω(T≥j + ρ. It
also maps ω(T<j to ω( ∗ T<j), so maps λ + ω(T ) + ρ to λ + ω(T ) + ρ. Also
aλ+ω(T )+ρ = −aλ+ω(∗T )+ρ as a is alternating under permutations of Sn, so the
terms corresponding to T and ∗T cancel (it is possible that ∗T = T in which
case the term is 0). �

Corollary 378
sµ = aµ+ρ/aρ

Proof This is just the special case λ = 0. �

Corollary 379 (The Littlewood-Richardson rule)

sλsµ =
∑
ν

cνλµsν

where cνλµ is the number semistandard tableaux T of shape µ such that ν =
λ+ ω(T ) and for all j, λ+ ω(T≥j) is a partition.

Proof This follows by combining theorem ?? with corollary ??. �
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Warning 380 It is hard to avoid errors when doing hand calculations with
the Littlewood-Richardson rule. An easy error to make is forgetting to include
some tableaux. As a check, one can do the calculation for the product in reverse
order, or for the transpose of the permutations (or better still use a computer).

As the proof shows, it is rather easy to find an expression for SλSµ as a
sum of terms Sν possibly with negative coefficients. The tricky part of the
proof of the Littlewood-Richardson rule is to pair off the terms with negative
coefficients with terms with positive coefficients, so that the final sum has only
positive coefficients.

Example 381 We work out S21S21. There are 8 tableaux in the sum, given by
1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
4

2 3
3

2 3
4 . So S21S21 = S42 +S411 +S33 + 2S321 +S3111 +

S222 + S2211.

Example 382 We use the Littlewood-Richardson rule to work out the decom-
position of V ⊗V into irreducible representations, where V is the 8-dimensional
adjoint representation of SU3. The partition corresponding to V is 21, which in
general for GLn corresponds to the non-trivial component of the tensor product
of the n-dimensional representation and its alternating square. By the previous
example, V ⊗V decomposes into 8 irreducible representations if n ≥ 4. We have
to make two changes to find the decomposition for SU3. First of all, any Young
diagram with more than 3 rows corresponds to the zero representation, which
eliminates 3111 and 2211. Second, since we are working with SU rather than
U , any diagram with exactly 3 rows abc is equivalent to (a− 1)(b− 1)(c− 1), so
411 becomes 3, 321 becomes 21, and 222 becomes the empty Young diagram.
So V ⊗V decomposes into a sum of 6 irreducible representations corresponding
to the partitions (42), (3), (33), (21), (21), (0).

Exercise 383 Show that the Littlewood-Richardson rule implies Pieri’s for-
mula: SλSn =

∑
ν Sν , where the sum is over all partitions ν obtained from λ

by adding n elements with at most 1 in each column.

Exercise 384 Check the (corrected) example given by Littlewood and Richard-
son: S431S221 = S652 +S6511 +S643 + 2S6421 +S64111 +S6331 +S6322 +S63211 +
S553 + 2S5521 + S55111 + 2S5431 + 2S5422 + 3S54211 + S541111 + S5332 + S53311 +
2S53221 +S532111 +S4432 +S44311 + 2S44221 +S442111 +S43321 +S43222 +S432211

Exercise 385 If µ ≤ λ we define the skew Schur polynomial Sλ/µ as the sum∑
T x

ω(T ) over all semistandard Tableaux of shape λ/µ (the Young diagram of
λ with the boxes in µ removed). Prove that this is a symmetric polynomial.
Prove that

Hook formula??

35 Combinatorics of Young diagrams

RSK, Jeu de taquin, Plactic monoid, Knuth equivalence
The plactic monoid is generated by a totally ordered set, usually taken to

be the positive integers, subject to the Knuth relations:
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• acb = cab if a ≤ b < c

• bac = bca if a < b ≤ c

The Knuth relations say roughly that the exchange of two adjacent elements a
and c is catalyzed by an element next to them that is between a and c under the
total order. The relations when equality holds between two of the letters are
harder to remember: the relations have the property that the triple on either
side of the equality is never an increasing sequence.

For any semistandard tableau we can get an element of the plactic monoid by
listing its rows starting with the lowest (in the English convention); for example

the tableau
1 1 2 3 3 4
2 3 5
3 7

corresponds to the word 37235112334.

The key result is the following theorem, which identifies elements of the
plactic monoid with semistandard tableaux, and in particular shows that the
semistandard tableaux form a monoid.

Theorem 386 Every element of the plactic monoid is represented by a unique
semistandard tableau.

Proof We first show that every word is Knuth equivalent to the word of a
semistandard tableau. For this it is sufficient to show that if we multiply a
semistandard tableau on the right by a generator x we still get a semistandard
tableau. This operation is called Schensted insertion and works as follows. If x
is at least as large as the rightmost element of the first row we just add it to the
end. Otherwise we move it to the left in the first row using a Knuth relation
until it reaches yz with y ≤ x, z > x (so z is the leftmost element greater than
x). Now we can move z to the left of the first row using Knuth relations. If z
is at least the rightmost element of the second row we leave it there, otherwise
we repeat what we did on the first row with z instead of x. Continuing in this
way we obtain a semistandard tableau whose word is Knuth equivalent to the
original word.

Now we have to show that any word is equivalent to at most one semis-
tandard tableau. We start by observing that Knuth equivalence preserves the
length of the longest increasing sequence. Since in a semistandard tableau the
length of the longest increasing sequence is the first row, this shows that the
length of the first row of the tableau is determined. More generally, Knuth
equivalence preserves the maximum of the sum of the lengths of k disjoint in-
creasing sequences for any k. For a semistandard tableau, this is the sum of the
lengths of the first k rows (as there cannot be more than k elements from any
column) so the shape of the tableau is determined bu the word.

To complete the proof we have to show that position of each letter of the
word in the tableau is determined. Consider the rightmost largest element x in
the word. It can never catalyze the exchange of two letters, so the word with x
removed is Knuth equivalent to the tableau with x removed. By induction on
length the partition of the tableau with x removed is uniquely determined, and
is the partition of the word with one box removed, which must therefore be the
place where x has to be inserted. �

Exercise 387 Show that there is a polynomial-time algorithm to find the max-
imal total length of k disjoint increasing subsequences of a given finite sequence.
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Exercise 388 Prove the ErdsSzekeres theorem that a sequence of length mn+1
contains an increasing sequence of length m + 1 or a decreasing sequence of
length n+1. (Let ai and bi be the lengths of maximal increasing and decreasing
sequences ending at position i. Show that the mn + 1 pairs (ai, bi) are all
distinct.)

The distribution of the length of the longest increasing sequence of a long
random sequence approaches the TracyWidom distribution, which can be ex-
pressed in terms of Painleve functions.

36 Construction of Lie algebras from a root lat-
tice

The root space decomposition of a Lie algebra suggests the following construc-
tion of a Lie algebra from its root system. Take the direct sum of the (dual
of the) root lattice with a 1-dimensional vector space generated by a special
element for each root. However when we try to write down the Lie bracket for
this algebra we run into the following sign problem: suppose that α, β, and
α + β are roots, with corresponding elements eα, eβ , eα+β . It seems natural
to define [eα, eβ ] = eα+β The problem is that the left hand side changes sign
when α and β are switched, while the right hand side does not. In fact there is
in general no functorial way to define a Lie algebra from its root lattice. One
way to see this is that if we had such a functor, then the automorphism group,
and the Weyl group, of the root lattice would act on the Lie algebra. However
in general the Weyl group does not have a nice action on the Lie algebra: it
is a subquotient of the Lie group, not a subgroup. This can be seen even for
SLn(R), where order 2 reflections of the Weyl group lift to order 4 elements of
the Lie group. The best we can do is find a subgroup of the form 2n.W inside
the Lie group.

We can see this going wrong even in the case of sl2(R). Remember that

the Weyl group is N(T )/T where T =
(
a 0
0 a−1

)
and N(T ) = T ∪

(
0 b
−b−1 0

)
, and

this second part is stuff having order 4, so we cannot possibly write this as a
semi-direct product of T and the Weyl group.

So the Weyl group is not usually a subgroup of N(T ). The best we can do
is to find a group of the form 2n ·W ⊆ N(T ) where n is the rank. For example,
let’s do it for SL(n+ 1,R) Then T = diag(a1, . . . , an) with a1 · · · an = 1. Then
we take the normalizer of the torus to be N(T ) =all permutation matrices with
±1’s with determinant 1, so this is 2n · Sn, and it does not split. The problem
we had with signs can be traced back to the fact that this group doesn’t split.

We can construct the Lie algebra from something acted on by 2n ·W (but
not from something acted on by W ). We take a central extension of the lattice
by a group of order 2. Notation is a pain because the lattice is written additively
and the extension is nonabelian, so we want it to be written multiplicatively.
Write elements of the lattice in the form eα formally, so we have converted the
lattice operation to multiplication. We will use the central extension

1→ ±1→ êL → eL︸︷︷︸
∼=L

→ 1
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We want êL to have the property that êαêβ = (−1)(α,β)êβ êα, where êα is some-
thing mapping to eα. What do the automorphisms of êL look like? We get

1→ (L/2L)︸ ︷︷ ︸
(Z/2)rank(L)

→ Aut(êL)→ Aut(eL)

for α ∈ L/2L, we get the map êβ → (−1)(α,β)êβ . The map turns out to be
onto, and the group Aut(eL) contains the reflection group of the lattice. This
extension is usually non-split.

Now the Lie algebra is L⊕{1 dimensional spaces spanned by (êα,−êα)} for
α2 = 2 with the convention that −êα (−1 in the vector space) is −êα (-1 in
the group êL). Now define a Lie bracket by the “obvious rules” [α, β] = 0 for
α, β ∈ L (the Cartan subalgebra is abelian), [α, êβ ] = (α, β)êβ (êβ is in the root
space of β), and [êα, êβ ] = 0 if (α, β) ≥ 0 (since (α + β)2 > 2), [êα, êβ ] = êαêβ

if (α, β) < 0 (product in the group êL), and [êα, (êα)−1] = α.

Theorem 389 Assume L is positive definite. Then this Lie bracket forms a
Lie algebra (so it is skew and satisfies Jacobi).

Proof The proof is easy but tiresome, because there are a lot of cases.
We check the Jacobi identity: We want [[a, b], c] + [[b, c], a] + [[c, a], b] = 0

1. all of a, b, c in L. Trivial because all brackets are zero.

2. two of a, b, c in L. Say α, β, eγ

[[α, β], eγ ]︸ ︷︷ ︸
0

+ [[β, eγ ], α]︸ ︷︷ ︸
(β,α)(−α,β)eγ

+[[eγ , α], β]

and similar for the third term, giving a sum of 0.

3. one of a, b, c in L. α, eβ , eγ . eβ has weight β and eγ has weight γ and eβeγ

has weight β + γ. So check the cases, and we get Jacobi:

[[α, eβ ], eγ ] = (α, β)[eβ , eγ ]

[[eβ , eγ ], α] = −[α, [eβ , eγ ]] = −(α, β + γ)[eβ , eγ ]

[[eγ , α], eβ ] = −[[α, eγ ], eβ ] = (α, γ)[eβ , eγ ],

so the sum is zero.

4. none of a, b, c in L. This is the most tedious case, eα, eβ , eγ . We can
reduce it to two or three cases. We make our cases depending on (α, β),
(α, γ), (β, γ).

(a) if 2 of these are 0, then all the [[∗, ∗], ∗] are zero.

(b) α = −β. By case a, γ cannot be orthogonal to them, so say (α, γ) = 1
(γ, β) = −1; adjust so that eαeβ = 1, then calculate

[[eγ , eβ ], eα]− [[eα, eβ ], eγ ] + [[eα, eγ ], eβ ] = eαeβeγ − (α, γ)eγ + 0

= eγ − eγ = 0.
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(c) α = −β = γ, which is easy because [eα, eγ ] = 0 and [[eα, eβ ], eγ ] =
−[[eγ , eβ ], eα]

(d) We have that each of the inner products is 1, 0 or −1. If some
(α, β) = 1, all brackets are 0.

�

We had two cases left:

[[eα, eβ ], eγ ] + [[eβ , eγ ], eα] + [[eγ , eα], eβ ] = 0

− (α, β) = (β, γ) = (γ, α) = −1, in which case α + β + γ = 0. then
[[eα, eβ ], eγ ] = [eαeβ , eγ ] = α + β. By symmetry, the other two terms are
β + γ and γ + α;the sum of all three terms is 2(α+ β + γ) = 0.

− (α, β) = (β, γ) = −1, (α, γ) = 0, in which case [eα, eγ ] = 0. We check that
[[eα, eβ ], eα] = [eαeβ , eγ ] = eαeβeγ (since (α + β, γ) = −1). Similarly, we
have [[eβ , eγ ], eα] = [eβeγ , eα] = eβeγeα. We notice that eαeβ = −eβeα
and eγeα = eαeγ so eαeβeγ = −eβeγeα; again, the sum of all three terms
in the Jacobi identity is 0.

This concludes the verification of the Jacobi identity, so we have a Lie algebra.
Is there a proof avoiding case-by-case check? Yes, but it is actually more

work. We really have functors from double covers of lattices to vertex algebras,
and from vertex algebras to Lie algebras. However it takes several weeks to
define vertex algebras, though it you do you get constructions for a lot more Lie
algebras because this works even if the lattice is not positive definite. In fact,
the construction we did was the vertex algebra approach, with all the vertex
algebras removed. So there is a more general construction which gives a much
larger class of infinite dimensional Lie algebras.

Now we should study the double cover L̂, and in particular prove its ex-
istence. Given a Dynkin diagram, we can construct L̂ as generated by the
elements eαi for αi simple roots with the given relations. It is easy to check
that we get a surjective homomorphism L̂→ L with kernel generated by z with
z2 = 1. What’s a little harder to show is that z 6= 1 (i.e., show that L̂ 6= L).
The easiest way to do it is to use cohomology of groups, but since we have such
an explicit case, we’ll do it bare hands:
Problem: Given Z, H groups with Z abelian, construct central extensions

1→ Z → G→ H → 1

(where Z lands in the center of G). Let G be the set of pairs (z, h), and set the
product (z1, h1)(z2, h2) = (z1z2c(h1, h2), h1h2), where c(h1, h2) ∈ Z (c(h1, h2)
will be a cocycle in group cohomology). We obviously get a homomorphism by
mapping (z, h) 7→ h. If c(1, h) = c(h, 1) = 1 (normalization), then z 7→ (z, 1)
is a homomorphism mapping Z to the center of G. In particular, (1, 1) is the
identity. We’ll leave it as an exercise to figure out what the inverses are. When
is this thing associative? Let’s just write everything out:(

(z1, h1)(z2, h2)
)
(z3, h3) = (z1z2z3c(h1, h2)c(h1h2, h3), h1h2h3)

(z1, h1)
(
(z2, h2)(z3, h3)

)
= (z1z2z3c(h1, h2h3)c(h2, h3), h1h2h3)
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so we must have

c(h1, h2)c(h1h2, h3) = c(h1h2, h3)c(h2, h3).

This identity is actually very easy to satisfy in one particular case: when c is
bimultiplicative:

c(h1, h2h3) = c(h1, h2)c(h1, h3)

and
c(h1h2, h3) = c(h1, h3)c(h2, h3)

. That is, we have a map H ×H → Z. Not all cocycles come from such maps,
but this is the case we care about.

To construct the double cover, let Z = ±1 and H = L (free abelian). If
we write H additively, we want c to be a bilinear map L × L → ±1. It is
really easy to construct bilinear maps on free abelian groups. Just take any
basis α1, . . . , αn of L, choose c(α1, αj) arbitrarily for each i, j and extend c via

bilinearity to L × L. In our case, we want to find a double cover L̂ satisfying
êαêβ = (−1)(α,β)êβ êα where êα is a lift of eα. This just means that c(α, β) =
(−1)(α,β)c(β, α). To satisfy this, just choose c(αi, αj) on the basis {αi} so that
c(αi, αj) = (−1)(αi,αj)c(αj , αi). This is trivial to do as (−1)(αi,αi) = 1. Notice
that this uses the fact that the lattice is even. There is no canonical way to
choose this 2-cocycle (otherwise, the central extension would split as a product),
but all the different double covers are isomorphic because we can specify L̂ by
generators and relations. Thus, we have constructed L̂ (or rather, verified that
the kernel of L̂→ L has order 2, not 1).

Let’s now look at lifts of automorphisms of L to L̂.

Exercise 390 Any automorphism of L preserving ( , ) lifts to an automorphism
of L̂

There are two special cases:

1. −1 is an automorphism of L, and we want to lift it to L̂ explicitly. First
attempt: try sending êα to ê−α := (êα)−1, which doesn’t work because
a 7→ a−1 is not an automorphism on non-abelian groups.

Better: ω : êα 7→ (−1)α
2/2(êα)−1 is an automorphism of L̂. To see this,

check

ω(êα)ω(êβ) = (−1)(α2+β2)/2(êα)−1(êβ)−1

ω(êαêβ) = (−1)(α+β)2/2(êβ)−1(êα)−1

which work out just right

2. If r2 = 2, then α 7→ α − (α, r)r is an automorphism of L (reflection

through r⊥). You can lift this by êα 7→ êα(êr)−(α,r) × (−1)(
(α,r)

2 ). This is
a homomorphism (check it!) of order (usually) 4!

Remark 391 Although automorphisms of L lift to automorphisms of L̂,
the lift might have larger order.
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This construction works for the root lattices of An, Dn, E6, E7, and E8;
these are the lattices which are even, positive definite, and generated by vectors
of norm 2 (in fact, all such lattices are sums of the given ones). What about
Bn, Cn, F4 and G2? The reason the construction doesn’t work for these cases
is because there are roots of different lengths. These all occur as fixed points
of diagram automorphisms of An, Dn and E6. In fact, we have a functor from
Dynkin diagrams to Lie algebras, so and automorphism of the diagram gives an
automorphism of the algebra

A2n doesn’t really give you a new algebra: it corresponds to some superal-
gebra stuff.

36.1 Construction of the Lie group of a Lie algebra

It is the group of automorphisms of the Lie algebra generated by the elements
exp(λAd(êα)), where λ is some real number, êα is one of the basis elements of
the Lie algebra corresponding to the root α, and Ad(êα)(a) = [êα, a]. In other
words,

exp(λAd(êα))(a) = 1 + λ[êα, a] +
λ2

2
[êα, [êα, a]].

and all the higher terms are zero. To see that Ad(êα)3 = 0, note that if β is a
root, then β + 3α is not a root (or 0).

Warning 392 In general, the group generated by these automorphisms is not
the whole automorphism group of the Lie algebra. There can be extra dia-
gram (or graph) automorphisms, field automorphisms induced (obviously) by
automorphism of the field, and “diagonal” automorphisms, such as the auto-
morphisms of SLn(Q) induced by conjugation by diagonal matrices of GLn(Q).
Moreover there are some strange extra diagram automorphisms of B2 and F4

in characteristic 2, and of G2 in characteristic 3. (Informally, one can ignore
the arrow on a bond of a Dynkin diagram if the characteristic of the field is the
number of bonds.)

We get some other things from this construction. We can get simple groups
over finite fields: note that the construction of a Lie algebra above works over
any commutative ring (e.g. over Z). The only place we used division is in
exp(λAd(êα)) (where we divided by 2). The only time this term is non-zero is
when we apply exp(λAd(êα)) to ê−α, in which case we find that [êα, [êα, ê−α]] =
[êα, α] = −(α, α)êα, and the fact that (α, α) = 2 cancels the division by 2. So
we can in fact construct the E8 group over any commutative ring. With more
effort we in fact get group schemes over Z.See Steinberg’s notes or the book by
Carter on Finite Simple Groups for more details.

37 Simple real Lie algebras

37.1 Real forms

(The stuff about E8 is duplicate and needs to be removed)
In general, suppose L is a Lie algebra with complexification L ⊗ C. How

can we find another Lie algebra M with the same complexification? L⊗ C has
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an anti-linear involution ωL : l ⊗ z 7→ l ⊗ z̄. Similarly, it has an anti-linear
involution ωM . Notice that ωLωM is a linear involution of L ⊗ C. Conversely,
if we know this involution, we can reconstruct M from it. Given an involution
ω of L⊗C, we can get M as the fixed points of the map a 7→ ωLω(a)“=” ω(a).
Another way is to put L = L+ ⊕ L−, which are the +1 and −1 eigenspaces,
then M = L+ ⊕ iL−.

Thus, to find other real forms, we have to study the involutions of the com-
plexification of L. The exact relation is subtle, but this is a good way to go.

Example 393 Let L = sl2(R). It has an involution ω(m) = −mT . su2(R) is
the set of fixed points of the involution ω times complex conjugation on sl2(C),
by definition.

So to construct real forms of E8, we want some involutions of the Lie algebra
E8 which we constructed. What involutions do we know about? There are two
obvious ways to construct involutions:

1. Lift −1 on L to êα 7→ (−1)α
2/2(êα)−1, which induces an involution on the

Lie algebra.

2. Take β ∈ L/2L, and look at the involution êα 7→ (−1)(α,β)êα.

(2) gives nothing new: we get the Lie algebra we started with. (1) only gives
one real form. To get all real forms, we multiply these two kinds of involutions
together.

Recall that L/2L has 3 orbits under the action of the Weyl group, of size 1,
120, and 135. These will correspond to the three real forms of E8. How do we
distinguish different real forms? The answer was found by Cartan: look at the
signature of an invariant quadratic form on the Lie algebra.

A bilinear form ( , ) on a Lie algebra is called invariant if ([a, b], c)+(b[a, c]) =
0 for all a, b, c. This is called invariant because it corresponds to the form
being invariant under the corresponding group action. Now we can construct
an invariant bilinear form on E8 as follows:

1. (α, β)in the Lie algebra = (α, β)in the lattice

2. (êα, (êα)−1) = 1

3. (a, b) = 0 if a and b are in root spaces α and β with α+ β 6= 0.

This gives an invariant inner product on E8, which we prove by case-by-case
check

Exercise 394 do these checks

We constructed a Lie algebra of type E8, which was L⊕
⊕
êα, where L is the

root lattice and α2 = 2. This gives a double cover of the root lattice:

1→ ±1→ êL → eL → 1.

We had a lift for ω(α) = −α, given by ω(êα) = (−1)(α2/2)(êα)−1. So ω becomes
an automorphism of order 2 on the Lie algebra. eα 7→ (−1)(α,β)eα is also an
automorphism of the Lie algebra.
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Suppose σ is an automorphism of order 2 of the real Lie algebra L = L++L−

(eigenspaces of σ). We saw that you can construct another real form given by
L+ + iL−. Thus, we have a map from conjugacy classes of automorphisms with
σ2 = 1 to real forms of L. This is not in general in isomorphism.

E8 has an invariant symmetric bilinear form (eα, (eα)−1) = 1, (α, β) =
(β, α). The form is unique up to multiplication by a constant since E8 is an
irreducible representation of E8. So the absolute value of the signature is an
invariant of the Lie algebra.

For the split form of E8, what is the signature of the invariant bilinear form
(the split form is the one we just constructed)? On the Cartan subalgebra
L, ( , ) is positive definite, so we get +8 contribution to the signature. On
{eα, (eα)−1}, the form is ( 0 1

1 0 ), so it has signature 0 · 120. Thus, the signature
is 8. So if we find any real form with a different signature, we will have found
a new Lie algebra.

We first try involutions eα 7→ (−1)(α,β)eα. But this does not change the
signature. L is still positive definite, and we still have ( 0 1

1 0 ) or
(

0 −1
−1 0

)
on the

other parts. These Lie algebras actually turn out to be isomorphic to what we
started with (though we have not shown that they are isomorphic).

Now try ω : eα 7→ (−1)α
2/2(eα)−1, α 7→ −α. What is the signature of the

form? We write down the + and − eigenspaces of ω. The + eigenspace will be
spanned by eα− e−α, and these vectors have norm −2 and are orthogonal. The
− eigenspace will be spanned by eα + e−α and L, which have norm 2 and are
orthogonal, and L is positive definite. What is the Lie algebra corresponding to
the involution ω? It will be spanned by eα− e−α where α2 = 2 (norm −2), and
i(eα + e−α) (norm −2), and iL (which is now negative definite). So the bilinear
form is negative definite, with signature −248( 6= ±8).

With some more work, we can actually show that this is the Lie algebra
of the compact form of E8. This is because the automorphism group of E8

preserves the invariant bilinear form, so it is contained in O0,248(R), which is
compact.

Now we look at involutions of the form eα 7→ (−1)(α,β)ω(eα). Notice that ω
commutes with eα 7→ (−1)(α,β)eα. The β’s in (α, β) correspond to L/2L modulo
the action of the Weyl group W (E8). Remember this has three orbits, with 1
norm 0 vector, 120 norm 2 vectors, and 135 norm 4 vectors. The norm 0 vector
gives us the compact form. Let’s look at the other cases and see what we get.

Suppose V has a negative definite symmetric inner product ( , ), and suppose
σ is an involution of V = V+ ⊕ V− (eigenspaces of σ). What is the signature of
the invariant inner product on V+⊕ iV−? On V+, it is negative definite, and on
iV− it is positive definite. Thus, the signature is dimV−−dimV+ = −tr(σ). So
we want to work out the traces of these involutions.

Given some β ∈ L/2L, what is tr(eα 7→ (−1)(α,β)eα)? If β = 0, the traces
is obviously 248 because we just have the identity map. If β2 = 2, we need to
figure how many roots have a given inner product with β. Recall that this was
determined before:
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(α, β) # of roots α with given inner product eigenvalue
2 1 1
1 56 -1
0 126 1
-1 56 -1
-2 1 1

Thus, the trace is 1 − 56 + 126 − 56 + 1 + 8 = 24 (the 8 is from the Cartan
subalgebra). So the signature of the corresponding form on the Lie algebra is
−24. We’ve found a third Lie algebra.

If we also look at the case when β2 = 4, what happens? How many α with
α2 = 2 and with given (α, β) are there? In this case, we have:

(α, β) # of roots α with given inner product eigenvalue
2 14 1
1 64 -1
0 84 1
-1 64 -1
-2 14 1

The trace will be 14 − 64 + 84 − 64 + 14 + 8 = −8. This is just the split form
again.

Summary: We’ve found 3 forms of E8, corresponding to 3 classes in L/2L,
with signatures 8, −24, −248, corresponding to involutions eα 7→ (−1)(α,β)e−α

of the compact form. If L is the compact form of a simple Lie algebra, then
Cartan showed that the other forms correspond exactly to the conjugacy classes
of involutions in the automorphism group of L (this doesn’t work if we don’t
start with the compact form — so always start with the compact form).

In fact, these three are the only forms of E8, but we won’t prove that.

Example 395 Let’s go back to various forms of E8 and figure out (guess) the
fundamental groups. We need to know the maximal compact subgroups.

1. One of them is easy: the compact form is its own maximal compact sub-
group. What is the fundamental group? Remember or quote the fact that
for compact simple groups, π1

∼= weight lattice
root lattice , which is 1. So this form is

simply connected.

2. β2 = 2 case (signature −24). Recall that there were 1, 56, 126, 56, and 1
roots α with (α, β) = 2, 1, 0,−1, and -2 respectively, and there are another
8 dimensions for the Cartan subalgebra. On the 1, 126, 1, 8 parts, the form
is negative definite. The sum of these root spaces gives a Lie algebra of
type E7A1 with a negative definite bilinear form (the 126 gives you the
roots of an E7, and the 1s are the roots of an A1). So it a reasonable guess
that the maximal compact subgroup has something to do with E7A1. E7

and A1 are not simply connected: the compact form of E7 has π1 = Z/2
and the compact form of A1 also has π1 = Z/2. So the universal cover of
E7A1 has center (Z/2)2. Which part of this acts trivially on E8? We look
at the E8 Lie algebra as a representation of E7×A1. You can read off how
it splits form the picture above: E8

∼= E7 ⊕ A1 ⊕ 56 ⊗ 2, where 56 and 2
are irreducible, and the centers of E7 and A1 both act as −1 on them. So
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the maximal compact subgroup of this form of E8 is the simply connected
compact form of E7 × A1/(−1,−1). This means that π1(E8) is the same
as π1 of the compact subgroup, which is (Z/2)2/(−1,−1) ∼= Z/2. So this
simple group has a nontrivial double cover (which is non-algebraic).

3. For the other (split) form of E8 with signature 8, the maximal compact
subgroup is Spin16(R)/(Z/2), and π1(E8) is Z/2.

You can compute any other homotopy invariants with this method.

Let’s look at the 56 dimensional representation of E7 in more detail. We
had the picture

(α, β) # of α’s
2 1
1 56
0 126
-1 56
-2 1

The Lie algebra E7 fixes these 5 spaces of E8 of dimensions 1, 56, 126 + 8, 56, 1.
From this we can get some representations of E7. The 126+8 splits as 1+(126+
7). But we also get a 56 dimensional representation of E7. Let’s show that this
is actually an irreducible representation. Recall that in calculating W (E8), we
showed that W (E7) acts transitively on this set of 56 roots of E8, which can be
considered as weights of E7.

An irreducible representation is called minuscule if the Weyl group acts
transitively on the weights. This kind of representation is particularly easy to
work with. It is really easy to work out the character for example: just translate
the 1 at the highest weight around, so every weight has multiplicity 1.

So the 56 dimensional representation of E7 must actually be the irreducible
representation with whatever highest weight corresponds to one of the vectors.

37.2 Every possible simple Lie group

We will construct them as follows: Take an involution σ of the compact form
L = L+ + L− of the Lie algebra, and form L+ + iL−. The way we constructed
these was to first construct An, Dn, E6, and E7 as for E8. Then construct the
involution ω : eα 7→ −e−α. We get Bn, Cn, F4, and G2 as fixed points of the
involution ω.

Kac classified all automorphisms of finite order of any compact simple Lie
group. The method we’ll use to classify involutions is extracted from his method.
We can construct lots of involutions as follows:

1. Take any Dynkin diagram, say E8, and select some of its verticals, corre-
sponding to simple roots. Get an involution by taking eα 7→ ±eα where
the sign depends on whether α is one of the simple roots we’ve selected.
However, this is not a great method. For one thing, we get a lot of repeats
(recall that there are only 3, and we’ve found 28 this way).

2. Take any diagram automorphism of order 2, such as

This gives you more involutions.
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Next time, we’ll see how to cut down this set of involutions. Split form of
Lie algebra (we did this for An, Dn, E6, E7, E8): A =

⊕
êα ⊕ L. Compact

form A+ + iA−, where A± eigenspaces of ω : êα 7→ (−1)α
2/2ê−α.

We talked about other involutions of the compact form. You get all the
other forms this way.

The idea now is to find ALL real simple Lie algebras by listing all involutions
of the compact form. We will construct all of them, but we won’t prove that we
have all of them.

We’ll use Kac’s method for classifying all automorphisms of order N of a
compact Lie algebra (and we’ll only use the case N = 2). First let’s look at
inner automorphisms. Write down the AFFINE Dynkin diagram

Choose ni with
∑
nimi = N where the mi are the numbers on the diagram.

We have an automorphism eαj 7→ e2πinj/Neαj induces an automorphism of
order dividing N . This is obvious. The point of Kac’s theorem is that all inner
automorphisms of order dividing N are obtained this way and are conjugate
if and only if they are conjugate by an automorphism of the Dynkin diagram.
We won’t actually prove Kac’s theorem because we just want to get a bunch of
examples.

Example 396 Real forms of E8. We’ve already found three, and it took us a
long time. We can now do it fast. We need to solve

∑
nimi = 2 where ni ≥ 0;

there are only a few possibilities:
The points NOT crossed off form the Dynkin diagram of the maximal com-

pact subgroup. Thus, by just looking at the diagram, we can see what all the
real forms are!

Example 397 Let’s do E7. Write down the affine diagram:
We get the possibilities
(*) The number of ways is counted up to automorphisms of the diagram.
(**) In the split real form, the maximal compact subgroup has dimension

equal to half the number of roots. The roots of A7 look like εi − εj for i, j ≤ 8
and i 6= j, so the dimension is 8 · 7 + 7 = 56 = 112

2 .
(***) The maximal compact subgroup is E6⊕R because the fixed subalgebra

contains the whole Cartan subalgebra, and the E6 only accounts for 6 of the 7
dimensions. You can use this to construct some interesting representations of E6

(the minuscule ones). How does the algebra E7 decompose as a representation
of the algebra E6 ⊕ R?

We can decompose it according to the eigenvalues of R. The E6 ⊕ R is the
zero eigenvalue of R [why?], and the rest is 54 dimensional. The easy way to
see the decomposition is to look at the roots. Remember when we computed
the Weyl group we looked for vectors like

The 27 possibilities (for each) form the weights of a 27 dimensional repre-
sentation of E6. The orthogonal complement of the two nodes is an E6 root
system whose Weyl group acts transitively on these 27 vectors (we showed that
these form a single orbit, remember?). Vectors of the E7 root system are the
vectors of the E6 root system plus these 27 vectors plus the other 27 vectors.
This splits up the E7 explicitly. The two 27s form single orbits, so they are
irreducible. Thus, E7

∼= E6 ⊕ R⊕ 27⊕ 27, and the 27s are minuscule.
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Let K be a maximal compact subgroup, with Lie algebra R + E6. The factor
of R means that K has an S1 in its center. Now look at the space G/K, where
G is the Lie group of type E7, and K is the maximal compact subgroup. It
is a Hermitian symmetric space. Symmetric space means that it is a (simply
connected) Riemannian manifold M such that for each point p ∈M , there is an
automorphism fixing p and acting as −1 on the tangent space. This looks weird,
but it turns out that all kinds of nice objects you know about are symmetric
spaces. Typical examples you may have seen: spheres Sn, hyperbolic space
Hn, and Euclidean space Rn. Roughly speaking, symmetric spaces have nice
properties of these spaces. Cartan classified all symmetric spaces: they are non-
compact simple Lie groups modulo the maximal compact subgroup (more or
less ... depending on simply connectedness hypotheses ’n such). Historically,
Cartan classified simple Lie groups, and then later classified symmetric spaces,
and was surprised to find the same result. Hermitian symmetric spaces are
just symmetric spaces with a complex structure. A standard example of this is
the upper half plane {x + iy|y > 0}. It is acted on by SL2(R), which acts by(
a b
c d

)
τ = aτ+b

cτ+d .
Let’s go back to this G/K and try to explain why we get a Hermitian sym-

metric space from it. We’ll be rather sketchy here. First of all, to make it a
symmetric space, we have to find a nice invariant Riemannian metric on it. It
is sufficient to find a positive definite bilinear form on the tangent space at p
which is invariant under K ... then we can translate it around. We can do
this as K is compact (so you have the averaging trick). Why is it Hermitian?
We’ll show that there is an almost complex structure. We have S1 acting on the
tangent space of each point because we have an S1 in the center of the stabilizer
of any given point. Identify this S1 with complex numbers of absolute value 1.
This gives an invariant almost complex structure on G/K. That is, each tan-
gent space is a complex vector space. Almost complex structures don’t always
come from complex structures, but this one does (it is integrable). Notice that
it is a little unexpected that G/K has a complex structure (G and K are odd
dimensional in the case of G = E7, K = E6⊕R, so they have no hope of having
a complex structure).

Example 398 Let’s look at E6, with affine Dynkin diagram
We get the possibilities
In the last one, the maximal compact subalgebra is D5 ⊕R. Just as before,

we get a Hermitian symmetric space. Let’s compute its dimension (over C).
The dimension will be the dimension of E6 minus the dimension of D5 ⊕ R, all
divided by 2 (because we want complex dimension), which is (78− 46)/2 = 16.

So we have found two non-compact simply connected Hermitian symmetric
spaces of dimensions 16 and 27. These are the only “exceptional” cases; all the
others fall into infinite families!

There are also some OUTER automorphisms of E6 coming from the diagram
automorphism

The fixed point subalgebra has Dynkin diagram obtained by folding the
E6 on itself. This is the F4 Dynkin diagram. The fixed points of E6 under
the diagram automorphism is an F4 Lie algebra. So we get a real form of
E6 with maximal compact subgroup F4. This is probably the easiest way to
construct F4, by the way. Moreover, we can decompose E6 as a representation
of F4. dimE6 = 78 and dimF4 = 52, so E6 = F4 ⊕ 26, where 26 turns out
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to be irreducible (the smallest non-trivial representation of F4 ... the only one
anybody actually works with). The roots of F4 look like (. . . ,±1,±1 . . . ) (24 of
these) and (± 1

2 · · · ±
1
2 ) (16 of these), and (. . . ,±1 . . . ) (8 of them) ... the last

two types are in the same orbit of the Weyl group.
The 26 dimensional representation has the following character: it has all

norm 1 roots with multiplicity 1 and 0 with multiplicity 2 (note that this is not
minuscule).

There is one other real form of E6. To get at it, we have to talk about Kac’s
description of non-inner automorphisms of order N . The non-inner automor-
phisms all turn out to be related to diagram automorphisms. Choose a diagram
automorphism of order r, which divides N . Let’s take the standard thing on E6.
Fold the diagram (take the fixed points), and form a TWISTED affine Dynkin
diagram (note that the arrow goes the wrong way from the affine F4)

There are also numbers on the twisted diagram, but never mind them. Find
ni so that r

∑
nimi = N . This is Kac’s general rule. We’ll only use the case

N = 2.
If r > 1, the only possibility is r = 2 and one n1 is 1 and the corresponding

mi is 1. So we just have to find points of weight 1 in the twisted affine Dynkin
diagram. There are just two ways of doing this in the case of E6

one of these gives us F4, and the other has maximal compact subalgebra C4,
which is the split form since dimC4 = #roots of F4/2 = 24.

Example 399 F4. The affine Dynkin is
We can cross out one node of weight 1, giving the compact form (split form),

or a node of weight 2 (in two ways), giving maximal compacts A1C3 or B4. This
gives us three real forms.

Example 400 G2. We can actually draw this root system ... UCB won’t
supply me with a four dimensional board. The construction is to take the D4

algebra and look at the fixed points of:
We want to find the fixed point subalgebra.
Fixed points on Cartan subalgebra: ρ fixes a two dimensional space, and

has 1 dimensional eigenspaces corresponding to ω and ω̄, where ω3 = 1. The 2
dimensional space will be the Cartan subalgebra of G2.

Positive roots of D4 as linear combinations of simple roots (not fundamental
weights):

There are six orbits under ρ, grouped above. It obviously acts on the negative
roots in exactly the same way. What we have is a root system with six roots of
norm 2 and six roots of norm 2/3. Thus, the root system is G2:

One of the only root systems to appear on a country’s national flag. Now
let’s work out the real forms. Look at the affine:

we can delete the node of weight 1, giving the compact form:
. We can delete the node of weight 2, giving A1A1 as the compact subalgebra:
... this must be the split form because there is nothing else the split form

can be.
Let’s say some more about the split form. What does the Lie algebra of G2

look like as a representation of the maximal compact subalgebra A1 × A1? In
this case, it is small enough that we can just draw a picture:

We have two orthogonal A1s, and we have leftover the stuff on the right.
This thing on the right is a tensor product of the 4 dimensional irreducible
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representation of the horizontal and the 2 dimensional of the vertical. Thus,

G2 = 3×1+1⊗3+4⊗2 as irreducible representations of A
(horizontal)
1 ⊗A(vertical)

1 .
Let’s use this to determine exactly what the maximal compact subgroup is.

It is a quotient of the simply connected compact group SU(2)×SU(2), with Lie
algebra A1×A1. Just as for E8, we need to identify which elements of the center
act trivially on G2. The center is Z/2×Z/2. Since we’ve decomposed G2, we can
compute this easily. A non-trivial element of the center of SU(2) acts as 1 (on
odd dimensional representations) or −1 (on even dimensional representations).
So the element z × z ∈ SU(2) × SU(2) acts trivially on 3 ⊗ 1 + 1 ⊗ 3 + 4 × 2.
Thus the maximal compact subgroup of the non-compact simple G2 is SU(2)×
SU(2)/(z × z) ∼= SO4(R), where z is the non-trivial element of Z/2.

So we have constructed 3 + 4 + 5 + 3 + 2 (from E8, E7, E6, F4, G2) real
forms of exceptional simple Lie groups.

There are another 5 exceptional real Lie groups: Take COMPLEX groups
E8(C), E7(C), E6(C), F4(C), and G2(C), and consider them as REAL. These
give simple real Lie groups of dimensions 248× 2, 133× 2, 78× 2, 52× 2, and
14× 2.

38 Discrete subgroups of Lie groups

We will show how to classify the finite subgroups G of O3(R) using Thurston’s
theory of orbifolds. The key idea it to look at the orbit space S2/G. This is not
usually a manifold (unless G happens to act freely) but is a more general sort
of object called an orbifold, which is a sort of manifold with mild singularities.
Two-dimensional orbifolds turn out to be easy to classify as there are only a
limited number of possible singularities, so we can use this to classify finite
rotation and reflection groups.

We first look at the possible singularities of a smooth surface by a finite
group. The singularity is going to look locally like R2/G where G is some finite
group acting on the vector space R2. There are not too many of these, as
they have to be subgroups of O2(R): G is either cyclic, acting as rotations or
dihedral, acting as rotations and reflections. The corresponding singularities
are either conical points with angle 2π/n (for G cyclic of order n) or a sector of
angle 2π/2n, for G dihedral of order 2n.

The Euler characteristic of the orbifold is (Euler characteristic of 2-sphere)/(Order
of group), which must be positive as the 2-sphere has positive Euler character-
istic. This is also equal to the number of points-lines plus faces of the orbifold.
However we must be careful to count points and lines properly: a point that is a
quotient singularity by a group of order n is really only 1/n of a point. Similarly
a boundary edge is really only half a line. In other words whenever we have a
point that is a quotient singularity we need to adjust the Euler characteristic
by 1− 1/n.

So in the orientable case when the quotient orbifold is a topological sphere
with quotient singularities of orders ni the Euler characteristic is

Euler characteristic of sphere − corrections = 2−
∑

(1− 1/ni)

and this is equal to (Euler characteristic of 2-sphere)/(Order of group) = 2/|G| >
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0. So we want to solve the equation∑
(1− 1/ni) < 2

for integers ni > 1. There is an extra condition: there cannot be just one
integer, and if we have just two integers they must be the same, otherwise
we get a bad orbifold which has no cover that is a manifold. It is easy to
find the solutions: they are (), (n, n), (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5). These
correspond to quotients of the sphere by the trivial group, cyclic groups of order
n, dihedral groups of order 2n, and the rotations of a tetrahedron, octahedron,
or icosahedron.

The unorientable case when the quotient is a disc or projective plane is
similar. The correction factors are 1/2 for each edge and 1 − 1/2m for every
sector singularity on the boundary, so we find

1−
∑

(1− 1/ni)−
∑

(1− 1/mi)/2 = 1/|G| > 0.

Here the numbers mi are the orders of the sector singularities, and the 2’s are
replaced by 1’s because we replace the sphere of Euler characteristic 2 by the
disc or projective plane which have Euler characteristic 1. (Of course for the
projective plane there are no sector singularities because it has no boundary.)

The finite subgroups of O4(R) can be classified by reducing to the case of
O3(R) using the fact the O4(R) is almost a product of 2 copies of O3(R): more
precisely the double cover of SO4(R) is isomorphic to the product of two copies
of the double cover of SO3(R). These groups act on S3 so give examples of
compact 3-dimensional orbifolds. If the finite group acts freely on S3 then
we get compact 3-dimensional manifolds called space forms. These are fairly
straightforward to classify, and by Perelman’s proof of Thurston’s elliptization
conjecture they give all closed 3-manifolds with finite fundamental group. For
example, lens spaces arise by taking a 2-dimensional complex representation of
a cyclic group, which acts on the 3-sphere of vectors of length 1. A particularly
famous example is Poincare’s homology 3-sphere. Any subgroup of the group S3

automatically acts fixed point freely on S3, so any double cover of a finite group
of rotations on SO3(R) is the fundamental group of a compact 3-manifold. The
Poincare 3-sphere arises by taking the double cover of the group of rotations of
the icosahedron. The fundamental group is the perfect group of order 120. As
the fundamental group is perfect, the first homology group of the manifold is
trivial, so the manifold is a homology sphere.

Exercise 401 Classify the 17 wallpaper groups (discrete co-compact subgroups
of the group R2.O2(R) of isometries of the plane R2) by looking at the quotient
orbifolds. This is similar to classifying the finite subgroups of isometries of the
sphere, except this time the Euler characteristic of the quotient orbifold is zero
rather than positive. There are 4 orbifolds whose underlying topological space is
a sphere and 8 whose underlying space is a disk. Also there are 5 more surfaces
that can appear: the Klein bottle, torus, Moebius strip, projective plane, and
annulus, each of which corresponds to 1 group.

In 3-dimensions the analogues of wallpaper groups are the cocompact sub-
groups of R3.O3(R) and are called space groups. They are of great interest
to crystallographers and geologists as they describe the possible symmetries
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of crystals. There are 230 or 219 classes of them depending on whether one
distinguishes mirror images of group, which were independently classified by
Fyodorov, Barlow, and Schnflies in the 1890s. Conway and Thurston redid the
classification in terms of 3-dimensional orbifolds.

A Fuchsian group is a discrete subgroup of SL2(R). The group SL2(R) acts
on 2-dimensional hyperbolic space and also on the upper half complex plane, so
Fuchsian groups are closely related to 2-dimensional oriented hyperbolic man-
ifolds and to Riemann surfaces. (The correspondence is not quite exact, as
Fuchsian groups can have elliptic elements fixing points, so that the quotients
have orbifold singularities.) In particular any compact Riemann surface of genus
g at least 2 gives a Fuchsian group isomorphic to its fundamental group. The
space of (marked) Fuchsian groups obtained like this is called Teichmuller space,
and is a complex manifold of dimension 3g − 3 with a very rich geometry. The
classical example of a Fuchsian group is SL2(Z). The quotient of the upper
half plane by SL2(Z) is an orbifold given by the complex sphere with a point
missing and with orbifold singularities of orders 2 and 3. The more general
case of congruence subgroups such as Γ0(N) (c divisible by N) are of central
importance in number theory: Wiles’s proof of Fermat’s last theorem depended
on a deep study of the modular forms for these groups (sections of certain line
bundles over the quotient orbifolds).

A Kleinian group is a discrete subgroup of SL2(C). Like Fuchsian groups,
these can be thought of as either complex or hyperbolic transformation groups,
because the group PSL2(C) is both the group of automorphisms of the complex
sphere, and also the group of automorphisms of oriented hyperbolic 3-space.
In particular if Kleinian group is cocompact and acts freely, we get a closed
hyperbolic 3-manifold. Unlike the case of Fuchsian groups, where there are
infinite families of cocompact groups, cocompact (and cofinite) Kleinian groups
are rigid: the only deformations are given by inner automorphisms. This is
a special case of Mostow rigidity, which says in particular that isomorphisms
of cofinite Kleinian groups extend to isomorphisms of PSL2(C). One way of
thinking about this is that closed hyperbolic 3-manifolds have an essentially
unique hyperbolic metric (quite unlike what happens in 2-dimensions): any
invariant of the metric, such as the volume, is an invariant of the underlying
topological manifold.

Thurston discovered that all closed 3-manifolds can be built from discrete
subgroups of Lie groups. More precisely every closed 3-manifold can be cut up
in a canonical way along spheres and tori so that each piece has a geometric
structure of finite volume. There are 8 different sorts of geometric structure
that appear corresponding to 8 particular Lie groups (modulo a maximal com-
pact subgroup). We have seem 3 of these above: they correspond to spherical,
Euclidean, and hyperbolic structures. Two more come from taking the product
of 2-dimensional spherical or hyperbolic structures with a line. The remain-
ing 3 structures come from 3 of the Bianchi groups: the Heisenberg group, the
universal cover of SL2(R), and a solvable group that is the Bianchi group of
type V I0 and its identity component is the group of isometries of Minkowski
space in 2-dimensions. Of these 8 geometries, the manifolds for all except the
hyperbolic geometry are classified (or at least well understood). There seems to
be no obvious analogue of Thurston’s classification for manifolds of dimension
4 and above.
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39 Chevalley groups

Steinberg presentation.

40 Jacobson-Morozov and nilpotent elements

41 Cohomology of Lie groups and algebras

As an example of how to work with simple Lie groups, we will look at the general
question: Given a simple Lie group, what is its homotopy type? Answer: G has
a unique conjugacy class of maximal compact subgroups K, and G is homotopy
equivalent to K. Proof [Proof for GLn(R)] First pretend GLn(R) is simple,
even though it isn’t; whatever. There is an obvious compact subgroup: On(R).
Suppose K is any compact subgroup of GLn(R). Choose any positive definite
form ( , ) on Rn. This will probably not be invariant under K, but since
K is compact, we can average it over K get one that is: define a new form
(a, b)new =

∫
K

(ka, kb) dk. This gives an invariant positive definite bilinear form
(since integral of something positive definite is positive definite). Thus, any
compact subgroup preserves some positive definite form. But the subgroup
fixing some positive definite bilinear form is conjugate to a subgroup of On(R)
(to see this, diagonalize the form). So K is contained in a conjugate of On(R).

Next we want to show that G = GLn(R) is homotopy equivalent to On(R) =
K. We will show that G = KAN , where K is On, A is all diagonal matrices
with positive coefficients, and N is matrices which are upper triangular with
1s on the diagonal. This is the Iwasawa decomposition. In general, we get
K compact, A semisimple abelian, and N is unipotent. The proof of this we
saw before was called the Gram-Schmidt process for orthonormalizing a basis.
Suppose v1, . . . , vn is any basis for Rn.

1. Make it orthogonal by subtracting some stuff, you’ll get v1, v2 − ∗v1,
v3 − ∗v2 − ∗v1, . . . .

2. Normalize by multiplying each basis vector so that it has norm 1. Now
we have an orthonormal basis.

This is just another way to say that GLn can be written as KAN . Making
things orthogonal is just multiplying by something in N , and normalizing is just
multiplication by some diagonal matrix with positive entries. An orthonormal
basis is an element of On. ! This decomposition is just a topological one, not a
decomposition as groups. Uniqueness is easy to check.

Now we can get at the homotopy type of GLn. N ∼= Rn(n−1)/2, and A ∼=
(R+)n, which are contractible. Thus, GLn(R) has the same homotopy type as
On(R), its maximal compact subgroup. � If we wanted to know π1(GL3(R)),

we could calculate π1(O3(R)) ∼= Z/2Z, so GL3(R) has a double cover. Nobody
has shown you this double cover because it is not algebraic.

Lie algebra cohomology is a somewhat mysterious but very powerful tool As
motivation for its definition, consider the problem of calculating the cohomology
of the underlying space of a Lie group. When the group is compact, this is the
same as its de Rham cohomology, and Lie algebra cohomology is an algebraic
way of calculating this.
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Definition 402 The de Rham cohomology of a smooth manifold is the coho-
mology of the complex of smooth differential forms, with the differential given
by the exterior derivative.

Exercise 403 Calculate the de Rham cohomology groups of the circle.

The exterior derivative of a differential form ω is given by

dω(v0, . . . , vn) =
∑

(−1)i+jω([vi, vj ], v1, ..v̂i, v̂j , . . .)

where the hat means that the term is omitted.
The cohomology of a compact connected Lie group is acted on by the Lie

group since the lie group acts on itself by left translations. Moreover this action
must be trivial, because the group is connected and the cohomology has an
integral form, and any action of a connected group on a discrete lattice must
be trivial. So we can cut down the infinite dimensional space of all differential
forms to the finite dimensional space of left-invariant ones. These in turn can
be identified with the exterior algebra of the cotangent space at the identity.

We also notice that we really have an unnecessary duality: instead of looking
at elements of the dual exterior algebra of the tangent space, we can just directly
use the exterior algebra of the tangent space. The exterior derivative induces
the following map:

d(v1 ∧ V2 ∧ · · · ) =
∑
i<j

(−1)i+j [vi ∧ vj ] ∧ v1 · · ·

In other words the homology of a compact connected Lie group G is the homol-
ogy of the exterior algebra of its Lie algebra Λ∗g with the differential above.

Exercise 404 Find the Lie algebra homology H∗(g) for g the 3-dimensional
abelian Lie algebra, the 3-dimensional Heisenberg Lie algebra, and the orthogo-
nal Lie algebra so3(R). Find a 3-dimensional real Lie algebra g whose homology
groups Hi(g) are 1-dimensional for i = 0, 1, 2, 3.

Exercise 405 If an n-dimensional complex Lie algebra g has a non-degenerate
invariant bilinear form, show that its homology group Hn(g) is 1-dimensional.
(Calculate d(g1 ∧ g1 ∧ · · · ) for an orthogonal base g1, g2, · · · .) Find an example
of a complex Lie algebra g of dimension 2 such that H2(g) = 0.

Exercise 406 If g is a finite dimensional Lie algebra over a field, show that∑
n(−1)n dim(Hn(g)) = 0.

Definition 407 We define a bracket [, ] on Λg by

[a1 ∧ a2 ∧ · · · an, b1 ∧ b2 ∧ · · · ] =
∑
i,j

(−1)i+j+n−1[ai, bj ] ∧ a2 ∧ · · · ∧ b2 ∧ · · ·

This makes Λg into a Lie superalgebra, with the grading shifted by 1.
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Exercise 408 Show that

[a, b] = (−1)deg a+deg b−1[b, a]

d(ab) = (da)b+ (−1)deg aadb+ [ab]

d[a, b] = [da, b] + (−1)[a, db]

Exercise 409 Suppose that g is an n-dimensional complex Lie algebra with
a non-degenerate bilinear form, and a and b are homogeneous elements in its
exterior algebra. Show that [a, b] = 0 whenever deg a+ deg b = n. Show that ∧
induces a nondegenerate “Poincaré duality” pairing

Hm(g)×Hn−m(g) 7→ Gn(g) ∼= C

.

Obviously the definition above does not require that g be the Lie algebra of
a compact Lie group: it works for any Lie algebra over any commutative ring.

Warning 410 For compact connected Lie groups, the Lie algebra homology
or cohomology is isomorphic to the homology or cohomology of the underlying
topological space. This is definitely NOT true for general connected Lie groups.
For example, the Lie groups R and S1 have the same Lie algebra so the same
Lie algebra homology, but have different first homology groups of the underlying
topological spaces.

A useful variation is the Lie algebra homology or cohomology of a module
M over a Lie algebra g. To construct this we form the Lie algebra g ⊕ M
given as a semidirect product of the Lie algebra g and the abelian Lie algebra
M , and grade it by giving g degree 0 and M degree 1. Then the Lie algebra
homology H∗(g,M) of g with coefficients in M is defined to be the degree 1
piece of H∗(g ⊕M). Unraveling the definition we find that the homology is
given by the homology of M ⊗ Λ∗(g), with the differential d given by

d(m⊗ v1 ∧ v2 ∧ · · · ) =
∑
i

(−1)i[vi,m]⊗ v1 ∧ · · ·+
∑
i,j

m⊗ [vi, vj ] ∧ v1 ∧ · · ·

We work out the first few homology or cohomology groups of a Lie algebra.
The zeroth homology and cohomology groups are just the field k.
The first homology is given by g = Λ1g modulo the image of g ∧ g under

the map taking a ∧ b to [a, b]. In other words H1(g) is the abelianization of g.
Similarly H ∗ 1(g) is the dual of this, which is the characters of g.

The second cohomology H2(g,M) classifies the extensions M.g of g by M
(with M an abelian ideal) up to equivalence. To see this, write the bracket of
the extension as

[(g,m), (h, n)] = ([g, h], c(g, h) + [g, n] + [m,h])

for some c(g, h) ∈M . Then anticommutativity implies that

c(g, h) = −c(h, g)

175



and the Jacobi identity implies

c([g, h], i) + c([h, i], g) + c([i, g], h) + [i, c(g, h)] + [g, c(h, i)] + [h, c(i, g)] = 0.

which says that c is a 2-cocycle with values in M , so determines an element
of H2(g,M). Also adding a 1-cocycle to c corresponds to changing the lift of
elements of g so gives an equivalent extension.

The second homology H2(g) appears in the center of the universal central
extension of a perfect Lie algebra g. Suppose g is a Lie algebra. Then there
is an obvious 2-cocycle of g taking values in Λ2g/dΛ3g, so we get a central
extension (Λ2g/dΛ3g).g. By construction this central extension has the following
universality property: if n.g is any central extension, and we are given a linear
map from g to n.g lifting the identity map on g, then this can be extended to
a Lie algebra homomorphism from (Λ2g/dΛ3g).g to n.g. If g is perfect we can
do better than this by eliminating the dependence on the choice of lifting. To
do this we look at the derived algebra of (Λ2g/dΛ3g).g. This still maps onto g
as g is perfect, but the central subalgebra may become smaller: it is replaced
by the elements of (Λ2g/dΛ3g) that can be written in the form

∑
ai ∧ bi with∑

[ai, bi] = 0. In other words it is now exactly the second homology group of g.
Now we want to show that this is a universal central extension in the follow-

ing sense: if n.g is a central extension of g then there is a unique homomorphism
from H2(g).g to n.g lifting the identity map on g. Existence of such a lifting fol-
lows immediately from the remarks above, since we just have to choose a lifting
from g to n.g. Now we want to show that the map H2(g).g to n.g is unique. If
a,b are any two elements of H2(g).g then the image of [a, b] in n.g is uniquely
determined as changing a or b by an element of the center does not change [a, b].
So the lifting is uniquely determined on the derived algebra of H2(g).g, but as
this is perfect the lifting is uniquely determined.

The restriction to perfect Lie algebras really is necessary: Lie algebras that
are not perfect do not have universal central extensions.

41.1 The Koszul complex

The homology and cohomology of Lie algebras can also be defined using the
universal enveloping algebra Ug as follows: Hn(g,M) = ExtnUg(k,M) and

Hn(g,M) = TorUg
n (k,M). This in turn is a special case of the homology of

an supplemented algebra, which is a special case of Hochschild homology. To
see this we introduce the Koszul complex.

We first construct the Koszul complex for abelian Lie algebras. The en-
veloping algebra is then a commutative polynomial ring k[x, y, z, . . .]. If a is an
element of a commutative ring R then there is a complex

0→ R
×a−−→ R

which is a free resolution of R/aR. If a1, . . . , an is a finite set of elements of
R then we can tensor together the corresponding length 2 complexes. This is
called the Koszul complex.

Exercise 411 Suppose that for each i, the element ai ∈ R is not a zero divisor
in R/(a1, . . . , ai−1) (in other words the sequence is a regular sequence). Use
induction on i to show that the Koszul complex is a resolution of R/(a1, . . . , an).
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Now we construct the Koszul resolution for a finite-dimensional Lie algebra.
The resolution is Ug⊗ Λg, with the differential given by

d(u⊗ g1 ∧ · · · ∧ gn) (25)

=
∑
i

(−1)iugi ⊗ g1 ∧ · · · ∧ gi−1 ∧ gi+1 ∧ · · · ∧ gn (26)

+
∑
i<j

(−1)i+ju⊗ [gi, gj ] ∧ g1 ∧ · · · ∧ gn (27)

We wish to show this is a resolution of k. The main problem is to show that
the sequence is exact, which we do by reducing to the case when g is abelian.
To do this we filter Ug⊗Λg by “number of elements of g”, and observe that the
associated graded object is just the Koszul resolution for the abelian algebra
underlying g. But if we have a differential group with a finite filtration such
that the differential d is exact on the associated graded group, then d is exact
on the original group. So the Koszul complex is a resolution of k.

The Tor group TorUg
∗ (k, k) is by definition given by the homology of k ⊗Ug

Ug ⊗ Λg = Λg, which is exactly the complex we originally used to define the
homology of g.

42 Central extensions and covering spaces

Schur multiplier, metaplectic group
A common problem is trying to turn a projective representation of a group

into a linear representation. For example, suppose V is an irreducible repre-
sentation of a groups G (finite to make things easy). If a group H acts on G
does one get an action of H on V ? One obvious obstruction is that H acts on
the set of representations of G and might not even fix V , so suppose it does
fix V . Then for every element h of H, Schur’s lemma implies that we have a
corresponding endomorphism of V , unique up to multiplication by a constant.
So we get a well defined homomorphism of H to GL(V )/C∗ = PGLV and the
question is whether this lifts to a map from H to GLV .Sometimes it does, and
sometimes it does not. But in any case we always get a map from some cen-
tral extension of H to GLV , as we can just take the central extension of pairs
(h, g) ∈ H ×GLV that have the same image in PGLV . In other words, we get
a linear representation of a central extension of H.

So we would like to understand the central extensions of a group H. When H
is perfect (in particular simple) there is a neat answer: H has a universal perfect
central extension such that all other perfect central extensions are quotients of
it.

Example 412 If G is a connected Lie group, it has a universal covering space
G̃, given by homotopy classes of paths in G starting at the identity. The kernel
of the natural map from G̃ to G is discrete and normal, so in the center of the
connected group G̃.

Lie groups (and other groups) often have “unexpected” central extensions.
For example, special orthogonal groups have spin groups as double covers, and
symmetric groups have non-obvious double covers.
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Any perfect group G has a universal central extension that can be con-
structed as follows. Take a presentation

1→ R→ F → G→ 1

of G as a quotient of G by a free group F . Then F/[R,F ] is a central extension
of G, and has a homomorphism to any central extension G̃ of G lifting the
identity map of G. In general this lift is not unique, but is unique on [F, F ]. If
G is perfect then [F, F ] maps onto G and so [F, F ]/[R,F ] is a universal central
extension of G. The kernel ([F, F ] ∩ R)/[F,R] is called the Schur multiplier of
G, and does not depend on the choice of presentation of the perfect group G
because any two universal central extensions of G are canonically isomorphic.

Exercise 413 Use the Lyndon-Hochschild-Serre spectral sequence to show that
the Schur multiplier

([F, F ] ∩R)/[F,R]

is isomorphic to the second cohomology group H2(G,Z).

Exercise 414 Suppose thatG is the semidirect product of the symplectic group
Sp2n(R) by its natural representation R2n (considered as an abelian Lie group).
Show that G is perfect, and has a perfect central extension with a 1-dimensional
center. This group turns up in the theory of Jacobi forms.

Warning 415 For Lie groups, the Schur multiplier can be a LOT bigger than
one might expect, and in particular can be far larger than the center of the
universal covering space. For example, if G is PSL2(R), the center of the
universal covering space is just Z, the fundamental group of G. However the
center of the universal central extension is uncountable, because K2 of the reals
(or any uncountable field) is uncountable. However these central extensions do
not take the topology of G into account but treat G as a discrete group, and
seem somewhat pathological.

Example 416 Groups of Lie type over small finite fields have a bewildering
number of exceptional Schur multipliers. For example, most of the time SLn(Fq)
has a trivial Schur multiplier. but the simple group SL2(F4) of order 60 happens
to be isomorphic to PSL2(F5) so has Schur multiplier of order 2. The group
PSL3(F4) has Schur multiplier of order 48, rather than 3 as one might guess.
Several of these exceptional multipliers occur in sporadic simple groups: for
example 2E6(F4) has an exceptional double cover that appears in the baby
monster sporadic group.

Example 417 Suppose that M is a symplectic manifold, with closed non-
degenerate 2-form ω. Define the Poisson bracket on smooth functions on M
by putting [f, g] = 〈df, fg〉, where 〈df, fg〉 is the bilinear form on the cotan-
genet space induced by ω. If we use ω to identify cotangent vector fields with
tangent vector fields, then f 7→ df is a homomorphism of Lie algebras. The ker-
nel is in the center and consists of locally constant functions. The image consists
of the Hamiltonian vector fields, a subalgebra of the vector fields preserving the
symplectic form.
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43 Levi’s theorem and Ado’s theorem

Theorem 418 (Levi) If a finite dimensional Lie algebra g over a field of char-
acteristic 0 has radical h, then g splits as a semidirect product of h and the
semisimple Lie algebra g/h.

Proof By induction on the length of the derived series for the solvable Lie
algebra h we can assume that h is abelian: in other words we start splitting
at the top of h and work our way down. Extensions h.(g/h) are classified by
element of the second cohomology group H2(g/h, h). This group vanishes for
g/h semisimple in characteristic 0 and h finite dimensional, so the extension
h.(g/h) splits. �

Exercise 419 Show that if g is a Lie algebra (over a field k) with invariant
symmetric bilinear form (, ) then g[t, t−1]⊕ k is a Lie algebra where the bracket
is given by [gtm, htn] = [g, h]tm+n+(m−n)k], and k is in the center. Show that if
k has characteristic 0 and g is simple then the Lie algebra is a central extension
of a simple Lie algebra but does not split. Find a similar finite-dimensional
example in characteristic p > 0.

Exercise 420 Show that if g is a finite-dimensional complex Lie algebra then
g splits as the semidirect product of its nilradical and a reductive (abelian plus
semisimple) Lie algebra.

Theorem 421 (Ado) Every finite dimensional Lie algebra over a field of char-
acteristic 0 has a faithful finite-dimensional representation. (Iwasawa showed
that this is still true over fields of positive characteristic.

At first sight this theorem looks as if it ought to be trivial to prove. One the
one hand if the center is the whole Lie algebra, in other words if g is abelian,
the theorem is obvious. At the other extreme if the Lie algebra has no center
the theorem is just as obvious because the adjoint representation is faithful.
One feels that the general case should follow by somehow combining these two
extreme cases, but there seems to be no easy way to do this. Proof We first do
the case when g = n is nilpotent. In this case there is a decreasing sequence of
ideals n = n1 ⊇ n2 ⊇ · · · with [ni, nj ] ⊆ ni+j . We look at the action of n on the
universal enveloping algebra Un, which is faithful by the Poincar-Birkhoff-Witt
theorem, but infinite dimensional, and try to find a finite dimensional faithful
quotient. If we be Uni be the ideal of Un spanned by all products of at least i
elements of n then Un/Uni is a finite dimensional representation, and we want
to show it is faithful for i large. Pick a basis n1, n2 . . . for n such that [ni, nj ]
is a linear combination of nk for k ≥ i + j. Then the subspace spanned by all
monomials of total weight greater than dim(n) is an ideal containing ndim n+1

and the quotient by it is a faithful representation of n. So Un/Undim(n)+1 is a
finite dimensional faithful representation of n.

Now we do the general case. By the Levi decomposition we can split g as
a semidirect product of a semisimple Lie algebra and its solvable radical, and
splitting the solvable radical using Lie’s theorem shows that we can split g as
n.h where n is nilpotent containing the center and h is the sum of a semisimple
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and abelian Lie algebra. We take the induced representation Ug×Uh k of the 1-
dimensional trivial representation k of h. As Ug = Un⊗Uh as vector spaces by
the Poincar-Birkhoff-Witt theorem, the induced representation can be identified
with the universal enveloping algebra Un of n. Moreover all the ideals Uni
are preserved by the action of h. So Un/Undim(n)+1 can be extended to a
finite dimensional representation of g that is faithful on n and therefore faithful
on the center the center. So the sum of this representation and the adjoint
representation is a faithful finite dimensional representation of g. �

Corollary 422 If g is a finite-dimensional solvable Lie algebra over a field of
characteristic 0, we can grade g as g = ⊕n≥0gn so that g0 is abelian and the
nilradical is ⊕n>0gn.

Proof By Ado’s theorem the Lie algebra has a faithful finite dimensional
representation, and looking at the proof we see that we can also find one so that
the nilradical acts as nilpotent endomorphisms. We put this representation into
upper triangular form using Lie’s theorem, and use the height above the main
diagonal as the grading. �

Combining the theorems of Ado and Levi gives a picture of an arbitrary
finite dimensional Lie algebra in characteristic 0: it is a semidirect product of
its nilradical with a reductive Lie algebra acting completely reducibly on it, and
the nilradical can be take ans a positively graded Lie algebra. The reductive
Lie algebras and their completely reducible representations are well understood
in characteristic 0, so the obstruction to understanding all these Lie algebras is
that there are rather a lot of nilpotent algebras.

Generalized Fitting subgroups

44 Classification of simple complex Lie algebras

We classify the simple complex Lie algebras by combining the root decomposi-
tion of a Cartan subalgebra with the non-degeneracy of the Killing form (which
follows from Cartan’s criterion) and the representation of SL2. The first job is
to tighten up the root space decomposition G = ⊕Gλ for a Cartan subalgebra
H, by showing that G0 is equal to H (and so is abelian), and Gλ is 1-dimensional
for λ 6= 0.

Theorem 423 Suppose H is a Cartan subalgebra of a semisimple complex Lie
algebra G, with root space decomposition G = ⊕Gλ. Then G0 = H.

Proof The Killing form is non-degenerate, and since it is invariant we see that
(Gλ, Gµ) is zero unless λ+µ = 0. So the Killing form must be a non-degenerate
pairing between Gλ and G−λ, and in particular is non-degenerate on G0.

Since G0 is nilpotent, and therefore solvable, Lie’s theorem shows that for
any representation of G0 we have Trace(a, [b, c]) = 0, so in particular for the
Killing form of G we have (a, [b, c]) = 0 for all a, b, c ∈ G0. So [b, c] is in the kernel
of the Killing form restricted to G0, which implies [b, c] = 0 as this restriction
is non-degenerate. �
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45 The Segal-Shale-Weil representation

46 Invariant integration

On any locally compact group, there is a left invariant measure called Haar
measure, unique up to multiplication by a constant. For a finite dimensional
real vector space this is just Lebesgue measure. Haar measure in general is quite
hard to construct, but fortunately for Lie groups there is an easy way to do it.
On an n-dimensional oriented manifold, we cannot integrate functions, but we
can integrate n-forms. (If the manifold is not oriented, we can integrate sections
of the line bundle of n-forms tensored with the line bundle of orientations,
but since Lie groups are orientable we do not need to worry about this extra
complication.) So to give a left-invariant Haar measure all we have to do is find
a left-invariant n-form. But this is easy: just fix any n-form at the identity, and
we can then extend it uniquely to all points just by left translating it.

Example 424 If the group G is the non-zero real numbers under multiplica-
tion, a left-invariant 1-form is given by dx/x. This is why the Gamma function
is shifted by 1: it is given by

∫∞
0
e−ttsdt/t, where we are integrating over the

group of positive reals, the expression ts is a character of this group, and dt/t
is the invariant measure.

Example 425 On the group GLn(R), the invariant measure is given by∏
dxij/ det(xij)

n

. This is because an element of the group multiplies ordinary Lebesgue measure
on Rn by the determinant, so multiplies Lebesgue measure

∏
dxij on Rn

2

by
detn.

We have talked about the measure being left-invariant, so it is natural to
wonder if it is also right invariant. There are many cases when it is. First
observe that right translation by g multiplies the measure by a constant ∆(g),
and this gives a homomorphism ∆ from G to the positive reals.

• For finite groups the measure is counting measure, so is obviously left and
right invariant.

• For compact groups the total measure of the group is finite, so must also
be invariant under right translation.

• For any simple or perfect group the measure is right invariant, as the
only possible homomorphism to the abelian group of positive reals is the
identity.

• For any nilpotent group the measure is right invariant.

In spite of all these examples, there are also groups where the Haar measure
is not right invariant. To find examples we need to understand the modular
function. If we have an element g of a group, we can transfer an n-form at the
origin to g using either left translation or right translation, and we want to know
if these give the same result. This is so if the adjoint action of g on n-forms
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at the origin is trivial. So we see that the modular function is just the adjoint
action of G on the 1-dimensional vector space given by the highest exterior
power of the Lie algebra. For example, nilpotent Lie groups act trivially on the
highest exterior power of the Lie algebra, so the modular function is trivial.

Example 426 Suppose G is the 2-dimensional solvable non-abelian Lie group
represented by transformations x 7→ ax + b of the reals. Then x 7→ ax acts as
multiplication by a on the exterior square of the Lie algebra. So the modular
function is non-trivial and the left invariant measure is not right invariant.

A Lie group G acts on the homogeneous space G/H for any close subgroup
H, and we can also ask if G/H has a G-invariant measure. This depends on the
modular functions of G and H. In fact measures correspond to a choice of the
highest exterior power of g/h, so for there to be an invariant measure on G/H
the action of H on this has to be trivial. In other words the modular function
of H has to be the restriction of the modular function of G.

Example 427 Suppose G is the group x 7→ ax + b acting on the reals. Then
there is no invariant measure on the reals, and the modular function of G does
not restrict to the modular function of the subgroup H = R∗ fixing a point.
On the other hand, although there is not invariant measure, there is a measure
transforming by a character of G which is almost as good. We see that this
happens whenever the modular function of H is the restriction of some character
of G (not necessarily the modular character of G).

Example 428 Sometimes we cannot even find a measure transforming like a
character ofG. For example, takeG to be PSL2(R) acting on the projective line.
The subgroup fixing the point ∞ is the group of transformations x 7→ ax + b,
and the modular character of this cannot be extended to any character of G as
G is simple so has no non-trivial characters. So 1-dimensional projective space
does not even have a semi-invariant measure.

Example 429 If G is a compact group acting on a manifold X, we can always
find an invariant measure by taking any measure on X and averaging it over G.
In fact we can do even better: take any Riemannian metric on X and average
it over G to get an invariant Riemannian metric. A rather similar construction
gives an invariant positive definite Hermitian form on a representation of G: take
any positive definite Hermitian form, and average over G to make it invariant.
In particular representations of compact groups G are completely reducible, as
we can take the orthogonal complement of a subrepresentation.

Exercise 430 For each of the 3-dimensional Bianchi groups, determine whether
or not it has a two-sided invariant measure.

47 Heisenberg groups and algebras

The original Heisenberg algebra come from quantum mechanics as the Lie alge-
bra generated by the position and momentum operators x and d/dx. It has a
basis of 3 elements X, Y , Z with [X,Y ] = Z and Z in the center. Variations of
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this algebra are common: they have a center, and the quotient by the center is
abelian.

We first look at the analogue for finite groups. These are groups G of prime
power order pn with a center Z of order p such that the quotient G/Z is el-
ementary abelian (all elements of order p) and non-trivial. They are called
extra-special groups. We will classify them and find their irreducible represen-
tations. First of all, the commutator gives a non-degenerate skew symmetric
bilinear form on G/Z taking values in Z, so we can think of G/Z as a vec-
tor space with a skew symmetric form, so it breaks up into a direct sum of
2-dimensional spaces. So G is a central product of extraspecial groups of order
p3.

We classify the non-abelian groups of order p3. When p = 2 G must have
a cyclic subgroup of order 4 as every group all of whose elements have order 2
is cyclic. So G is generated by elements a, b with a4 = 1, bab−1 = a−1 as b
normalizes (a), and b2 = 1 or a2. This gives two possibilities: the dihedral group
of order 8 or the quaternion group of order 8. When p is odd, one possibility
is that there is an element of order p2. Again we find that it is generated by a
and b with ap

2

= 1, bab−1 = ap+1, bp is a power of a, but this time we find all
such groups are isomorphic (given by a semidirect product of cyclic groups of
orders p2 and p). The other possibility is that all elements have order 1 or p, so
if we select two elements not in the center we find that G is generated by a and
b with relations ap = b1 = 1, aba−1b−1 has order p and is in the center. This
gives a unique group of order p3 isomorphic to the upper triangular unipotent
matrices of size 3.

Now we can find all extraspecial groups by examining what happens when
we take central products. When p is odd, the central product of two groups
with elements of order p2 is isomorphic to the central product of the group with
elements of order p2 and the group with no such elements, so we only get two
possibilities for each order p1+2n (which are distinct because one has elements of
order p2 and the other does not). When p = 2 things are a little different: this
time the central product of two quaternion groups is isomorphic to the central
product of two dihedral groups. So again there are at most two possibilities
for each order 21+2n. To see that the two possibilities we get are distinct, we
notice that the map G/Z 7→ Z taking g to g2 is a quadratic form. Quadratic
forms over the field with two elements have an invariant called the Arf invariant,
which is given by whichever of the numbers 0 or 1 the form takes most often.
So again we get exactly two extraspecial groups of order p1+2n.

Now we find the irreducible representations of G of order p1+2n. The abelian-
ization of G has order p2n so there are p2n irreducible representations of dimen-
sion 1. The number of conjugacy classes of G is p+ (p1+2n− p)/p = p2n + p− 1
so there are exactly p − 1 more irreducible representations, or degree dividing
the order of G, and the sum of their squares is p1+2n−p2n. The only possibility
is that there are p− 1 further irreducible representations all of degree pn. They
can be distinguished by the action of the center, which can act by one of its
p − 1 nontrivial characters. So we see that the representation theory can be
summarized as follows: for each non-trivial character of the center, there is a
unique irreducible representation of the extraspecial group.

Now we study the Heisenberg algebra (over the reals). Recall that there are
two groups associated with it, one simply connected (upper triangular unipotent
matrices) and one not simply connected. By Lie’s theorem, or by observing that
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Trace([X,Y ]) = 0 the only irreducible finite dimensional representations are 1-
dimensional so we should look at infinite dimensional representations.

Exercise 431 Show that in characteristic p the Heisenberg algebra has an ir-
reducible representation of dimension p.

We can try to find representations of the Heisenberg algebra by bounded op-
erators on a Hilbert space, but this also fails. So interesting representations
necessarily involve unbounded operators, such as x and d/dx. We can get a rep-
resentation of the corresponding group as the group of transformations of L2(R)
generated by translations, multiplication by eixy. The Stone-von Neumann the-
orem says that this representation is essentially unique. In other words, just
as for the finite case, we get a unique irreducible representation for non-trivial
irreducible representations of the center of the group.

Free field theories in quantum mechanics.

Example 432 The Heisenberg algebra has an action on Young diagrams, or
more precisely on the vector space V with basis consisting of Young diagrams
as follows. We define two operators D and U on V as follows. The operator U
takes a Young diagram to the sum of all Young diagrams that can be obtained
by adding a single box. Similarly the operator D takes a Young diagram to
the sum of all Young diagrams that can be obtained by removing a single box.
Then these operators satisfy the relation

DU − UD = 1

so give an action of the Heisenberg algebra (with the center acting as 1). This
relation follows from two properties of Young diagrams:

1. Given two different Young diagrams X and Y , the number of diagrams
that can be obtained by adding a single box to either X or Y is the same
as the number that can be obtained by subtracting a single box from X
or Y . (This number is always 0 or 1).

2. Given a Young diagram, the number of diagrams that can be obtained by
adding a single box to X is 1 more than the number that can be obtained
by subtracting a single box from X.

(Young diagrams form a poset called the Young lattice, and a poset with similar
properties is called a differential poset.)

Exercise 433 Show that Un(∅) =
∑
|λ|=n fλλ where fλ is the number of stan-

dard tableaux of shape λ.

Exercise 434 Show that
∑
|λ|=n f

2
λ∅ = DnUn∅ and use this to show that∑

|λ|=n f
2
λ = n!.

The numbers fλ are the dimensions of the irreducible representations of the
symmetric group Sn, so the result in this exercise also follows from the fact that
the sum of the dimensions of the irreducible representations of a finite group is
the order of the group.
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48 Kazhdan-Lusztig polynomials

We construct the Kazhdan-Lusztig polynomials of a Coxeter group. These are
rather mysterious polynomials that control the infinite dimensional representa-
tion theory of simple Lie algebras: for example, the Kazhdan-Lusztig conjectures
(proved by Beilinson and Bernstein and by Brylinski and Kashiwara) express
the characters of irreducible quotients of some Verma modules in terms of the
values of Kazhdan-Lusztig polynomials at q = 1.

Kazhdan-Lusztig polynomials Pv,w(q) are polynomials depending on a pair
of elements v, w of a Coxeter group W .

The Hecke algebra H of a Coxeter group W is an algebra over Z[q1/2, q−1/2].
It is generated by the elements Ts for s a simple reflection, subject to the
relations

• (Ts + 1)(Ts − q) = 0

• TsTtTs · · · = TtTsTt · · · whenever sts · · · = tst · · · is one of the relations of
the Coxeter (or braid) group.

For any w ∈ W we define Tw to be Ts1Ts2 · · · whenever w = s1s2 · · · is a
reduced expression for w. This is well defined because any two reduced words
for w can be connected by a series of relations of the form sts · · · = tst · · · .
The Hecke algebra is a free module over Z[q1/2, q−1/2] with a basis consisting of
the elements Tw. In particular the Hecke algebra is a deformation of the group
algebra of W , in the sense that it becomes the group algebra if q = 1.

Motivation for the Hecke algebras: the Hecke algebra (at least when W
is a Weyl group) is the algebra of double cosets BwB for a finite Chevalley
group, with q the order of the finite field. This double coset algebra acts on
the induced representation given by inducing 1 from B to G, so representations
of the Hecke algebra describe the decomposition of this induced representation.
The name Hecke algebra comes from Hecke operators in the theory of modular
forms, which also form a basis of an algebra of double cosets. Sometimes Hecke
algebra is used as a generic terms for an algebra of double cosets.

We write (−1)` for the linear map on H taking Tw to (−1)`(w)Tw.
The Hecke algebra has an order 2 antiautomorphism (−1)`R (meaning it

reverses multiplication: (−1)ellR(ab) = (−1)`R(B)(−1)`R(a)) with R(q1/2) =
q1/2, R(Ts) = qT−1

s for simple reflections s. So on the basis elements Tw, R acts
as R(Tw) = q`(w)T−1

w−1 .

Definition 435 The R-polynomials Rv,w are defined to be the matrix coeffi-
cients of R in the basis Tw: more precisely

R(Tw) =
∑
v

Rv,wTv.

Exercise 436 Show that Rv,w vanishes unless v ≤ w, in which case it has
degree `(w)− `(v) and leading coefficient 1.

Show that
Rx,y(q−1) = (−q)`(x)−`(y)Rx,y(q)

.
Show that
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• Rx,y = Rsx,sy if sx < x and sy < y.

• Rx,y = (q − 1)Rsx,y + qRsx,sy if sx > x and sy < y.

These relations can be used to compute the polynomials Rx,y recursively.

The ring Z[q1/2, q−1/2] has an order 2 automorphism ∗ taking q1/2 to q−1/2,
and this lifts to a ring homomorphism (−1)`∗ of H taking the generator Ts to
−q−1Ts. It takes the basis element Tw to (−q)−`(w)Tw. The antilinear map
∗ fixes the elements q`(w)/2Tw, which form an alternative basis for the Hecke
algebra, which is more convenient when considering duality properties. Some
authors write Tw for q−`(w)/2Tw, in which case one of the relations for the Hecke
algebra is changed to (Ts + q−1/2)(Ts − q−1/2) = 0.

The two functions ∗ and R commute and their composition ∗R = R∗ is an
antilinear antiautomorphism taking the generator Ts to T−1

s = q−1Ts + q−1− 1
and taking q1/2 to q−1/2, so it takes the basis element Tw to T−1

w−1 .

We order the basis elements q−`(w)/2Tw by the Bruhat ordering. In this basis
the linear transformation R is an upper triangular matrix with diagonal entries
1.

Lemma 437 (Birkhoff factorization) If R is an invertible upper triangular ma-
trix over a ring of Laurent polynomials, there are unique matrices P , Q such
that R = QP−1, Q has polynomial coefficients, and P is the identity matrix
modulo terms of negative degree.

Proof This follows because we can calculate the entries of P and Q recursively,
in order of their distance from the diagonal, in much the same way that we can
find the inverse of R. At each step the entries of P and Q are given uniquely by
splitting some Laurent polynomial into the sum of a polynomial and something
all of whose terms have negative degree. �

Lemma 438 If the matrix R of the previous lemma satisfies (∗R)2 = 1, where
∗ takes q to q−1, then ∗RP = P∗, or in other words ∗R and ∗ are conjugate by
P : ∗R = P ∗ P−1.

Proof By definition of P we know that RP = ∗Q∗ for some matrix Q with
constant term the identity. We have to show that P = Q. Using the facts that
(∗R)2 = 1 and ∗2 = 1 we see that ∗RP = Q∗ and ∗RQ = P∗, so ∗RS = −S∗
where S = P − Q has polynomial coefficients. But this last equation implies
S = 0, because we can solve recursively for the entries s of S in order, and find
at each step that ∗s = −s if all previous entries are 0, which implies s = 0 as s
the terms of s all have degree ≥ 0 and there is no 2-torsion. So S = 0, which
implies P = Q, so ∗RP = P∗. �

Definition 439 The Kazhdan-Lusztig polynomials Pv,w are the matrix entries
of P , where R = QP−1 is the Birkhoff decomposition with respect to the ∗-
invariant basis with elements q−`(w)/2Tw; in other words

P (Tw) =
∑
v

Pv,w(q)Tv
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Lemma 440 The elements C′w = Pq−`(w)/2Tw and Cw = ∗Pq−`(w)/2Tw are
fixed by ∗R.

Proof This follows because ∗RP = P∗ and the basis elements q−`(w)/2Tw are
fixed by ∗. �

Exercise 441 Show that:

• Pv,w vanishes unless v ≤ w, and is 1 if v = w, and is a polynomial in q of
degree less than (`(w)− `(v))/2 if v < w.

• For v ≤ w the Kazhdan-Lusztig polynomial Pv,w is 1 if `(w)− `(v) ≤ 2 or
if the Coxeter group has rank at most 2.

• Pb,bacb(q) = 1 + q where a, b, c are the usual transpositions generating the
symmetric group S4 (with a and c commuting).

Beyond these simple cases, the Kazhdan-Lusztig polynomials are rather hard
to compute by hand, and can get very complicated: for example, Polo showed
that any polynomial with constant term 1 and non-negative integer coefficients
is a Kazhdan-Lusztig polynomial for some symmetric group.

Exercise 442 Classify vector bundles over P 1. (Birkhoff-Grothendieck theo-
rem) Over A1 all vector bundles are free (coordinate ring is a PID). So cover P 1

by 2 copies of A1 on each of which vector bundle is free of rank n. Transition
functions are given by an n × n matrix with coordinates in k[x, x−1]. We can
multiply on left by an invertible matrix in k[x] and on right by invertible matrix
in k[x−1]. Using these operations we can make transition matrix M diagonal
with entries powers of x as follows. Use operations to make 1 column zero except
for one element, necessarily of the form xr, and choose r as large as possible,
and take this element to be in top left corner. (To show that such a maximal r
exists, observe that it is bounded above by integers t such that for some nonzero
vector v with coefficients in k[x−1], Mv has all coefficients divisible by xt, and
this t is invariant under the matrix operations on the left and right, and is
bounded by the highest power of x appearing in M .) Then by induction we
can make matrix diagonal except for top row. Then using maximality of r we
can clear top row, using column operations to clear out powers of x that are at
most r, and row operations to clear out powers that are at least s where xs is
the diagonal power in this column. So if there are any entries left in the top
row we must have r < s contradicting maximality of s. So vector bundle splits
as the sum of one dimensional bundles of the form O(m). Number of copies
of O(k) is uniquely determined by looking at dimension of space of sections of
bundle twisted by line bundles.

Example 443 Example: If the matrix M is

(
1 x

x2

)
then it cannot be

turned into the diagonal matrix

(
1

x2

)
; instead it gets transformed into(

x
x

)
. This shows we need to take r maximal in the above argument.
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49 Tits systems and the Bruhat decomposition

Definition 444 A Tits system consists of the following:

• A group G, generated by two subgroups B and N , such that H = B ∩ N
is a normal subgroup of N .

• A set S of involutions generating the (Weyl) group W = N/H.

• If s ∈ S and w ∈W then sBw ⊆ BwB ∪BswB.

• If s ∈ S then sBs 6⊆ B.

Exercise 445 If G = GLn(C), N is the subgroup of n by n matrices with
exactly one non-zero entry in each row and column, and B the subgroup of
invertible upper triangular matrices, and S the involutions obtained from the
identity matrix by switching two adjacent rows, show that this is a Tits system.

Example 446 We show that the Lie groups PSLn(R) and PSLn(C) are simple
for n ≥ 2. In fact it requires little extra effort to determine which of the groups
PSLn(F ) are simple for any field F , so wee will do this. By ?? we just have
to check when this group is perfect. Since this group is generated by elements
tij(λ) (1s on the diagonal, and a λ in position i, j) we try to write these as
commutators. If n is at least 3 we can always do this; for example1 λ 0

0 1 0
0 0 1

1 0 0
0 1 µ
0 0 1

1 λ 0
0 1 0
0 0 1

−11 0 0
0 1 µ
0 0 1

−1

=

1 0 λµ
0 1 0
0 0 1

−1

Example 447 For 2 by 2 matrices the commutator of
(
λ 0
0 λ−1

)
and

(
1 µ
0 1

)
is(

1 (λ2−1)µ
0 1

)
, so we are OK as long as we can find a nonzero element λ of the

field with λ2 6= 1. This is possible as long as the field has at least 3 elements, so
PSLn(F ) is simple for n ≥ 2 and any field F , except possibly for the two cases
n = 2 and F = F2 or F3.

We look at these two cases in more detail to see that they are not simple.
The group PSL2(F2) has order 6 and is just the symmetric group acting on the
3 points of the projective line over F2, so in particular is solvable. The group
GL2(F3) has order 48. The quotient PGL2(F3) has order 24 and acts faithfully
the on projective line over F4 so must be the group S4 of all permutations of
these 4 points. So GL2(F3) has a chain of normal subgroups, with successive
quotients Z/2Z, (Z/2Z)2, Z/3Z, Z/2Z and in particular it is solvable. The
groups SL2(F3) and GL2(F3) are two of the exceptional finite subgroups of the
unit quaternions. (The third is SL2(F5).) One way to see this is to observe
that these groups contain a quaternion subgroup containing the center of the
group, so the action of this quaternion group by right translations on the group
algebra gives a quaternion structure to all representations where the center acts
as −1.
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50 Casimir elements and the center of the uni-
versal enveloping algebra

51 Capelli’s identity

52 Verma modules

53 The Weyl integration formula

Suppose that G is a compact connected Lie group with maximal torus T . We
would like to integrate functions f over T when looking at orthogonality rela-
tions of characters, but this is hard to do directly as G can have quite compli-
cated topology. However every element of G is conjugate to an element of T , so
any class function is determined by its restriction to T , and therefore we should
be able to work out its integral over all of G using a suitable integral over T ,
which is much easier as T has the much easier structure Rn/Zn. The problem is
that we cannot integrate f over T directly, because we need to account for the
fact that some elements of T are conjugate to more elements of G than others.
For example, if we pretend G is finite, then∑

g∈G
f(g) =

∑
t∈T

f(t)× number of elements of G conjugate to g

number of elements of T conjugate to g

where the weight on the right is a function on T invariant under the normalizer
of T . Weyl’s integration formula identifies this weight function explicitly, and
states ∫

g∈G
f(g) =

∫
t∈T

f(t)×
∏
α

(1− eα)

The square root of this fudge factor is the denominator of the Weyl character
formula, because∏

α

(1− eα) =
∏
α>0

(1− eα)e−α/2 = e−ρ
∏
α>0

(1− eα)

where we use the fact that if α is a root then so is −α, and where ρ is half the
sum of the positive roots. Proof (of the Weyl integration formula). Suppose
that t is in the maximal torus T . Consider the map from G/T × T 7→ G
taking (x, t) 7→ xtx−1. The fudge factor at t is given by the determinant of
the corresponding map of tangent spaces, since the determinant measures how
much the measure is increased.

(Add more)
So the fudge factor is given by det(1− t) acting on g/h. Since g/h is a sum

of the 1-dimensional weight spaces, the determinant is simply the product of
the eigenvalues of 1− t on these weight spaces, which is

∏
α(1− tα). �

Example 448 The Weyl integration formula for integral of a class function f
over the unitary group is

1

(2π)nn!

∫
f(θ1, . . . , θN )

∏
j<k

|eiθj − eiθk |dθ1 · · · dθN
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The Weyl character formula follows from the Weyl integration formula as
follows. The characters of highest weight representations are characterized by
these properties:

1. They are invariant under the Weyl group

2. They are of the form eα+ terms with lower weights

3. They are orthogonal

The characters of the Weyl character formula obviously satisfy the first two
conditions, so the key point is to check the third condition. This follows from
the Weyl integration formula because the product of the denominators of two
characters cancels out with the fudge factor in the Weyl integration formula:

54 Borel-Weil-Bott theorem

The Borel-Weil-Bott theorem gives a natural geometric realization of all the
irreducible finite dimensional representations of a complex semisimple Lie group.

If G is a semisimple complex algebraic group, then the space of polynomial
functions on G, as a representation of G×G, breaks up as the sum R⊗R over the
irreducible representations R of G. This is analogous to the decomposition of
functions on a finite group G as a representation of G×G. If R is an irreducible
representation and U the unipotent subgroup of a Borel subgroup B, then the
vectors of R fixed by U are just the highest weight vectors of R, and therefore
form a 1-dimensional subspace. So if ω is a 1-dimensional representation of B,
corresponding to a representation ω of the torus T , then the subspace of vectors
of R transforming like ω under B is either 0 or 1-dimensional, depending on
whether R has highest weight ω. So the polynomials on G transforming on
the right under B according to ω are either 0 or form a copy of the highest
weight representation of G (acting on the left) with highest weight ω. This is
the Borel-Weil construction of the irreducible representations of G.

The Borel-Weil construction is usually stated in terms of global sections of
line bundles over a projective manifold, so we describe this correspondence. The
space G/B is a projective variety. A 1-dimensional representation of B gives a
line bundle L on this projective variety. The global sections H0(V,L) of this
line bundle are essentially the same as functions on G transforming on the right
according to ω.

In the case when the group G is GLn(C), the group B is the group of upper
triangular matrices, and V is the flag variety of all maximal flags in Cn.

There is an extension of the Borel-Weil theorem due to Bott, where instead
of looking at H0(V,L) one looks at the representation Hi(V,L) for more general
i. Bott showed that there is at most one i for which this space is non-zero, and
in this case the representation is irreducible.

When G is SL2(C), the space V is just 1-dimensional projective space. In
this case Hi(V,O(n)) is the n + 1-dimensional irreducible representation of
SL2(C) if i = 0 and n ≥ 0, and the −n − 1-dimensional irreducible repre-
sentation of SL2(C) if i = 1 and n ≤ −2, and 0 otherwise. In particular if
n = −1 then both cohomology groups vanish.
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Bott’s theorem is one of the simplest examples of cohomological induction,
a powerful way of constructing representations of groups. Roughly speaking, 0-
dimensional cohomological induction is a sort of variation of ordinary induction.

Add something on Hi(n, V ) as an algebraic version of Borel-Weil-Bott.

55 Peter-Weyl theorem

The Peter-Weyl theorem says that irreducible unitary representations of com-
pact groups behave much like irreducible representations of finite groups, except
the there may be an infinite number of them. In particular they are all finite
dimensional, and the space L2(G) breaks up into an orthogonal sum R ⊗ R∗,
generalizing the fact that if G is finite then its group ring C[G] is a sum of
matrix algebras corresponding to the irreducible representations of G.

When G is finite, the representation L2(G) is finite-dimensional, and we can
construct the irreducible representations of G by breaking up L2(G) into irre-
ducibles. The main extra problem that appears when G is compact but infinite
is that one has to show that L2(G) still breaks up into finite-dimensional rep-
resentations. Once one has done this, the arguments for finite groups mostly
generalize easily to all compact groups. In particular one can show that for any
compact group there are enough finite dimensional irreducible unitary repre-
sentations, in the sense that for every nontrivial element of G there is a finite
dimensional unitary representation on which it acts nontrivially. (There are
compact groups for which this is not immediately obvious: for example, if one
defines the spin group to be the double cover of the special orthogonal group,
it is not completely trivial to construct a representation where the center acts
nontrivially.)

Theorem 449 (Peter-Weyl). Suppose that G is a compact group. Then L2(G)
splits up as an orthogonal direct sum finite dimensional representations of G.

Proof
We have a left action ofG on L2(G). We would like to break this up into finite

dimensional representations. A good way to break up a representation of G is to
find operators commuting with G; then eigenstates of these operators are acted
on by G. If these operators are compact then things are even better because
the eigenspaces of non-zero eigenvalues are finite dimensional. There are lots
of obvious operators commuting with G, consisting of right translations. These
are not compact operators in general. However we can make them compact
by smoothing them: in other words instead of using right translation by an
element of G, we use right convolution by some continuous function on G.
These operators are compact as they are just integral operators on a compact
space with continuous kernel (this is the main point where we use the fact that
G is compact). If we want we can arrange for these operators to be self adjoint
by taking a function invariant under inverses.

So for every continuous function on G we can break L2(G) up into a sum
of finite dimensional irreducible representations, and a possibly infinite dimen-
sional zero eigenspace. We need to check that there is nothing nasty hiding
in these zero eigenspaces. So suppose f is orthogonal to all finite dimensional
irreducible representations in L2(G). Then f ∗φ = 0 for any continuous function
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φ, and we want to show that this forces f to be 0. But if we take a sequence
(or net) of functions φn approaching the “delta” measure at 0, then f ∗ φn
approaches f , so if all the f ∗ φn are 0 then f is 0. �

Corollary 450 Every irreducible unitary representation of a compact group G
is finite-dimensional.

Proof Any unitary representation of any group can be represented as con-
tinuous functions on G. As G is compact, continuous functions are in L2, so
all irreducible unitary representations occur in L2(G). As L2(G) splits up as a
sum of finite-dimensional representations, all irreducible unitary representations
must be finite-dimensional. �

In particular, since irreducible unitary representations are finite dimensional,
we can define their characters as the traces of elements of G. These are contin-
uous functions on G satisfying orthogonality relations similar to those of finite
groups, except of course one replaces sums over the group by integration.

Just as for finite groups, the space L2(G) splits up as a sum R ⊗ R∗ of
irreducible representations of G × G, where the sum is over the irreducible
unitary representations of G.

Example 451 If G is the circle group of complex numbers of absolute value 1,
then L2(G) splits up as the sum of the 1-dimensional spaces spanned by zn for
integers n. The decomposition of an element of L2(G) as a linear combination
of these functions is just the Fourier series of a periodic function.

Example 452 Suppose that G is the group S3 ⊂ R4 of unit quaternions. Then
(complex) polynomials of degree n on G form a space of dimension 4×5×· · ·×
(n + 3)/n! − 4 × 5 × · · · × (n + 1)/(n − 1)! = (n + 1)2. These form the space
R⊗R, where R is the (n+ 1)-dimensional irreducible representation of G.

Exercise 453 Show that the representation R⊗R of S3 ⊂ R4 can be identified
with the space of harmonic polynomials on R4 of some fixed degree.

The Peter-Weyl theorem and its corollaries fail when the group G is not
compact. Even the trivial representation is not usually a subrepresentation of
L2(G) as the function 1 is not in L2. For abelian locally compact groups, the
space L2(G) is still an integral rather than a sum of irreducible representations,
but for non-abelian groups things are much more complicated. For example,
for G = SL2(R), the space L2(G) splits up as a sum of some irreducible rep-
resentations (the discrete series), an integral of others (the continuous series),
and there are some irreducible representations that do not appear in L2(G) at
all (the trivial representation, limits of discrete series, and the complementary
series). For semisimple G, the decomposition of L2(G) into a direct sum and in-
tegral of irreducibles was worked out by Harish-Chandra. Even stranger things
can happen for groups that are not semisimple. For example, for the infinite
symmetric group G = S∞(the union of Sn over all n), the space L2(G) cannot
be split up into irreducible representations at all. (This gives an example of
a von Neumann algebra of type II1, an essentially infinite-dimensional object
that has no analogue for finite-dimensional representations.)
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56 Formal groups and Hopf algebras

Just how complicated can the 1-dimensional abelian Lie group get?

57 Lazard’s universal ring

Commutative formal group laws are represented by the following universal ring:
Take the ring generated by elements ci,j with the relations that if f(x, y) =∑
ci,jx

iyj then f is a commutative formal group law. These relations are some
(rather gruesome) polynomial relations between the coefficients, so define a ring
L generated by these coefficients subject to these relations. It is obvious that
formal group laws over a commutative ring R are the same as homomorphisms
from L to R. The ring L is called Lazard’s universal ring. Lazard discovered the
amazing fact that in spite of its formidable definition it has a simple structure:
it is just a polynomial ring on infinitely many generators of degrees 2, 4, 6, ....
We can grade the ring by letting x and y have degree = 2, so that ci,j has
degree 2(i + j − 1). This grading corresponds to the following action of the
multiplicative group: if f is a formal group, so is λ−1f(λx, λy). The strange
factor of 2 in the grading is put in because of Quillen’s theorem that Lazard’s
ring is the coefficient ring of complex cobordism.

To prove Lazard’s theorem we need some preliminary results about binomial
coefficients.

Lemma 454 (
a

b

)
≡
∏(

ai
bi

)
mod p

where the product is over the digits of the base p expansions of a and b. In
particular

(
a
b

)
is divisible by p if and only if some digit of b is bigger than the

corresponding digit of a. Or to put it another way,
(
a+b
a

)
is nonzero mod p

exactly when the sum a+ b can be computed without carrying.

Proof We want to count the number of b element subsets of a elements mod
p. Divide up the a elements into a0 blocks of size 1, a1 of size p, and so on, and
consider the action of a cyclic p-group acting transitively on each block. This
acts on the subsets of size b and all non-trivial orbits on the set of subsets have
size a power of p, so

(
a
b

)
is congruent to the number of subsets fixed by this

action, in other words subsets that contain an entire block if they contain one
element of it. But the number of ways of choosing such a subset is

∏
aibi. �

Corollary 455 The highest common factor of the numbers
(
a
b

)
for 0 < b < a

is p if a = pn, n > 1 is a prime power and 1 otherwise.

Proof By the previous lemma we see that the highest common factor is divisible
by p if and only if a > 1 is a power of p. To complete the proof we just have
to check that the highest common factor is never divisible by p2, which follows
because

(
pn

pn−1

)
is not divisible by p2. �

Exercise 456 Write out the first 10 or so rows of Pascal’s triangle modulo 2
and 3, and color in the entries that are 0 to see the “fractal” patterns they form.
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The following technical lemma is the key point of the proof of Lazard’s
theorem.

Lemma 457 Suppose that Γ(x, y) is a homogeneous polynomial in 2 variables
of degree n with coefficients in some abelian group A. If the coefficients of xn

and yn vanish, and Γ(x, y) = Γ(y, x), and Γ satisfies the 2-cocycle condition

Γ(x, y) + Γ(x+ y, z) = Γ(x, y + z) + Γ(y, z)

then Γ is equal to
a((x+ y)n − xn − yn)

for some a ∈ A unless n is a power of a prime p, in which case Γ is

a
(x+ y)n − xn − yn

p
.

Proof It is enough to prove this when A is finitely generated (by the coefficients
of Γ). Also if it is true for two abelian groups B and C then it is true for an
extension B.C because we can first solve for Γ in C, and subtract a lift of this
solution to get a similar problem with coefficients in B, which we can also solve
by assumption. So we can assume that A is either the integers Z or Z/p for
some prime p because every finitely generated abelian group can be obtained
from these by taking extensions.

Write
Γ(x, y) =

∑
i+j=n

ai,jx
iyj

Then

a0,n = an,0 = 0 (28)

ai,j = aj,i (29)(
i+ j

i

)
ai+j,k =

(
j + k

k

)
ai,j+k whenever i and k are nonzero (30)

Also the expressions given in the lemma are all solutions of these equations.
We first do the case when A is the integers. If A is the rational numbers

the result is clear, because the binomial coefficients in the identity above are all
nonzero, so the space of solutions is at most 1-dimensional, and as we have found
one solution all the others must be multiples of it. So when A is the integers
all solutions must be some rational multiple of the solution given above, but as
the highest common factor of the coefficients of this solution is 1 any integral
solution must be an integral multiple of it. This proves the lemma when Ais
the integers.

Next we do the case when A is cyclic of prime order, in which case we
can assume that A is the field of order p. As before the solutions form a
vector space and we are given one non-zero solution, so it is enough to show
that the space of solutions is at most 1-dimensional. This is somewhat trickier
than the rational case because some of the binomial coefficients can vanish mod
p. The coefficient ai,n−i is determined by aj,n−j for j the largest power of p
that is at most i, because the addition (i − j) + j involves no carrying. In
particular the coefficients are determined by those of the form api,n−pi . Next
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we observe that api,n−pi = an−pi,pi is determined by api+1,n−pi+1 if pi+1 < n,
unless pi+1 + pi > n. However in the latter case api+1,n−pi+1 is determined by
api,n−pi . So in either case we find a coefficient such that all other coefficients
are determined by it. In other words the space of solutions is 1-dimensional.

�

Theorem 458 (Lazard’s theorem) The Lazard ring is a polynomial ring on
generators of degrees 2, 4, 6, ...

Proof We will first bound the size of the Lazard ring from above, which is the
tricky part, and then bound it from below, which is easy.

To bound the size of the ring from above, we suppose we have a formal group
f over some ring, and ask how much freedom we have to change the part of f
of degree n. Since we are just trying to get an upper bound on this freedom,
let’s throw away everything of degree greater than n, so our new formal group
will be f(x, y) + Γ(x, y) where Γ is a homogeneous polynomial of degree n, and
everything of higher degree is quotiented out. Then Γ satisfies the following
three conditions:

1. Γ(1, 0) = Γ(0, 1) = 0 because (f + Γ)(x, y) = x+ y mod xy

2. Γ(x, y) = Γ(y, x) because a group law is commutative

3. Γ(x, y) + Γ(x+ y, z) = Γ(x, y + z) + Γ(y, z) because f + Γ is associative.

By the previous lemma Gamma is determined by the choice of a single element
of R. In other words the Lazard ring has a set of generators with exactly one
generator in each positive even degree.

We now have to bound the Lazard ring from below, by showing that these
generators are algebraically independent It is enough to do this over the ratio-
nals, as any nontrivial relation between the generators over the integers gives a
nontrivial relation over the rationals. But over the rational numbers this is easy
because we can write down a lot of explicit formal groups: take any power series
l(x) = x+c1x

2+c2x
3+. . ., and form the formal group l−1(l(x)+l(y)). (Here l−1

is the function with l−1(l(x)) = x, not 1/l(x).) In each degree we have complete
freedom to choose ci, and in fact over the rational the ci can be taken as the
generators of the Lazard ring. So there are no relations between the generators
of the Lazard ring, and it is a polynomial ring in infinitely many generators.
(Note that this argument does not work over the integers: the problem is that
the formal group might have integer coefficients even if its logarithm l does not:
consider l(x) = x+ x2/2 + x3/3 + · · · .)

�

So in principle we can write down any one dimensional commutative formal
group over a ring just by writing down a sequence of elements of R, given as the
images of the generators of the Lazard ring. In practice there is a problem: we
have not actually written down a universal formal group over the Lazard ring,
and this is not so easy to do. (It is easy to do this over the rationals using the
logarithm of the formal group; the problem is to do it over the integers.)
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