
We can ask if the group is determined by the group ring. The answer is
“no” if the group ring is considered as an associative algebra: for example,
the complex group ring of a finite abelian group is just a sum of copies of C
corresponding to the irreducible representations, so two finite abelian groups
have isomorphic group rings if and only if they have the same order. However
the group can be recovered from the Hopf algebra as the group-like elements:

Definition 38 An element of a Hopf algebra is called group-like if ∆(a) = a⊗a
and (a) = 1.

Exercise 39 Show that the group-like elements of a Hopf algebra form a group.
Show that the group-like elements of a group ring of G form a group that can be
naturally identified with the group G. What is the group of group-like elements
of the universal enveloping algebra of a Lie algebra?

The universal enveloping algebra is not the only analogue of the group ring
for a Lie group. Another analogue, often used in analysis, is the algebra of
continuous (or smooth) functions of compact support (or L1 functions, or finite
measures...) under convolution. For p-adic groups one can take the locally
constant functions with compact support. These algebras look more like the
group algebra of a finite group, but is less convenient in some ways as they need
not have a coproduct.

Example 40 The main point of all this is that the UEA of a Lie algebra is a
Hopf algebra. In other words it behaves as if it were a group or group ring, which
is of course an approximation to the Lie group of the Lie algebra. The map from
Ug to Ug⊗Ug is given by the Leibniz formula g 7→ 1⊗g+g×1 from calculus. This
is really just the formula telling you how to differentiate a product: d

dx (fg) =
d
dx (f)g + f d

dx (g), where you can see the map d
dx 7→ d

dx ⊗ 1 + 1⊗ d
dx .

The fact that the map ∆ extends to a ring homomorphism follows from the
universal property of the UEA.

We would like to reconstruct the Lie algebra from its universal enveloping
algebra in the same way we reconstructed a group from its group algebra.

Definition 41 An element of a Hopf algebra is called primitive if it satisfies

the Leibniz identity ∆(a) = a⊗ 1 + 1⊗ a.

Exercise 42 Show that the primitive elements of a Hopf algebra form a Lie
algebra.

A natural guess is that the Lie algebra consists of the primitive elements of the
universal enveloping algebra. This fails over fields of positive characteristic p:

Exercise 43 If a is primitive in a Hopf algebra of prime characteristic p > 0,
so is ap. Find the Lie algebra of primitive elements of the universal enveloping
algebra of a 1-dimensional Lie algebra over the finite field Fp.

Sometimes in characteristic p one works with restricted Lie algebras: these are
Lie algebras together with a “p’th power operation” a 7→ a[p] behaving like the
p-th power of derivations.
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Lemma 44 Over a field of characteristic 0, an element of the UEA is primitive

if and only if it is in the Lie algebra.

Proof It is obvious that elements of the Lie algebra are primitive, so we need
to show that primitive elements are in the Lie algebra. By the PBW theorem,
the coalgebra structures on any two Lie algebras of the same dimension are
isomorphic, so we can just the lemma for one Lie algebra of any dimension,
say the abelian one. But in this case the dual of the coalgebra is a ring of
power series (since we are in char 0). Primitive elements have to vanish on all
decomposable elements, which are all elements of degree at least 2, so primitive
elements have degree 1 and are therefore in the Lie algebra. � The proof fails

in positive characteristic because the dual algebra of the coalgebra of a UEA is
no longer a power series ring. If the coalgebra is Z[D] then the dual algebra
is Z[{xi/i!}], so reducing mod p we get an algebra generated by elements of
degrees pn each of which has p’th power 0. This is another indication that the
UEA is the wrong object if we are not working over fields of char 0.

There is a second way to associate a Hopf algebra to a Lie group, which is in
some sense dual to the UEA, which is to take the ring of polynomial functions
on an (algebraic) Lie group. The UEA consists of (left invariant) differential
operators and is cocommutative but not usually commutative, while the ring
of (polynomial) functions is commutative but not usually cocommutative. It
works as follows: suppose that G is an algebraic group contained in Rn. Then
it has a coordinate ring O(G) = R[x1. · · · , xn]/(I) where the ideal I is the
polynomials vanishing on R. The product map G×G 7→ G induces a dual map
O(G) 7→ O(G) ⊗ O(G), and similarly the unit of G induces a map O(G) 7→ R,
so we have all the data for a commutative Hopf algebra.

Example 45 Suppose G is the general linear group SL2(R). Then the coordi-
nate ring is O(G) = R[a, b, c, d]/(ad − bc − 1). The coproduct is given by the
group product:

(

a1 b1
c1 d1

)(

a2 b2
c2 d2

)

=

(

a1a2 + b1c2 a1b2 + b1d2
c1a2 + d1c2 c1b2 + d1d2

)

so ∆(a) = a⊗a+b⊗c, ∆(b) = a⊗b+b⊗d, ∆(c) = c⊗a+d⊗b, ∆(d) = c⊗b+d⊗d.
The counit is given by η(a) = 1, η(b) = 0, η(c) = 0, η(d) = 1. The antipode is
S(a) = d, S(b) = −b, S(c) = −c, S(d) = a.

Example 46 Following Quillen and Milnor, we will show that the Steenrod
algebra in algebraic topology is a sort of infinite dimensional Lie group.

First recall the original definition of the Steenrod algebra. The Steenrod
algebra is the algebra of stable cohomology operations mod 2, so can be found by
calculating the cohomology of Eilenberg–Maclane spaces, which was originally
done by H. Cartan and Serre. They showed that the Steenrod algebra is the
algebra over F2 generated by elements Sqq for q = 1, 2, 3 · · · modulo the Adem
relations

SqiSqj =

[i/2]
∑

k=0

(

j − k − 1

i− 2k

)

Sqi+j−kSqk
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which not even algebraic topologists are able to remember. Cartan also gave a
formula for the action of Steenrod squares on a cup product

Sqn(x ∪ y) =
∑

i+j=n

(Sqix) ∪ (Sqjy)

which we know should be interpreted as a coproduct on the Steenrod algebra

∆Sqn =
∑

i+j=n

Sqi ⊗ Sqj

In other words the Steenrod algebra is a cocommutative Hopf algebra over the
field with 2 elements. A cocommutative Hopf algebra should be thought of as
something like a (universal enveloping algebra of a Lie) group, so should be
related to the automorphisms of something. We will show that the Steenrod
algebra is in some sense the automorphism group of the 1-dimensional additive
group.

At first sight this makes no sense. The automorphism group of the additive
Lie group R is just R∗ which looks nothing like the Steenrod algebra. This is
because we need to look more closely at this group, where by “more closely” we
mean infinitesimally.

So first look at infinitesimal automorphisms of the real line fixing 0. These
can be written as formal power series

x 7→ a0x+ a1x
2 + · · ·

with a0 invertible. The product of this group is by composition of power series
(which accounts for the funny grading of the coefficients). We can do this all over
the integers Z. Then this group is represented by the ring Z[a0, a

−1
0 , a1, a2, . . .],

which has a complicated coproduct map describing the group product.

Exercise 47 Find the image of a0, a1, and a2 under the coproduct map.

To get the Steenrod algebra, we restrict to the subgroup of automorphisms of the
line preserving the additive group structure, in other words we want the power
series f with f(x+ y) = f(x)+ f(y). The problem is that there are non (except
for multiplication by constants). This is because we forgot to reduce mod p. If
we work mod a prime p there are now plenty of additive homomorphisms, in
particular the Frobenius map x 7→ xp and its powers x 7→ xpn

. So the group of
infinitesimal automorphisms of the additive group consists of the maps

x 7→ a0x+ ap−1x
p + ap2

−1x
p2

+ · · ·

. (with a0 invertible). So the coordinate ring of the corresponding group is
Fp[x0, x

−1
0 , ap−1, ap2

−1, · · · ]. Now we need to find the coproduct on this corre-
sponding to composition of functions. Suppose we have two group elements

x 7→ f(x) = a0x+ ap−1x
p + ap2

−1x
p2

+ · · ·

and
x 7→ g(x) = b0x+ bp−1x

p + bp2
−1x

p2

+ · · ·
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. We want to calculate f(g(x)). This is given by

f(g(x)) =
∑

api
−1(

∑

bpj
−1x

pj

)p
i

(3)

=
∑

api
−1b

pi

pj
−1x

pi+j

(4)

so the coproduct is given by Milnor’s formula

∆(apn
−1) =

∑

i+j=n

api
−1 ⊗ ap

i

pj
−1.

or
∆(a0) = a0 ⊗ a0

∆(a1) = a0 ⊗ a1 + a1 ⊗ a20

∆(a3) = a0 ⊗ a3 + a1 ⊗ a21 + a3 ⊗ a40

∆(a7) = a0 ⊗ a7 + a1 ⊗ a23 + a3 ⊗ a41 + a7 ⊗ a80

We get the classical Steenrod algebra from this (for p = 2) by making 2 minor
changes: we identify a0 with 1, and (following Milnor) we take the graded dual
(so that the Steenrod algebra is cocommutative rather than commutative). So,
as Quillen pointed out, the mysterious Adem relations turn out to be a disguised
form of the rule for composing two formal power series.

We can try to understand the structure of the Steenrod algebra by pretending
that it is a Lie group. So we should ask if it is solvable/nilpotent/simple. It
is graded by the non-negative integers, so it has an abelian degree 0 piece on
the top, and then the rest of it is almost nilpotent: more precisely it is pro-
nilpotent, a projective limit of nilpotent objects. So the Steenrod algebra itself
should be thought of as a pro-solvable infinite dimensional Lie group. (The
correct terminology is affine group scheme.) For any commutative R ring the
group S(R) has a decreasing filtration S0 ⊂ Sp−1 ⊆ Sp2

−1 ⊆ · · · , where Spn
−1

for n > 0 consists of the automorphisms x 7→ x + apn
−1x

pn

+ · · · . So S0/Sp−1

is the multiplicative group of R, and Spn
−1/Spn+1

−1 is the additive group of R.
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