
We write T≥j for the tableau formed by the columns j, j + 1, . . . of T , and
defined T>j , T<j , and so on in a similar way. The weight ω(T ) of a tableau T is
(number of 1’s in T , number of 2’s, ....)∈ Z

n. So the Young diagram λ + ω(T )
is formed by adding a box to the first row for every 1 in T , a box to the second
row for every 2 in T , and so on. The Weyl vector ρ is (n−1, n−2, · · · , 0) ∈ Z

n.
We think of partitions into at most n parts as non-increasing sequences in Z

n.
We define aλ to be

∑
w∈Sn

ǫ(w)xw(λ), where ǫ = ±1 is the sign of the permu-
tation w. In particular aλ is alternating under permutations of λ and vanishes
if two elements of λ are equal.

The Littlewood-Richardson rule will follow easily from the following result:

Theorem 377

aλ+ρsµ =
∑

T

aλ+ω(T )+ρ

where the sum is over all semistandard tableaux T of shape µ such that for all
j, λ+ ω(T≥j) is a partition.

Proof Since sµ is symmetric, we have

aλ+ρsµ =
∑

T

aλ+ω(T )+ρ

where the sum is over all semistandard tableaux T . The core part of the proof
is to show that the terms such that for some j, λ + ω(T≥j) is not a partition
cancel out in pairs or are zero, which we will do using Bender-Knuth involutions
to pair them off.

Fix some j and k. We concentrate on the tableaux T such that λ+ ω(T≥j)
is not a partition and λ+ω(T≥i) is a partition for any i > j. We further restrict
to the set X of T such that k is the smallest number with λk + ωk(T≥j >
λk+1 + ωk+1(T≥j . This implies that column j of T contains a k + 1 and does
not contain a k, and that T>j has the same number of ks and (k + 1)s.

We define an involution ∗ on this set of T by fixing T≥j and acting as a
Bender-Knuth involution (k, k+1) on T<j . This takes elements of X to elements
of X because ∗ does not change T≥j , and row j of T does not contain k (so that
∗ keeps the rows monotonic).

We check that the term corresponding to T cancels out with the term cor-
responding to ∗T . The transposition (k, k + 1) of Sn fixes λ + ω(T≥j + ρ. It
also maps ω(T<j to ω( ∗ T<j), so maps λ + ω(T ) + ρ to λ + ω(T ) + ρ. Also
aλ+ω(T )+ρ = −aλ+ω(∗T )+ρ as a is alternating under permutations of Sn, so the
terms corresponding to T and ∗T cancel (it is possible that ∗T = T in which
case the term is 0). �

Corollary 378

sµ = aµ+ρ/aρ

Proof This is just the special case λ = 0. �

Corollary 379 (The Littlewood-Richardson rule)

sλsµ =
∑

ν

cνλµsν
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where cνλµ is the number semistandard tableaux T of shape µ such that ν =
λ+ ω(T ) and for all j, λ+ ω(T≥j) is a partition.

Proof This follows by combining theorem ?? with corollary ??. �

Warning 380 It is hard to avoid errors when doing hand calculations with
the Littlewood-Richardson rule. An easy error to make is forgetting to include
some tableaux. As a check, one can do the calculation for the product in reverse
order, or for the transpose of the permutations (or better still use a computer).

As the proof shows, it is rather easy to find an expression for SλSµ as a
sum of terms Sν possibly with negative coefficients. The tricky part of the
proof of the Littlewood-Richardson rule is to pair off the terms with negative
coefficients with terms with positive coefficients, so that the final sum has only
positive coefficients.

Example 381 We work out S21S21. There are 8 tableaux in the sum, given by
1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

1 3
4

2 3
3

2 3
4 . So S21S21 = S42 +S411 +S33 +2S321 +S3111 +

S222 + S2211.

Example 382 We use the Littlewood-Richardson rule to work out the decom-
position of V ⊗V into irreducible representations, where V is the 8-dimensional
adjoint representation of SU3. The partition corresponding to V is 21, which in
general for GLn corresponds to the non-trivial component of the tensor product
of the n-dimensional representation and its alternating square. By the previous
example, V ⊗V decomposes into 8 irreducible representations if n ≥ 4. We have
to make two changes to find the decomposition for SU3. First of all, any Young
diagram with more than 3 rows corresponds to the zero representation, which
eliminates 3111 and 2211. Second, since we are working with SU rather than
U , any diagram with exactly 3 rows abc is equivalent to (a− 1)(b− 1)(c− 1), so
411 becomes 3, 321 becomes 21, and 222 becomes the empty Young diagram.
So V ⊗V decomposes into a sum of 6 irreducible representations corresponding
to the partitions (42), (3), (33), (21), (21), (0).

Exercise 383 Show that the Littlewood-Richardson rule implies Pieri’s for-
mula: SλSn =

∑
ν Sν , where the sum is over all partitions ν obtained from λ

by adding n elements with at most 1 in each column.

Exercise 384 Check the (corrected) example given by Littlewood and Richard-
son: S431S221 = S652 +S6511 +S643 +2S6421 +S64111 +S6331 +S6322 +S63211 +
S553 + 2S5521 + S55111 + 2S5431 + 2S5422 + 3S54211 + S541111 + S5332 + S53311 +
2S53221+S532111+S4432+S44311+2S44221+S442111+S43321+S43222+S432211

Exercise 385 If µ ≤ λ we define the skew Schur polynomial Sλ/µ as the sum∑
T xω(T ) over all semistandard Tableaux of shape λ/µ (the Young diagram of

λ with the boxes in µ removed). Prove that this is a symmetric polynomial.
Prove that

Hook formula??
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35 Combinatorics of Young diagrams

RSK, Jeu de taquin, Plactic monoid, Knuth equivalence
The plectic monoid is generated by a totally ordered set, usually taken to

be the positive integers, subject to the Knuth relations:

• acb = cab if a ≤ b < c

• bac = bca if a < b ≤ c

The Knuth relations say roughly that the exchange of two adjacent elements a
and c is catalyzed by an element next to them that is between a and c under the
total order. The relations when equality holds between two of the letters are
harder to remember: the relations have the property that the triple on either
side of the equality is never an increasing sequence.

For any semistandard tableau we can get an element of the plectic monoid by
listing its rows starting with the lowest (in the English convention); for example

the tableau
1 1 2 3 3 4
2 3 5
3 7

corresponds to the word 37235112334.

The key result is the following theorem, which identifies elements of the
plectic monoid with semistandard tableaux, and in particular shows that the
semistandard tableaux form a monoid.

Theorem 386 Every element of the plectic monoid is represented by a unique
semistandard tableau.

Proof We first show that every word is Knuth equivalent to the word of a
semistandard tableau. For this it is sufficient to show that if we multiply a
semistandard tableau on the right by a generator x we still get a semistandard
tableau. This operation is called Schensted insertion and works as follows. If x
is at least as large as the rightmost element of the first row we just add it to the
end. Otherwise we move it to the left in the first row using a Knuth relation
until it reaches yz with y ≤ x, z > x (so z is the leftmost element greater than
x). Now we can move z to the left of the first row using Knuth relations. If z
is at least the rightmost element of the second row we leave it there, otherwise
we repeat what we did on the first row with z instead of x. Continuing in this
way we obtain a semistandard tableau whose word is Knuth equivalent to the
original word.

Now we have to show that any word is equivalent to at most one semis-
tandard tableau. We start by observing that Knuth equivalence preserves the
length of the longest increasing sequence. Since in a semistandard tableau the
length of the longest increasing sequence is the first row, this shows that the
length of the first row of the tableau is determined. More generally, Knuth
equivalence preserves the maximum of the sum of the lengths of k disjoint in-
creasing sequences for any k. For a semistandard tableau, this is the sum of the
lengths of the first k rows (as there cannot be more than k elements from any
column) so the shape of the tableau is determined bu the word.

To complete the proof we have to show that position of each letter of the
word in the tableau is determined. Consider the rightmost largest element x in
the word. It can never catalyze the exchange of two letters, so the word with x
removed is Knuth equivalent to the tableau with x removed. By induction on
length the partition of the tableau with x removed is uniquely determined, and
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is the partition of the word with one box removed, which must therefore be the
place where x has to be inserted. �

Exercise 387 Show that there is a polynomial-time algorithm to find the max-
imal total length of k disjoint increasing subsequences of a given finite sequence.

Exercise 388 Prove the ErdsSzekeres theorem that a sequence of lengthmn+1
contains an increasing sequence of length m + 1 or a decreasing sequence of
length n+1. (Let ai and bi be the lengths of maximal increasing and decreasing
sequences ending at position i. Show that the mn + 1 pairs (ai, bi) are all
distinct.)

The distribution of the length of the longest increasing sequence of a long
random sequence approaches the TracyWidom distribution, which can be ex-
pressed in terms of Painleve functions.
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