
38 Discrete subgroups of Lie groups

We will show how to classify the finite subgroups G of O3(R) using Thurston’s
theory of orbifolds. The key idea it to look at the orbit space S2/G. This is not
usually a manifold (unless G happens to act freely) but is a more general sort
of object called an orbifold, which is a sort of manifold with mild singularities.
Two-dimensional orbifolds turn out to be easy to classify as there are only a
limited number of possible singularities, so we can use this to classify finite
rotation and reflection groups.

We first look at the possible singularities of a smooth surface by a finite
group. The singularity is going to look locally like R2/G where G is some finite
group acting on the vector space R2. There are not too many of these, as
they have to be subgroups of O2(R): G is either cyclic, acting as rotations or
dihedral, acting as rotations and reflections. The corresponding singularities
are either conical points with angle 2π/n (for G cyclic of order n) or a sector of
angle 2π/2n, for G dihedral of order 2n.

The Euler characteristic of the orbifold is (Euler characteristic of 2-sphere)/(Order
of group), which must be positive as the 2-sphere has positive Euler character-
istic. This is also equal to the number of points-lines plus faces of the orbifold.
However we must be careful to count points and lines properly: a point that is a
quotient singularity by a group of order n is really only 1/n of a point. Similarly
a boundary edge is really only half a line. In other words whenever we have a
point that is a quotient singularity we need to adjust the Euler characteristic
by 1− 1/n.

So in the orientable case when the quotient orbifold is a topological sphere
with quotient singularities of orders ni the Euler characteristic is

Euler characteristic of sphere − corrections = 2−
∑

(1− 1/ni)

and this is equal to (Euler characteristic of 2-sphere)/(Order of group) = 2/|G| >
0. So we want to solve the equation

∑
(1− 1/ni) < 2

for integers ni > 1. There is an extra condition: there cannot be just one
integer, and if we have just two integers they must be the same, otherwise
we get a bad orbifold which has no cover that is a manifold. It is easy to
find the solutions: they are (), (n, n), (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5). These
correspond to quotients of the sphere by the trivial group, cyclic groups of order
n, dihedral groups of order 2n, and the rotations of a tetrahedron, octahedron,
or icosahedron.

The unorientable case when the quotient is a disc or projective plane is
similar. The correction factors are 1/2 for each edge and 1 − 1/2m for every
sector singularity on the boundary, so we find

1−
∑

(1− 1/ni)−
∑

(1− 1/mi)/2 = 1/|G| > 0.

Here the numbers mi are the orders of the sector singularities, and the 2’s are
replaced by 1’s because we replace the sphere of Euler characteristic 2 by the
disc or projective plane which have Euler characteristic 1. (Of course for the
projective plane there are no sector singularities because it has no boundary.)
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The finite subgroups of O4(R) can be classified by reducing to the case of
O3(R) using the fact the O4(R) is almost a product of 2 copies of O3(R): more
precisely the double cover of SO4(R) is isomorphic to the product of two copies
of the double cover of SO3(R). These groups act on S3 so give examples of
compact 3-dimensional orbifolds. If the finite group acts freely on S3 then
we get compact 3-dimensional manifolds called space forms. These are fairly
straightforward to classify, and by Perelman’s proof of Thurston’s elliptization
conjecture they give all closed 3-manifolds with finite fundamental group. For
example, lens spaces arise by taking a 2-dimensional complex representation of
a cyclic group, which acts on the 3-sphere of vectors of length 1. A particularly
famous example is Poincare’s homology 3-sphere. Any subgroup of the group S3

automatically acts fixed point freely on S3, so any double cover of a finite group
of rotations on SO3(R) is the fundamental group of a compact 3-manifold. The
Poincare 3-sphere arises by taking the double cover of the group of rotations of
the icosahedron. The fundamental group is the perfect group of order 120. As
the fundamental group is perfect, the first homology group of the manifold is
trivial, so the manifold is a homology sphere.

Exercise 401 Classify the 17 wallpaper groups (discrete co-compact subgroups
of the group R2.O2(R) of isometries of the plane R2) by looking at the quotient
orbifolds. This is similar to classifying the finite subgroups of isometries of the
sphere, except this time the Euler characteristic of the quotient orbifold is zero
rather than positive. There are 4 orbifolds whose underlying topological space is
a sphere and 8 whose underlying space is a disk. Also there are 5 more surfaces
that can appear: the Klein bottle, torus, Moebius strip, projective plane, and
annulus, each of which corresponds to 1 group.

In 3-dimensions the analogues of wallpaper groups are the cocompact sub-
groups of R3.O3(R) and are called space groups. They are of great interest
to crystallographers and geologists as they describe the possible symmetries
of crystals. There are 230 or 219 classes of them depending on whether one
distinguishes mirror images of group, which were independently classified by
Fyodorov, Barlow, and Schnflies in the 1890s. Conway and Thurston redid the
classification in terms of 3-dimensional orbifolds.

A Fuchsian group is a discrete subgroup of SL2(R). The group SL2(R) acts
on 2-dimensional hyperbolic space and also on the upper half complex plane, so
Fuchsian groups are closely related to 2-dimensional oriented hyperbolic man-
ifolds and to Riemann surfaces. (The correspondence is not quite exact, as
Fuchsian groups can have elliptic elements fixing points, so that the quotients
have orbifold singularities.) In particular any compact Riemann surface of genus
g at least 2 gives a Fuchsian group isomorphic to its fundamental group. The
space of (marked) Fuchsian groups obtained like this is called Teichmuller space,
and is a complex manifold of dimension 3g − 3 with a very rich geometry. The
classical example of a Fuchsian group is SL2(Z). The quotient of the upper
half plane by SL2(Z) is an orbifold given by the complex sphere with a point
missing and with orbifold singularities of orders 2 and 3. The more general
case of congruence subgroups such as Γ0(N) (c divisible by N) are of central
importance in number theory: Wiles’s proof of Fermat’s last theorem depended
on a deep study of the modular forms for these groups (sections of certain line
bundles over the quotient orbifolds).

180



A Kleinian group is a discrete subgroup of SL2(C). Like Fuchsian groups,
these can be thought of as either complex or hyperbolic transformation groups,
because the group PSL2(C) is both the group of automorphisms of the complex
sphere, and also the group of automorphisms of oriented hyperbolic 3-space.
In particular if Kleinian group is cocompact and acts freely, we get a closed
hyperbolic 3-manifold. Unlike the case of Fuchsian groups, where there are
infinite families of cocompact groups, cocompact (and cofinite) Kleinian groups
are rigid: the only deformations are given by inner automorphisms. This is
a special case of Mostow rigidity, which says in particular that isomorphisms
of cofinite Kleinian groups extend to isomorphisms of PSL2(C). One way of
thinking about this is that closed hyperbolic 3-manifolds have an essentially
unique hyperbolic metric (quite unlike what happens in 2-dimensions): any
invariant of the metric, such as the volume, is an invariant of the underlying
topological manifold.

Thurston discovered that all closed 3-manifolds can be built from discrete
subgroups of Lie groups. More precisely every closed 3-manifold can be cut up
in a canonical way along spheres and tori so that each piece has a geometric
structure of finite volume. There are 8 different sorts of geometric structure
that appear corresponding to 8 particular Lie groups (modulo a maximal com-
pact subgroup). We have seem 3 of these above: they correspond to spherical,
Euclidean, and hyperbolic structures. Two more come from taking the product
of 2-dimensional spherical or hyperbolic structures with a line. The remain-
ing 3 structures come from 3 of the Bianchi groups: the Heisenberg group, the
universal cover of SL2(R), and a solvable group that is the Bianchi group of
type V I0 and its identity component is the group of isometries of Minkowski
space in 2-dimensions. Of these 8 geometries, the manifolds for all except the
hyperbolic geometry are classified (or at least well understood). There seems to
be no obvious analogue of Thurston’s classification for manifolds of dimension
4 and above.
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