
37 Simple real Lie algebras

37.1 Real forms

(The stuff about E8 is duplicate and needs to be removed)
In general, suppose L is a Lie algebra with complexification L ⊗ C. How

can we find another Lie algebra M with the same complexification? L⊗ C has
an anti-linear involution ωL : l ⊗ z 7→ l ⊗ z̄. Similarly, it has an anti-linear
involution ωM . Notice that ωLωM is a linear involution of L ⊗ C. Conversely,
if we know this involution, we can reconstruct M from it. Given an involution
ω of L⊗C, we can get M as the fixed points of the map a 7→ ωLω(a)“=” ω(a).
Another way is to put L = L+ ⊕ L−, which are the +1 and −1 eigenspaces,
then M = L+ ⊕ iL−.

Thus, to find other real forms, we have to study the involutions of the com-
plexification of L. The exact relation is subtle, but this is a good way to go.

Example 393 Let L = sl2(R). It has an involution ω(m) = −mT . su2(R) is
the set of fixed points of the involution ω times complex conjugation on sl2(C),
by definition.

So to construct real forms of E8, we want some involutions of the Lie algebra
E8 which we constructed. What involutions do we know about? There are two
obvious ways to construct involutions:

1. Lift −1 on L to êα 7→ (−1)α
2/2(êα)−1, which induces an involution on the

Lie algebra.

2. Take β ∈ L/2L, and look at the involution êα 7→ (−1)(α,β)êα.

(2) gives nothing new: we get the Lie algebra we started with. (1) only gives
one real form. To get all real forms, we multiply these two kinds of involutions
together.

Recall that L/2L has 3 orbits under the action of the Weyl group, of size 1,
120, and 135. These will correspond to the three real forms of E8. How do we
distinguish different real forms? The answer was found by Cartan: look at the
signature of an invariant quadratic form on the Lie algebra.

A bilinear form ( , ) on a Lie algebra is called invariant if ([a, b], c)+(b[a, c]) =
0 for all a, b, c. This is called invariant because it corresponds to the form
being invariant under the corresponding group action. Now we can construct
an invariant bilinear form on E8 as follows:

1. (α, β)in the Lie algebra = (α, β)in the lattice

2. (êα, (êα)−1) = 1

3. (a, b) = 0 if a and b are in root spaces α and β with α+ β 6= 0.

This gives an invariant inner product on E8, which we prove by case-by-case
check

Exercise 394 do these checks
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We constructed a Lie algebra of type E8, which was L ⊕
⊕

êα, where L is the
root lattice and α2 = 2. This gives a double cover of the root lattice:

1 → ±1 → êL → eL → 1.

We had a lift for ω(α) = −α, given by ω(êα) = (−1)(α
2/2)(êα)−1. So ω becomes

an automorphism of order 2 on the Lie algebra. eα 7→ (−1)(α,β)eα is also an
automorphism of the Lie algebra.

Suppose σ is an automorphism of order 2 of the real Lie algebra L = L++L−

(eigenspaces of σ). We saw that you can construct another real form given by
L++ iL−. Thus, we have a map from conjugacy classes of automorphisms with
σ2 = 1 to real forms of L. This is not in general in isomorphism.

E8 has an invariant symmetric bilinear form (eα, (eα)−1) = 1, (α, β) =
(β, α). The form is unique up to multiplication by a constant since E8 is an
irreducible representation of E8. So the absolute value of the signature is an
invariant of the Lie algebra.

For the split form of E8, what is the signature of the invariant bilinear form
(the split form is the one we just constructed)? On the Cartan subalgebra
L, ( , ) is positive definite, so we get +8 contribution to the signature. On
{eα, (eα)−1}, the form is ( 0 1

1 0 ), so it has signature 0 · 120. Thus, the signature
is 8. So if we find any real form with a different signature, we will have found
a new Lie algebra.

We first try involutions eα 7→ (−1)(α,β)eα. But this does not change the
signature. L is still positive definite, and we still have ( 0 1

1 0 ) or
(

0 −1
−1 0

)

on the
other parts. These Lie algebras actually turn out to be isomorphic to what we
started with (though we have not shown that they are isomorphic).

Now try ω : eα 7→ (−1)α
2/2(eα)−1, α 7→ −α. What is the signature of the

form? We write down the + and − eigenspaces of ω. The + eigenspace will be
spanned by eα− e−α, and these vectors have norm −2 and are orthogonal. The
− eigenspace will be spanned by eα + e−α and L, which have norm 2 and are
orthogonal, and L is positive definite. What is the Lie algebra corresponding to
the involution ω? It will be spanned by eα − e−α where α2 = 2 (norm −2), and
i(eα+ e−α) (norm −2), and iL (which is now negative definite). So the bilinear
form is negative definite, with signature −248( 6= ±8).

With some more work, we can actually show that this is the Lie algebra
of the compact form of E8. This is because the automorphism group of E8

preserves the invariant bilinear form, so it is contained in O0,248(R), which is
compact.

Now we look at involutions of the form eα 7→ (−1)(α,β)ω(eα). Notice that ω
commutes with eα 7→ (−1)(α,β)eα. The β’s in (α, β) correspond to L/2L modulo
the action of the Weyl group W (E8). Remember this has three orbits, with 1
norm 0 vector, 120 norm 2 vectors, and 135 norm 4 vectors. The norm 0 vector
gives us the compact form. Let’s look at the other cases and see what we get.

Suppose V has a negative definite symmetric inner product ( , ), and suppose
σ is an involution of V = V+ ⊕ V− (eigenspaces of σ). What is the signature of
the invariant inner product on V+ ⊕ iV−? On V+, it is negative definite, and on
iV− it is positive definite. Thus, the signature is dimV−−dimV+ = −tr(σ). So
we want to work out the traces of these involutions.

Given some β ∈ L/2L, what is tr(eα 7→ (−1)(α,β)eα)? If β = 0, the traces
is obviously 248 because we just have the identity map. If β2 = 2, we need to
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figure how many roots have a given inner product with β. Recall that this was
determined before:

(α, β) # of roots α with given inner product eigenvalue
2 1 1
1 56 -1
0 126 1
-1 56 -1
-2 1 1

Thus, the trace is 1 − 56 + 126 − 56 + 1 + 8 = 24 (the 8 is from the Cartan
subalgebra). So the signature of the corresponding form on the Lie algebra is
−24. We’ve found a third Lie algebra.

If we also look at the case when β2 = 4, what happens? How many α with
α2 = 2 and with given (α, β) are there? In this case, we have:

(α, β) # of roots α with given inner product eigenvalue
2 14 1
1 64 -1
0 84 1
-1 64 -1
-2 14 1

The trace will be 14 − 64 + 84 − 64 + 14 + 8 = −8. This is just the split form
again.

Summary: We’ve found 3 forms of E8, corresponding to 3 classes in L/2L,
with signatures 8, −24, −248, corresponding to involutions eα 7→ (−1)(α,β)e−α

of the compact form. If L is the compact form of a simple Lie algebra, then
Cartan showed that the other forms correspond exactly to the conjugacy classes
of involutions in the automorphism group of L (this doesn’t work if we don’t
start with the compact form — so always start with the compact form).

In fact, these three are the only forms of E8, but we won’t prove that.

Example 395 Let’s go back to various forms of E8 and figure out (guess) the
fundamental groups. We need to know the maximal compact subgroups.

1. One of them is easy: the compact form is its own maximal compact sub-
group. What is the fundamental group? Remember or quote the fact that
for compact simple groups, π1

∼= weight lattice
root lattice , which is 1. So this form is

simply connected.

2. β2 = 2 case (signature −24). Recall that there were 1, 56, 126, 56, and 1
roots α with (α, β) = 2, 1, 0,−1, and -2 respectively, and there are another
8 dimensions for the Cartan subalgebra. On the 1, 126, 1, 8 parts, the form
is negative definite. The sum of these root spaces gives a Lie algebra of
type E7A1 with a negative definite bilinear form (the 126 gives you the
roots of an E7, and the 1s are the roots of an A1). So it a reasonable guess
that the maximal compact subgroup has something to do with E7A1. E7

and A1 are not simply connected: the compact form of E7 has π1 = Z/2
and the compact form of A1 also has π1 = Z/2. So the universal cover of
E7A1 has center (Z/2)2. Which part of this acts trivially on E8? We look
at the E8 Lie algebra as a representation of E7×A1. You can read off how
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it splits form the picture above: E8
∼= E7 ⊕ A1 ⊕ 56 ⊗ 2, where 56 and 2

are irreducible, and the centers of E7 and A1 both act as −1 on them. So
the maximal compact subgroup of this form of E8 is the simply connected
compact form of E7 × A1/(−1,−1). This means that π1(E8) is the same
as π1 of the compact subgroup, which is (Z/2)2/(−1,−1) ∼= Z/2. So this
simple group has a nontrivial double cover (which is non-algebraic).

3. For the other (split) form of E8 with signature 8, the maximal compact
subgroup is Spin16(R)/(Z/2), and π1(E8) is Z/2.

You can compute any other homotopy invariants with this method.

Let’s look at the 56 dimensional representation of E7 in more detail. We
had the picture

(α, β) # of α’s
2 1
1 56
0 126
-1 56
-2 1

The Lie algebra E7 fixes these 5 spaces of E8 of dimensions 1, 56, 126 + 8, 56, 1.
From this we can get some representations of E7. The 126+8 splits as 1+(126+
7). But we also get a 56 dimensional representation of E7. Let’s show that this
is actually an irreducible representation. Recall that in calculating W (E8), we
showed that W (E7) acts transitively on this set of 56 roots of E8, which can be
considered as weights of E7.

An irreducible representation is called minuscule if the Weyl group acts
transitively on the weights. This kind of representation is particularly easy to
work with. It is really easy to work out the character for example: just translate
the 1 at the highest weight around, so every weight has multiplicity 1.

So the 56 dimensional representation of E7 must actually be the irreducible
representation with whatever highest weight corresponds to one of the vectors.

37.2 Every possible simple Lie group

We will construct them as follows: Take an involution σ of the compact form
L = L+ + L− of the Lie algebra, and form L+ + iL−. The way we constructed
these was to first construct An, Dn, E6, and E7 as for E8. Then construct the
involution ω : eα 7→ −e−α. We get Bn, Cn, F4, and G2 as fixed points of the
involution ω.

Kac classified all automorphisms of finite order of any compact simple Lie
group. The method we’ll use to classify involutions is extracted from his method.
We can construct lots of involutions as follows:

1. Take any Dynkin diagram, say E8, and select some of its verticals, corre-
sponding to simple roots. Get an involution by taking eα 7→ ±eα where
the sign depends on whether α is one of the simple roots we’ve selected.
However, this is not a great method. For one thing, we get a lot of repeats
(recall that there are only 3, and we’ve found 28 this way).

2. Take any diagram automorphism of order 2, such as

This gives you more involutions.
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Next time, we’ll see how to cut down this set of involutions. Split form of
Lie algebra (we did this for An, Dn, E6, E7, E8): A =

⊕

êα ⊕ L. Compact

form A+ + iA−, where A± eigenspaces of ω : êα 7→ (−1)α
2/2ê−α.

We talked about other involutions of the compact form. You get all the
other forms this way.

The idea now is to find ALL real simple Lie algebras by listing all involutions
of the compact form. We will construct all of them, but we won’t prove that we
have all of them.

We’ll use Kac’s method for classifying all automorphisms of order N of a
compact Lie algebra (and we’ll only use the case N = 2). First let’s look at
inner automorphisms. Write down the AFFINE Dynkin diagram

Choose ni with
∑

nimi = N where the mi are the numbers on the diagram.
We have an automorphism eαj 7→ e2πinj/Neαj induces an automorphism of
order dividing N . This is obvious. The point of Kac’s theorem is that all inner
automorphisms of order dividing N are obtained this way and are conjugate
if and only if they are conjugate by an automorphism of the Dynkin diagram.
We won’t actually prove Kac’s theorem because we just want to get a bunch of
examples.

Example 396 Real forms of E8. We’ve already found three, and it took us a
long time. We can now do it fast. We need to solve

∑

nimi = 2 where ni ≥ 0;
there are only a few possibilities:

The points NOT crossed off form the Dynkin diagram of the maximal com-
pact subgroup. Thus, by just looking at the diagram, we can see what all the
real forms are!

Example 397 Let’s do E7. Write down the affine diagram:
We get the possibilities
(*) The number of ways is counted up to automorphisms of the diagram.
(**) In the split real form, the maximal compact subgroup has dimension

equal to half the number of roots. The roots of A7 look like εi − εj for i, j ≤ 8
and i 6= j, so the dimension is 8 · 7 + 7 = 56 = 112

2 .
(***) The maximal compact subgroup is E6⊕R because the fixed subalgebra

contains the whole Cartan subalgebra, and the E6 only accounts for 6 of the 7
dimensions. You can use this to construct some interesting representations of E6

(the minuscule ones). How does the algebra E7 decompose as a representation
of the algebra E6 ⊕ R?

We can decompose it according to the eigenvalues of R. The E6 ⊕ R is the
zero eigenvalue of R [why?], and the rest is 54 dimensional. The easy way to
see the decomposition is to look at the roots. Remember when we computed
the Weyl group we looked for vectors like

The 27 possibilities (for each) form the weights of a 27 dimensional repre-
sentation of E6. The orthogonal complement of the two nodes is an E6 root
system whose Weyl group acts transitively on these 27 vectors (we showed that
these form a single orbit, remember?). Vectors of the E7 root system are the
vectors of the E6 root system plus these 27 vectors plus the other 27 vectors.
This splits up the E7 explicitly. The two 27s form single orbits, so they are
irreducible. Thus, E7

∼= E6 ⊕ R⊕ 27⊕ 27, and the 27s are minuscule.
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Let K be a maximal compact subgroup, with Lie algebra R + E6. The factor
of R means that K has an S1 in its center. Now look at the space G/K, where
G is the Lie group of type E7, and K is the maximal compact subgroup. It
is a Hermitian symmetric space. Symmetric space means that it is a (simply
connected) Riemannian manifold M such that for each point p ∈ M , there is an
automorphism fixing p and acting as −1 on the tangent space. This looks weird,
but it turns out that all kinds of nice objects you know about are symmetric
spaces. Typical examples you may have seen: spheres Sn, hyperbolic space
H

n, and Euclidean space R
n. Roughly speaking, symmetric spaces have nice

properties of these spaces. Cartan classified all symmetric spaces: they are non-
compact simple Lie groups modulo the maximal compact subgroup (more or
less ... depending on simply connectedness hypotheses ’n such). Historically,
Cartan classified simple Lie groups, and then later classified symmetric spaces,
and was surprised to find the same result. Hermitian symmetric spaces are
just symmetric spaces with a complex structure. A standard example of this is
the upper half plane {x + iy|y > 0}. It is acted on by SL2(R), which acts by
(

a b
c d

)

τ = aτ+b
cτ+d .

Let’s go back to this G/K and try to explain why we get a Hermitian sym-
metric space from it. We’ll be rather sketchy here. First of all, to make it a
symmetric space, we have to find a nice invariant Riemannian metric on it. It
is sufficient to find a positive definite bilinear form on the tangent space at p
which is invariant under K ... then we can translate it around. We can do
this as K is compact (so you have the averaging trick). Why is it Hermitian?
We’ll show that there is an almost complex structure. We have S1 acting on the
tangent space of each point because we have an S1 in the center of the stabilizer
of any given point. Identify this S1 with complex numbers of absolute value 1.
This gives an invariant almost complex structure on G/K. That is, each tan-
gent space is a complex vector space. Almost complex structures don’t always
come from complex structures, but this one does (it is integrable). Notice that
it is a little unexpected that G/K has a complex structure (G and K are odd
dimensional in the case of G = E7, K = E6⊕R, so they have no hope of having
a complex structure).

Example 398 Let’s look at E6, with affine Dynkin diagram
We get the possibilities
In the last one, the maximal compact subalgebra is D5 ⊕R. Just as before,

we get a Hermitian symmetric space. Let’s compute its dimension (over C).
The dimension will be the dimension of E6 minus the dimension of D5 ⊕ R, all
divided by 2 (because we want complex dimension), which is (78− 46)/2 = 16.

So we have found two non-compact simply connected Hermitian symmetric
spaces of dimensions 16 and 27. These are the only “exceptional” cases; all the
others fall into infinite families!

There are also some OUTER automorphisms of E6 coming from the diagram
automorphism

The fixed point subalgebra has Dynkin diagram obtained by folding the
E6 on itself. This is the F4 Dynkin diagram. The fixed points of E6 under
the diagram automorphism is an F4 Lie algebra. So we get a real form of
E6 with maximal compact subgroup F4. This is probably the easiest way to
construct F4, by the way. Moreover, we can decompose E6 as a representation
of F4. dimE6 = 78 and dimF4 = 52, so E6 = F4 ⊕ 26, where 26 turns out
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to be irreducible (the smallest non-trivial representation of F4 ... the only one
anybody actually works with). The roots of F4 look like (. . . ,±1,±1 . . . ) (24 of
these) and (± 1

2 · · · ±
1
2 ) (16 of these), and (. . . ,±1 . . . ) (8 of them) ... the last

two types are in the same orbit of the Weyl group.
The 26 dimensional representation has the following character: it has all

norm 1 roots with multiplicity 1 and 0 with multiplicity 2 (note that this is not
minuscule).

There is one other real form of E6. To get at it, we have to talk about Kac’s
description of non-inner automorphisms of order N . The non-inner automor-
phisms all turn out to be related to diagram automorphisms. Choose a diagram
automorphism of order r, which divides N . Let’s take the standard thing on E6.
Fold the diagram (take the fixed points), and form a TWISTED affine Dynkin
diagram (note that the arrow goes the wrong way from the affine F4)

There are also numbers on the twisted diagram, but never mind them. Find
ni so that r

∑

nimi = N . This is Kac’s general rule. We’ll only use the case
N = 2.

If r > 1, the only possibility is r = 2 and one n1 is 1 and the corresponding
mi is 1. So we just have to find points of weight 1 in the twisted affine Dynkin
diagram. There are just two ways of doing this in the case of E6

one of these gives us F4, and the other has maximal compact subalgebra C4,
which is the split form since dimC4 = #roots of F4/2 = 24.

Example 399 F4. The affine Dynkin is
We can cross out one node of weight 1, giving the compact form (split form),

or a node of weight 2 (in two ways), giving maximal compacts A1C3 or B4. This
gives us three real forms.

Example 400 G2. We can actually draw this root system ... UCB won’t
supply me with a four dimensional board. The construction is to take the D4

algebra and look at the fixed points of:
We want to find the fixed point subalgebra.
Fixed points on Cartan subalgebra: ρ fixes a two dimensional space, and

has 1 dimensional eigenspaces corresponding to ω and ω̄, where ω3 = 1. The 2
dimensional space will be the Cartan subalgebra of G2.

Positive roots of D4 as linear combinations of simple roots (not fundamental
weights):

There are six orbits under ρ, grouped above. It obviously acts on the negative
roots in exactly the same way. What we have is a root system with six roots of
norm 2 and six roots of norm 2/3. Thus, the root system is G2:

One of the only root systems to appear on a country’s national flag. Now
let’s work out the real forms. Look at the affine:

we can delete the node of weight 1, giving the compact form:
. We can delete the node of weight 2, giving A1A1 as the compact subalgebra:
... this must be the split form because there is nothing else the split form

can be.
Let’s say some more about the split form. What does the Lie algebra of G2

look like as a representation of the maximal compact subalgebra A1 × A1? In
this case, it is small enough that we can just draw a picture:

We have two orthogonal A1s, and we have leftover the stuff on the right.
This thing on the right is a tensor product of the 4 dimensional irreducible
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representation of the horizontal and the 2 dimensional of the vertical. Thus,

G2 = 3×1+1⊗3+4⊗2 as irreducible representations of A
(horizontal)
1 ⊗A

(vertical)
1 .

Let’s use this to determine exactly what the maximal compact subgroup is.
It is a quotient of the simply connected compact group SU(2)×SU(2), with Lie
algebra A1×A1. Just as for E8, we need to identify which elements of the center
act trivially on G2. The center is Z/2×Z/2. Since we’ve decomposed G2, we can
compute this easily. A non-trivial element of the center of SU(2) acts as 1 (on
odd dimensional representations) or −1 (on even dimensional representations).
So the element z × z ∈ SU(2) × SU(2) acts trivially on 3 ⊗ 1 + 1 ⊗ 3 + 4 × 2.
Thus the maximal compact subgroup of the non-compact simple G2 is SU(2)×
SU(2)/(z × z) ∼= SO4(R), where z is the non-trivial element of Z/2.

So we have constructed 3 + 4 + 5 + 3 + 2 (from E8, E7, E6, F4, G2) real
forms of exceptional simple Lie groups.

There are another 5 exceptional real Lie groups: Take COMPLEX groups
E8(C), E7(C), E6(C), F4(C), and G2(C), and consider them as REAL. These
give simple real Lie groups of dimensions 248× 2, 133× 2, 78× 2, 52× 2, and
14× 2.
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