
4 The exponential map

If A is a matrix, we can define exp(A) by the usual power series. We should
check this converges: this follows if we define the norm of a matrix to be
supx 6=0

(|Ax|)/|x|. Then |AB| ≤ |A||B| and |A+B| ≤ |A|+ |B| so the usual esti-
mates show that the exponential series of a matrix converges. The exponential
is a map from the Lie algebra Mn(R) of the Lie group GLn(R) to GLn(R). (The
same proof shows that the exponential map converges for bounded operators on
a Banach space. The exponential map also exists for unbounded self-adjoint
operators on a Hilbert space, but this is harder to prove and uses the spectral
theorem.) The exponential map satisfies exp(A+B) = exp(A) exp(B) whenever
A and B commute (same proof as for reals) but this does NOT usually hold if A
and B do not commute. Another useful identity is det(exp(A)) = exp(trace(A))
(conjugate A to an upper triangular matrix).

To calculate the exponential of a matrix explicitly one can use the Lagrange
interpolation formula as in the following exercises.

Exercise 49 Show that if the numbers λi are n distinct numbers, and Bi are
numbers, then

B1

(A− λ2)(A− λ3) · · ·

(λ1 − λ2)(λ1 − λ3) · · ·
+B2

(A− λ1)(A− λ3) · · ·

(λ2 − λ1)(λ2 − λ3) · · ·
+ · · ·

is a polynomial of degree less than n taking values Bi at λi.

Exercise 50 Show that if the matrix A has distinct eigenvalues λ1,λ2,... then
exp(A) is given by

exp(λ1)
(A− λ2)(A− λ3) · · ·

(λ1 − λ2)(λ1 − λ3) · · ·
+ exp(λ2)

(A− λ1)(A− λ3) · · ·

(λ2 − λ1)(λ2 − λ3) · · ·
+ · · ·

(In this formula exp can be replaced by any holomorphic function.)

Exercise 51 Find exp

(

a b
c d

)

. The work can be reduced a little by writing

the matrix as a sum of a multiple of the identity and a matrix of trace 0.

In particular for every element of the Lie algebra we get a 1-parameter
subgroup exp(tA) of the Lie group. We look at some examples of 1-parameter
subgroups.

Example 52 If A is nilpotent, then exp(tA) is a copy of the real line, and its
elements consist of unipotent matrices. In this case the exponential series is
just a polynomial, as is its inverse log(1 + x), so the exponential map is an
isomorphism between nilpotent matrices and unipotent ones.

Example 53 If the matrix A is semisimple with all eigenvalues real, then it can
be diagonalized, and the image of the exponential map is a copy of the positive
real numbers. In particular it is again injective.
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Example 54 If the matrix A is

(

0 1
−1 0

)

(semisimple with imaginary eigen-

values) then the image of the exponential map is the circle group of rotations.
In particular the exponential map is no longer injective.

Example 55 A 1-parameter subgroup need not have closed image: consider
an irrational line in the torus S1 × S1, considered as (say) diagonal matrices in
GL2(C).)

In general a 1-parameter subgroup may combine features of all the examples
above.

Exercise 56 Show that if A is in the Lie algebra of the orthogonal group (so
A+At = 0) then exp(A) is in the orthogonal group.

One way to construct a Lie group from a Lie algebra is to fix a representation
of the Lie algebra on a vector space V , and define the Lie group to be the group
generated by the elements exp(a) for a in the Lie algebra. It is useful to do this
over fields other than the real numbers; for example, we might want to do it
over finite fields to construct the finite simple groups of Lie type. The problem
is that the exponential series does not seem to make sense. We can get around
this in two steps as follows. First of all, if we work over (say) the rational
numbers, the exponential series still makes sense on nilpotent elements of the
Lie algebra, as the series is then just a finite polynomial. The other problem
is that the exponential series contains coefficients of 1/n!, that make no sense
if n ≤ p for p the characteristic of the field. Chevalley solved this problem as
follows. The elements an/n! are elements of the universal enveloping algebra
over the rationals. If we take the universal enveloping algebra over the integers
and reduce it mod p we cannot then divide an by n!. However we can first do
the division by n! asnd then reduce mod p: in other words we take the subring
of the universal enveoping algebra over the rationals generated by the elements
an/n! for a nilpotent, and then reduce this subring mod p. Then this has well
defined exponential maps for nilpotent elements of the Lie algebra.

Another way to define exponentials without dividing by a prime p is to use
the Artin-Hasse exponential

exp

(

x

1
+

xp

p
+

xp
2

p2
+ · · ·

)

Exercise 57 Show that a formal power series f(x) = 1 + · · · with ratio-
nal coefficients has coefficients with denominators prime to p if and only if
f(xp)/f(x)p ≡ 1 mod p. Use this to show that the Artin-Hasse power series has
coefficients with denominators prime to p.

Example 58 The exponential map need not be onto, even if the Lie group is
connected. As an example, we will work out the image of the exponential map
for the connected group SL2(R). The Lie algebra is the 2 by 2 matrices of trace
0, so the eigenvalues are of the form λ,−λ for λ > 0, or iλ,−iλ for λ > 0,
or 0, 0. In the first case exp(A) is diagonalizable with two positive distinct
eigenvalue with product 1. In the second case A is diagonalizable with two
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eigenvalues of absolute value 1 and product 1. In the third case A is unipotent
(both eigenvalues 1) but need not be diagonalizable. If we check through the
conjugacy classes of SL2(R) we see that we are missing the following classes:
matrices with two distinct negative eigenvalues (in other words trace less than
−2), and non-diagonalizable matrices with both eigenvalues −1. So the image of
the exponential map is not even dense (or open or closed): it omits all matrices
of trace less than −2.

There is an alternative more abstract definition of the exponential map that
goes roughly as follows. For any element a of the Lie algebra of a group G ,
we show that there is a unique 1-parameter subgroup R 7→ G whose derivative
at the origin is a. Then exp(a) is defined to be the value of this 1-parameter
subgroup at 1. This definition has the advantage that it works for all Lie groups,
and in particular shows that the expnential map does not depend on a choice
of representation of the Lie group as a matrix group. The disadvantage is that
one has to prove existence and uniqueness of 1-parameter subgroups, which are
essentially geodesics for a suitbale connection on G.

Theorem 59 (Campbell-Baker-Hausdorff)

exp(A) exp(B) = exp(A+B + [A,B]/2 + · · · )

where the exponent on the right is an infinite formal series in the free Lie algebra
generated by formal variables A and B.

In particular this justifies the claim that Lie algebras capture the local structure
of a Lie group, because we can define the product of the Lie group locally in
terms of the Lie bracket. The convergence of the Campbell-Baker-Hausdorff
formula is a bit subtle: it converges in some neighborhood of 0, and converges for
nilpotent Lie algebras, but does not converge everwhere if the simply connected
Lie group of the Lie algebra is not homeomorphic to a vector space. For example,
if it converged everywhere for the group SU(2) then we would find that R3 can
be given a group structure locally isomorphic to it, which is impossible as the
universal cover is not R3.
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