
33 Schur-Weyl duality

In this section V will be a complex vector space, and we will be studying complex
representations of the symmetric group and GLV .

The simplest case of Schur-Weyl duality is the decomposition of V ⊗ V into
the sum of the symmetric square S2V and the alternating square Λ2V . In terms
of representation theory this can be interpreted as follows. The space V ⊗V is a
representation of GLV ×S2 where GLV acts on V ⊗V by acting on each factor,
and the symmetric group S2 acts by permuting the two factors of V . Then V

splits up as the sum of two irreducible representations S2V ⊕Λ2V of GLV ×S2.
This gives a correspondence between representations of S2 and GLV , with the
trivial and alternating representations of S2 corresponding to the symmetric
square and alternating square representations of GLV .

The Schur-Weyl correspondence extends this from S2 to the symmetric group
Sn on n points. This time we use the representation of GLV × Sn on the
tensor product V ⊗ V ⊗ · · · ⊗ V , where GLV again acts in the standard way
on each factor, and the symmetric group permutes the factors. The key point
is that each of GLV and Sn generate each others commutators. This implies
that V ⊗V ⊗ · · · ⊗V is a direct sup of representations ⊕Ai ⊗Bi where Ai is an
irreducible representation of GLV , Bi is an irreducible representation of Sn, and
all the Ai are distinct and all the Bi are distinct. So we get a correspondence
between some representations Ai of GLV and some representations Bi of Sn.

For any particular choice of n and V we do not usually get a 1:1 correspon-
dence between representations of GLV and Sn: one problem is that GLV has
an infinite number of irreducible representations if V is non-trivial, while Sn

has only a finite number. Another problem is that we can take inverse powers
of the determinant of GLn. However we almost get a 1:1 correspondence if we
stabilize: if we let the dimension of V become large enough we get all represen-
tations of Sn, and if we let n become large we get all representations of GLV

up to powers of the determinant.

Example 368 Suppose that V has dimension 2. Then Schur-Weyl duality for
the tensor product of n copies of V gives a correspondence between representa-
tions of SL2(C) and Sn, where the trivial representation of Sn corresponds to
the n + 1-dimensional irreducible representation of SL2(C). So we pick up all
irreducible representations of SL2(C) by just using the trivial representation of
the symmetric group and letting n tend to infinity.

Exercise 369 If W is a complex vector space, show that the space of elements
of W ⊗W ⊗ · · · ⊗W fixed by the symmetric group Sn is spanned by elements
of the form w ⊗ w ⊗ · · · ⊗ w.

The key result needed for Schur-Weyl duality is the following:

Theorem 370 Any endomorphism of V ⊗ V ⊗ · · · ⊗ V that commutes with Sn

is a linear combination of endomorphisms given by elements of GLn(V ).

Proof We want to show that the space of elements of End(V ⊗n) fixed by the
symmetric group is spanned by GLV . But End(V ⊗n) = End(V )⊗n so by the
previous exercise the space of elements fixed by Sn is spanned by elements of the
form w ⊗ w ⊗ · · · ⊗ w for w ∈ End(V ), or in other words any endomorphism of
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V ⊗n commuting with Sn is a linear combination of elements of End(V ) acting
on it. Since GLV is dense in End(V ) this proves the theorem. �

Theorem 371 Suppose that M is an algebra of endomorphisms of H = C
n

containing 1 and closed under taking adjoints. Then M = M ′′

Proof Suppose v ∈ H. Then Mv is fixed by M ′. Also we can write H as a
direct sum H = Mv⊕Mv⊥, and the orthogonal projection e onto Mv is in M ′

as M is closed under adjoints. So M ′′ maps Mv to Mv as it commutes with e.
So M ′′v = Mv. (It is obvious that M ′′v ⊆ Mv because 1 ∈ M .)

Now look at the action of M on H ⊕H · · · ⊕H (n copies of H). The things
commuting with M are just n by n matrices with coefficients in M ′, so the
double commutant M ′′ is the same as for M acting on H. So M(v1⊕· · ·⊕vn) =
M ′′(v1 ⊕ · · · ⊕ vn). In other words, for any finite number of vectors, and any
element of M , we can find an element of M ′′ having the same effect on these
vectors. Since H is finite-dimensional this proves that M ′′ = M .

�

Exercise 372 Find a subalgebra A of M2(C) containing 1 such that A′′ is not
equal to A.

Exercise 373 Suppose that M is a von Neumann algebra on a Hilbert space
H (possibly infinite dimensional). This means that M is an algebra of bounded
operators containing 1 that is weakly closed and closed under taking adjoints.
Show that M ′′ = M .

Exercise 374 Suppose that M is any collection of functions from a set H to
itself. Show that M ⊆ M ′′ and M ′ = M ′′′.

Two algebras acting on a vector space each of which is the centralizer of the
other occurs quite often, and can be a very powerful technique for constructing
representations of groups. For example, a von Neumann algebra M can be
defined as a *-algebra of endomorphisms of a Hilbert space such that M = M ′′,
where ′ means take the commutant. The theory of dual reductive pairs depends
on finding two subgroups of a metaplectic group each of which generates the
commutant of the other acting on the metaplectic representation. Some of
the work on the Langlands program that tries to associate a representation
of a reductive group to a representation of a Galois group tries to do this by
finding a representation of (reductive group) times (Galois group) such that
each generates the commutator of the other, in which case one can hope to get
a suitable correspondence between their representations.

34 Littlewood-Richardson rule

Given two representations of U(n) we would like to decompose their tensor prod-
uct into a sum of irreducible representations. This is solved by the Littlewood-
Richardson rule. Irreducible polynomial representations correspond to parti-
tions λ with at most n rows, and the tensor product of partitions corresponds
to taking products of the Schur functions (which are essentially the characters
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of the representations). So we want to write the product SλSµ of any two Schur
polynomials explicitly as a linear combination

∑
ν c

ν
λµSν of Schur polynomi-

als. The numbers cνλµ are called Littlewood-Richardson coefficients, and the
Littlewood-Richardson rule is a combinatorial rule for calculating them.

The following proof of the Littlewood-Richardson rule (from Stembridge) is
short but rather mysterious. It is really a special case of a more general re-
sult proved using crystal graphs. It may give a misleading idea of how hard
the Littlewood Richardson rule was to prove: it took four decades to find the
first complete proof, and several further decades for find some of the more re-
cently short proofs. Altogether more than a dozen mathematicians contributed
significantly to finding the proof given here.

Recall that a semistandard tableau is an assignment of positive integers to
a Young diagram such that all rows are non-strictly increasing and all columns
are strictly increasing.

The Bender-Knuth involution is an involution depending on a pair of consec-
utive integers (k, k+ 1) that acts on the semistandard tableaux, and exchanges
the numbers of ks and (k + 1)s. It acts as follows. First pair off as many ks as
possible with a k + 1 below them. The leftover k s and (k + 1)s form several
disjoint rows of the form kkk · · · k(k + 1) · · · (k + 1). If such a row has a copies
of k and b copies of k + 1, change some entries so it has b copies of k and a

copies of k+1. This produces another semistandard tableau where the number
of copies of k and k + 1 has been exchanged.

Definition 375 The Schur function sλ is defined to be
∑

T xω(T ), where the

sum is over all semistandard tableaux of weight λ.

Lemma 376 The Schur functions are symmetric polynomials.

Proof The Bender-Knuth involutions show that the number of tableaux of
some weight is invariant under permutations of the weight. �
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