
In general there is no exponential map from a Lie algebra to its UEA, but
we can define one to its completion if the Lie algebra is graded with all pieces
of positive degree. In this case the UEA is also graded so we can take its
completion, and the exp and log maps are well defined on elements with constant
terms 0 and 1 in this completion. We can define group-like elements in the
completed UEA in the obvious way (but note that the map ∆ has image in
the completion of Ug ⊗ Ug, which is larger than the tensor products of the
completions). For nilpotent Lie algebras things are even better as the series are
finite as elements of the Lie algebra are nilpotent, so we do not need to take
completions.

Lemma 60 exp is an isomorphism from primitive elements to group-like ele-

ments in the completion of the UEA, with inverse given by log

Proof This is an easy calculation: for example, if a is primitive so that ∆(a) =
1⊗ a+ a⊗ 1, then ∆(exp(a)) = exp(∆(a)) = exp(1⊗ a) exp(a⊗ 1) = exp(a)⊗
exp(a). �

Proof (of the Baker-Campbell-Hausdorff formula) If we grade the free Lie alge-
bra by giving A and B degree 1 then it is trivial that exp(A) exp(B) = exp(C) for
some C in the completion of the UEA: we just take C to be log(exp(A) exp(B)).
The problem is to prove that C is in the completion of the Lie algebra, in other
words can be written in terms of A and B using just the Lie bracket but not the
product of the UEA. In other words we have to show that C is primitive. But
this follows easily from the remarks above: A and B are primitive, so exp(A)
and exp(B) are group-like, so their product exp(A) exp(B) is also group-like, so
the log of the product is primitive. �

One application of this formula is to prove Lie’s rather hard theorem that
there is a Lie group for every Lie algebra: roughly speaking the CBH formula
allows us to define a sort of local chunk of the Lie group near the identity, and
we can construct a global Lie group by carefully pasting such chunks together.

This does not quite give an explicit expression for exp(a) exp(b); in fact there
are many different explicit expressions, because there are many ways to write
elements of the free Lie algebra. We will now use the Campbell-Baker-Hausdorff
to find an explicit expression.

Dynkin gave an explicit formula for the Campbell-Baker-Hausdorff formula
as follows. We can write

log(exey) =
∑

m>0
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(remembering that x and y do not commute) which gives an explicit non-
commuting power series, though not written in terms of the Lie bracket. How-
ever we know the right hand side is primitive by the Baker-Campbell-Hausdorff
theorem, so if we apply any linear map Φ from the free associative algebra to
the free Lie algebra on x, y that is the identity on primitive elements we will
get an explicit expression for log(exey) in terms of the Lie bracket. One such
linear map φ was found by Dynkin as follows. Put

Φ(x1x2 · · ·xn−1xn) = [x1, [x2, . . . , [xn−1, xn] · · · ]]
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if n ≥ 1. Then by definition of Φ, if deg v > 0 we have Φ(uv) = θ(u)Φ(v),
where θ is the algebra homomorphism from the associative algebra to End(A)
taking xi to [xi, ∗] (so θ(u)v = [u, v] whenever u is primitive). Then Φ(u) =
deg(u)u for all primitive elements u. This follows by induction on the degree of
u as Φ([u, v]) = Φ(uv−vu) = θ(u)Φ(v)−θ(v)Φ(u) = deg(v)[u, v]−deg(u)[v, u] =
deg([u, v])[u, v].

So we define φ by φ(u) = Φ(u)/ deg(u) if deg(u) > 0, giving the desired
retraction from the associative algebra to the Lie algebra.

Exercise 61 Work out the terms of Dynkins formula of degree up to 3. (An-
swer: x+ y + [x, y]/2 + [x, [x, y]]/12 + [y, [y, x]]/12.)

5 Free things

The free monoid on n generators a1, . . . an has elements ai1ai2 corresponding to
all finite sequences i1, i2, . . . of 1, . . . n in the obvious way. These elements form
a basis of the free algebra on these generators (which is the monoid ring of the
free monoid). In particular the free algebra, graded so that all generators have
degree 1, and a degree m piece of dimension nm.

Example 62 The free Lie algebra on n generators a, b, c, . . . is graded by giving
all generators degree 1, and we can ask for the dimension of the piece of degree
m; in other words how many independent expressions can we form using the
Lie bracket m − 1 times. We can solve this using the PBW theorem. The
point is that the UEA of a free Lie algebra is the free associative algebra on
a, b, c, . . .,whose piece of degree m has dimension nm. By the PBW theorem the
UEA is the “same size” as the polynomial algebra over the free Lie algebra. So
if the free Lie algebra has km independent elements of degree m, then

1

(1− t)k1

1

(1− t2)k2

· · · = 1 + nt+ n2t2 + · · ·

(where the left is the Poincare series of the symmetric algebra of the UEA, and
the right is the Poincare series of the free associative algebra). So this gives a
recursive way to calculate the numbers km, especially if we take logs of both
sides:

∑

i

kit
ij/j = log(1/(1− nt)) =

∑

i

niti/i

The dimension M(α, n) of the degree n piece of the free Lie algebra on α
generators is called a necklace polynomial, and by Moebius inversion is given
by

M(α, n) =
1

n

∑

d|n

µ(n/d)αd

M(α, 1) = α

M(α, 2) =
α2 − α

2

M(α, 3) =
α3 − α

3
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M(α, 4) =
α4 − α2

4

Exercise 63 Show that the necklace polynomial M(α, n) counts the number of
aperiodic necklaces with n beads of α colors. (Apreiodic means that the necklace
cannot be obtained by repeating some smaller necklace. Neckalces are the same
if one can be obtained by rotating another, but “flipping” is not allowed.) Show
that if q is a prime power then M(q, n) is the number of irreducible monic
polynomials of degree n over the field of q elements. Show that

(1− αz) =
∏

n

(1− zn)M(α,n).

We can construct a totally ordered basis H for the free Lie algebra on a
totally ordered set X using Hall sets as follows. The set H is the union of sets
H1, H2, of degrees 1, 2, ...and if u has length less than v then u < v. The set H1

is just X. The set H2 is the elements [u, v] with u, v ∈ H1, u < v. The elements
of length at least 3 are those of the form [u[vw]] with v ≤ u < [u, v] and v < w
and u, v, w, [[vw] all in H. We choose any total ordering on Hn. We will not
give a proof that this works as we do not use this result later.

Exercise 64 Find the sets H1, H2, H3, H4, H5 for a free Lie algebra on 2 gen-
erators (for some choice of ordering in Hi).

A useful variation of the free monoid is the free group on generators a, b, . . .,
which is the same as the monoid on generators a,A, b, B, . . . with the relations
aA = Aa = 1 and so on. We review some basic facts about free groups.

Lemma 65 Each element of the free group has a unique representative given

the product of a sequence of elements a,A = a−1, b, B = b−1, . . . such that no

generator occurs next to its inverse. In other words, there are no “unexpected”

relations between generators of a free group.

Proof It is obvious that any element of the free group can be written in this
form, and the problem is to show that this representative is unique. If X = Y
thenXY −1 = 1, so this reduces to checking that non-empty representative is not
the identity element. This is the usual problem for things given by generators
and relations of showing that there is no unexpected collapse, and a good way to
show this is to find explicit representations where given elements are obviously
nontrivial. We will do this by constructing some explicit finite permutation
representations.

Given a product X = xn · · ·x2x1 · · · of n > 0 elements a,A, b, B, . . . with
no generator next to its inverse we will construct an action of the free group
on a finite set of n + 1 points 1, 2, . . . n + 1 such that X takes 1 to n + 1. We
first decree that x1(1) = 2, x2(2) = 3, and so on. We need to extend this to an
action of each generator a on 1, 2, ..., n+1. But since a does not occur next to
A in X, the conditions on a are consistent so we can extend the action of a to
the whole of 1, . . . , n+ 1. So we get an action of the free group on n+ 1 points
with X acting nontrivially, which shows that X is not the identity. �

In fact we have shown a little more: free groups are residually finite, meaning
that for any nontrivial element we can find a finite index (normal) subgroup
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containing it. Another way of thinking about this is that elements can be
detected by homomorphisms to finite groups. (In general if P is some property
of groups, then “residually P” means that any two distict elements of the group
can be separated by a quotient group with property P.)
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