
47 Construction of Lie algebras from a root lat-

tice

The root space decomposition of a Lie algebra suggests the following construc-
tion of a Lie algebra from its root system. Take the direct sum of the (dual
of the) root lattice with a 1-dimensional vector space generated by a special
element for each root. However when we try to write down the Lie bracket for
this algebra we run into the following sign problem: suppose that α, β, and
α + β are roots, with corresponding elements eα, eβ , eα+β . It seems natural
to define [eα, eβ ] = eα+β The problem is that the left hand side changes sign
when α and β are switched, while the right hand side does not. In fact there is
in general no functorial way to define a Lie algebra from its root lattice. One
way to see this is that if we had such a functor, then the automorphism group,
and the Weyl group, of the root lattice would act on the Lie algebra. However
in general the Weyl group does not have a nice action on the Lie algebra: it
is a subquotient of the Lie group, not a subgroup. This can be seen even for
SLn(R), where order 2 reflections of the Weyl group lift to order 4 elements of
the Lie group. The best we can do is find a subgroup of the form 2n.W inside
the Lie group.

We can see this going wrong even in the case of sl2(R). Remember that

the Weyl group is N(T )/T where T =
(
a 0
0 a−1

)
and N(T ) = T ∪

(
0 b

−b−1 0

)

, and

this second part is stuff having order 4, so we cannot possibly write this as a
semi-direct product of T and the Weyl group.

So the Weyl group is not usually a subgroup of N(T ). The best we can do
is to find a group of the form 2n ·W ⊆ N(T ) where n is the rank. For example,
let’s do it for SL(n+ 1,R) Then T = diag(a1, . . . , an) with a1 · · · an = 1. Then
we take the normalizer of the torus to be N(T ) =all permutation matrices with
±1’s with determinant 1, so this is 2n · Sn, and it does not split. The problem
we had with signs can be traced back to the fact that this group doesn’t split.

We can construct the Lie algebra from something acted on by 2n ·W (but
not from something acted on by W ). We take a central extension of the lattice
by a group of order 2. Notation is a pain because the lattice is written additively
and the extension is nonabelian, so we want it to be written multiplicatively.
Write elements of the lattice in the form eα formally, so we have converted the
lattice operation to multiplication. We will use the central extension

1 → ±1 → êL → eL
︸︷︷︸
∼=L

→ 1

We want êL to have the property that êαêβ = (−1)(α,β)êβ êα, where êα is some-
thing mapping to eα. What do the automorphisms of êL look like? We get

1 → (L/2L)
︸ ︷︷ ︸

(Z/2)rank(L)

→ Aut(êL) → Aut(eL)

for α ∈ L/2L, we get the map êβ → (−1)(α,β)êβ . The map turns out to be
onto, and the group Aut(eL) contains the reflection group of the lattice. This
extension is usually non-split.

Now the Lie algebra is L⊕{1 dimensional spaces spanned by (êα,−êα)} for
α2 = 2 with the convention that −êα (−1 in the vector space) is −êα (-1 in
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the group êL). Now define a Lie bracket by the “obvious rules” [α, β] = 0 for
α, β ∈ L (the Cartan subalgebra is abelian), [α, êβ ] = (α, β)êβ (êβ is in the root
space of β), and [êα, êβ ] = 0 if (α, β) ≥ 0 (since (α + β)2 > 2), [êα, êβ ] = êαêβ

if (α, β) < 0 (product in the group êL), and [êα, (êα)−1] = α.

Theorem 441 Assume L is positive definite. Then this Lie bracket forms a
Lie algebra (so it is skew and satisfies Jacobi).

Proof The proof is easy but tiresome, because there are a lot of cases.
We check the Jacobi identity: We want [[a, b], c] + [[b, c], a] + [[c, a], b] = 0

1. all of a, b, c in L. Trivial because all brackets are zero.

2. two of a, b, c in L. Say α, β, eγ

[[α, β], eγ ]
︸ ︷︷ ︸

0

+ [[β, eγ ], α]
︸ ︷︷ ︸

(β,α)(−α,β)eγ

+[[eγ , α], β]

and similar for the third term, giving a sum of 0.

3. one of a, b, c in L. α, eβ , eγ . eβ has weight β and eγ has weight γ and eβeγ

has weight β + γ. So check the cases, and we get Jacobi:

[[α, eβ ], eγ ] = (α, β)[eβ , eγ ]

[[eβ , eγ ], α] = −[α, [eβ , eγ ]] = −(α, β + γ)[eβ , eγ ]

[[eγ , α], eβ ] = −[[α, eγ ], eβ ] = (α, γ)[eβ , eγ ],

so the sum is zero.

4. none of a, b, c in L. This is the most tedious case, eα, eβ , eγ . We can
reduce it to two or three cases. We make our cases depending on (α, β),
(α, γ), (β, γ).

(a) if 2 of these are 0, then all the [[∗, ∗], ∗] are zero.

(b) α = −β. By case a, γ cannot be orthogonal to them, so say (α, γ) = 1
(γ, β) = −1; adjust so that eαeβ = 1, then calculate

[[eγ , eβ ], eα]− [[eα, eβ ], eγ ] + [[eα, eγ ], eβ ] = eαeβeγ − (α, γ)eγ + 0

= eγ − eγ = 0.

(c) α = −β = γ, which is easy because [eα, eγ ] = 0 and [[eα, eβ ], eγ ] =
−[[eγ , eβ ], eα]

(d) We have that each of the inner products is 1, 0 or −1. If some
(α, β) = 1, all brackets are 0.

�

We had two cases left:

[[eα, eβ ], eγ ] + [[eβ , eγ ], eα] + [[eγ , eα], eβ ] = 0
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− (α, β) = (β, γ) = (γ, α) = −1, in which case α + β + γ = 0. then
[[eα, eβ ], eγ ] = [eαeβ , eγ ] = α + β. By symmetry, the other two terms are
β + γ and γ + α;the sum of all three terms is 2(α+ β + γ) = 0.

− (α, β) = (β, γ) = −1, (α, γ) = 0, in which case [eα, eγ ] = 0. We check that
[[eα, eβ ], eα] = [eαeβ , eγ ] = eαeβeγ (since (α + β, γ) = −1). Similarly, we
have [[eβ , eγ ], eα] = [eβeγ , eα] = eβeγeα. We notice that eαeβ = −eβeα

and eγeα = eαeγ so eαeβeγ = −eβeγeα; again, the sum of all three terms
in the Jacobi identity is 0.

This concludes the verification of the Jacobi identity, so we have a Lie algebra.
Is there a proof avoiding case-by-case check? Yes, but it is actually more

work. We really have functors from double covers of lattices to vertex algebras,
and from vertex algebras to Lie algebras. However it takes several weeks to
define vertex algebras, though it you do you get constructions for a lot more Lie
algebras because this works even if the lattice is not positive definite. In fact,
the construction we did was the vertex algebra approach, with all the vertex
algebras removed. So there is a more general construction which gives a much
larger class of infinite dimensional Lie algebras.

Now we should study the double cover L̂, and in particular prove its ex-
istence. Given a Dynkin diagram, we can construct L̂ as generated by the
elements eαi for αi simple roots with the given relations. It is easy to check
that we get a surjective homomorphism L̂ → L with kernel generated by z with
z2 = 1. What’s a little harder to show is that z 6= 1 (i.e., show that L̂ 6= L).
The easiest way to do it is to use cohomology of groups, but since we have such
an explicit case, we’ll do it bare hands:
Problem: Given Z, H groups with Z abelian, construct central extensions

1 → Z → G → H → 1

(where Z lands in the center of G). Let G be the set of pairs (z, h), and set the
product (z1, h1)(z2, h2) = (z1z2c(h1, h2), h1h2), where c(h1, h2) ∈ Z (c(h1, h2)
will be a cocycle in group cohomology). We obviously get a homomorphism by
mapping (z, h) 7→ h. If c(1, h) = c(h, 1) = 1 (normalization), then z 7→ (z, 1)
is a homomorphism mapping Z to the center of G. In particular, (1, 1) is the
identity. We’ll leave it as an exercise to figure out what the inverses are. When
is this thing associative? Let’s just write everything out:

(
(z1, h1)(z2, h2)

)
(z3, h3) = (z1z2z3c(h1, h2)c(h1h2, h3), h1h2h3)

(z1, h1)
(
(z2, h2)(z3, h3)

)
= (z1z2z3c(h1, h2h3)c(h2, h3), h1h2h3)

so we must have

c(h1, h2)c(h1h2, h3) = c(h1h2, h3)c(h2, h3).

This identity is actually very easy to satisfy in one particular case: when c is
bimultiplicative:

c(h1, h2h3) = c(h1, h2)c(h1, h3)

and
c(h1h2, h3) = c(h1, h3)c(h2, h3)
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. That is, we have a map H ×H → Z. Not all cocycles come from such maps,
but this is the case we care about.

To construct the double cover, let Z = ±1 and H = L (free abelian). If
we write H additively, we want c to be a bilinear map L × L → ±1. It is
really easy to construct bilinear maps on free abelian groups. Just take any
basis α1, . . . , αn of L, choose c(α1, αj) arbitrarily for each i, j and extend c via

bilinearity to L × L. In our case, we want to find a double cover L̂ satisfying
êαêβ = (−1)(α,β)êβ êα where êα is a lift of eα. This just means that c(α, β) =
(−1)(α,β)c(β, α). To satisfy this, just choose c(αi, αj) on the basis {αi} so that
c(αi, αj) = (−1)(αi,αj)c(αj , αi). This is trivial to do as (−1)(αi,αi) = 1. Notice
that this uses the fact that the lattice is even. There is no canonical way to
choose this 2-cocycle (otherwise, the central extension would split as a product),
but all the different double covers are isomorphic because we can specify L̂ by
generators and relations. Thus, we have constructed L̂ (or rather, verified that
the kernel of L̂ → L has order 2, not 1).
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