
32.2 Representations of the symmetric groups

We can now describe the characters of irreducible representations of symmetric
groups in terms of the ring of symmetric functions. The idea is that we identify
class functions on Sn with homogeneous functions of degree n by the Frobenius
characteristic map taking a permutation of shape λ in Sn to the symmetric func-
tion pλ/n!. This identifies the rational class functions with rational symmetric
functions. Under this identification, the characters of irreducible representa-
tions correspond to Schur polynomials, and conjugacy classes of cycle shape λ
correspond to pλ/zλ, so the character table of Sn is given by expressing the
Schur polynomials as linear combinations of the symmetric functions pλ/zλ.

We prove this in several steps as follows:

1. Show that hn corresponds to the trivial representation of Sn

2. Show that all homogeneous symmetric functions correspond to virtual
representations, by showing that those that do are closed under products.
In particular Schur polynomials correspond to generalized characters.

3. By the orthogonality relations, the characters are, up to sign, just the
generalized characters of norm 1. So we show that Schur functions have
norm 1, so they are irreducible characters up to sign.

4. Show that Schur polynomials are irreducible characters by showing the
sign is positive.

Lemma 359 The symmetric function hn is the character of the trivial repre-

sentation of Sn.

Proof This is similar to the proof of Newton’s identities. We have to show
that hn =

∑
|λ|=n pλ/zλ. This follows from H(x) = exp

∫
P (x)dx/x. �

Exercise 360 Check this explicitly for n = 3.

Lemma 361 If the symmetric functions a and b correspond to representations

V and W of Sm and Sn, then ab corresponds to the representation

Ind
Sm+n

Sm×Sn
V ⊗W

Proof This follows from the Frobenius formula for the character of an induced
representation, which states that the character of IndGH(V ) is obtained from the
character of V by smearing it over G. �

Corollary 362 Every homogeneous symmetric function is the character of a

generalized representation of a symmetric group.

Proof The symmetric functions for which this is true include hn and are
closed under addition and multiplication. The corollary now follows since the
symmetric functions hn generate the ring of all symmetric functions. �
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Lemma 363 The Cauchy matrix with entries 1/(xi − yj) has determinant

∏
i<j(xi − xj)(yi − yj)∏

i,j(xi − yj)

Proof If we mutiply the Cauchy determinant by
∏

i,j(xi − yj) we get a
polynomial of degree n(n − 1). It vanishes whenever two of the xi or two
of the yi are equal, so must be divisible by the degree n(n − 1) polynomial∏

i<j(xi − xj)(yi − yj). As the degrees are the same, these two polynomials
must be the same up to a constant. �

Exercise 364 Evaluate the Hilbert determinant with entries 1/(i + j − 1) for
1 ≤ i, j ≤ n by expressing it in terms of a suitable Cauchy determinant.

Theorem 365 The Schur polynomials sλ = aλ+ρ/aρ form an orthonormal ba-

sis of the symmetric functions.

Proof We have to show that
∏

(1− xiyi)
−1 =

∑

λ

sλ(x)sλ(y).

We will do this by evaluating the Cauchy matrix with entries (1 − xiyj)
−1 in

two different ways. On one hand, by the previous lemma (changing xi to 1/xi)
it is equal to ∏

i<j(xi − xj)(yi − yj)∏
i,j(1− xiyj)

.

On the other hand, if we expand (1 − xiyj)
−1 as

∑
k≥0

xk
i y

k
j we see that the

determinant is ∑
±xλ1

1 xλ2

2 · · · yµ1

1 yµ2

2 · · ·

where the λi are a permutation of the µi. This is equal to
∑

λ

aλ(x)aλ(y)

where aλ is the determinant of the matrix with entries x
λj

i . Defining sλ =
aλ+ρ/aρ and using the fact that aρ(x) =

∏
i<j(xi − xj) by the Vandermonde

identity, putting everything together proves the identity stated in the theorem.
�

We are now almost finished, since the Schur polynomials are generalized
characters of norm 1 and are therefore irreducible characters up to sign. So
we just have to pin down a the sign. (The reason why there is a sign problem
can be understood as follows. The construction of the generalized characters
is really a special case of a more general construction where the generalized
characters appear in an alternating sum of cohomology groups. At most one
of these cohomology groups is nonzero, so the sign depends on whether it is an
even or an odd cohomology group.)

Lemma 366

〈sλ, p
|λ|
1 〉 > 0
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Proof

�

Example 367 For the symmetric group S3, the conjugacy classes correspond
to p31/3! = e31/6, p1p2/2 = e31/2 − e1e2, and p3/3 = e31/3 − e1e2 + e3. The
characters correspond to s13 = e31 − 2e1e2 + e3, s12 = e1e2 − e3, and s3 = e3.
The coefficients expressing the Schur functions in terms of the Newton functions
are just the coefficients of the character table of S3

p13/3! p12/2 p3/3
e31/6 e31/2− e1e2 e31/3− e1e2 + e3

s13 e31 − 2e1e2 + e3 1 1 1
s3 e3 1 −1 1
s12 e1e2 − e3 2 0 −1

The Schur polynomials are also the characters of the special inear groups.
In fact the Weyl character formula expresses these characters as a quotient of
two sums over the Weyl group. The Weyl group is the symmetric group, so
the sums can be written as determinants, and turn out to be aλ+ρ and aρ for a
suitable change in notation. The Scur functions are interpreted differently for
the symmetric groups and the special linear groups: for symmetric groups the
characters are given by regarding the Schur functions as linear combinations
of Newton’s symmetric polynomials (with the xi being complex numbers of
absolute value 1), while for the general linear group the Schur functions are
regarded as functions on a maximal torus.
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