
As we mentioned before, the Lie algebra cannot detect other components
of the Lie group, or discrete normal subgroups. It is often useful to note that
discrete normal subgroups of a connected group are always in the center (proof:
the image of an element under conjugation is connected and discrete, so is just
one point). So for example, On, SOn and POn all have the same Lie algebra.

Subalgebras of Lie algebras B are defined in the obvious way and are ana-
logues of subgroups. The analogues of normal subgroups are subalgebras A such
that [A,B] ⊆ A (corresponding to the fact that a subgroup is normal if and only,
if aba−1b−1 is in A for all a ∈ A and b ∈ B) so that B/A is a Lie algebra in
the obvious way. Much of the terminology for groups is extended to Lie alge-
bras in the most obvious way. For example a Lie algebra is called abelian if the
bracket is always 0, and is called solvable if there is a chain of ideals with abelian
quotients. Unfortunately the definition of simple Lie algebras and simple Lie
groups is not completely standardized and is not consistent with the definition
of a simple abstract group. The definition of a simple lie algebra has a trap:
a Lie algebra is called simple if it has no ideals other than 0 and itself, and if
the Lie algebra is NON-ABELIAN. In particular the 1-dimensional Lie algebra
is NOT usually considered to be simple. The definition of simple is sometimes
modified slightly for Lie groups: a connected Lie group is called simple if its Lie
algebra is simple. This corresponds to the Lie group being non-abelian having
no normal subgroups other than itself and discrete subgroups of its center, so
for example SL2(R) is considered to be a simple Lie group even though it is not
simple as an abstract group.

Subgroups of Lie groups are closely related to subgroups of the Lie algebra.
Informally, we can get a subalgebra by taking the tangent space of the subgroup,
and can get a subgroup by taking the elements “generated” by the infinitesimal
group elements of the Lie algebra. However it is rather tricky to make this
rigorous, as the following examples show.

Example 28 The rational numbers and the integers are subgroup of the reals,
but these do not correspond to subgroups of the Lie algebra of the reals. It is
clear why not: the integers are not connected so cannot be detected by looking
near the identity, and the rationals are not closed.

This suggests that subalgebras should correspond to closed connected sub-
groups, but this fails for more subtle reasons:

Example 29 Consider the compact abelian group G = R
2/Z2, a 2-dimensional

torus. For any element (a, b) of its Lie algebra R2 we get a homomorphism of
R to G, whose image is a subgroup. If the ratio a/b is rational we get a closed
subgroup isomorphic to S1 as the image. However if the ratio is irrational the
image is a copy of R that is dense inG, and in particular is not a closed subgroup.
You might think this problem has something to do with the fact that G is not
somply connected, because it disappears if we replace G by its universal cover.
However G is a subgroup of the simple connected group SU(3) so we run into
exactly the same problem even for simply connected compact groups.

In infinite dimensions the correspondence between subgroups and subalge-
bras is even more subtle, as the following examples show.
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Example 30 Let us try to find a Lie algebra of the unitary group in infinite
dimensions. One possible choice is the Lie algebra of bounded skew Hermitian
operators. This is a perfectly good Lie algebra, but its elements do not corre-
spond to all the 1-parameter subgroups of the unitary group. We recall from
Hilbert space theory that 1-parameter subgroups of the unitary group corespond
to UNBOUNDED skew Hermitian operators (typical example: translation on
L2(R) corresponds to d/dx, which is not defined everywhere.) So if we define
the Lie algebra like this, then 1-dimensional subgroups need not correspond to
1-dimensional subalgebras. So instead we might try to define the Lie algebra to
be unbounded skew hermitian operators. But these are not even closed under
addition, never mind the Lie bracket, because two such operators might have
no non-zero vectors in their domains of definition.

Example 31 It is reasonable to regard the Lie algebra of smooth vector fields
as something like the Lie algebra of diffeomorphisms of the manifold. However
elements of this Lie algebra need not correspond to 1-parameter subgroups. To
see what can go wrong, consider the vector field x2d/dx on the real line. If we try
to find the flow corresponding to this we have to solve dx/dt = x2 with solution
x = x0/(1 − x0t). However this blows up at finite time t. so we do not get
a 1-parameter group of diffeomorphisms. A similar example is the vector field
d/dx on the positive real line: it corresponds to translations, but translations
are not diffeomorphisms of the positive line because you fall off the edge.

So in infinite dimensions 1-parameter subgroups need not correspond to 1-
dimensional subalgebras of the Lie algebra, and 1-dimensional subalgebras need
not correspond to 1-parameter subgroups.

3 The Poincaré-Birkhoff-Witt theorem

We defined the Lie algebra of a Lie group as the left-invariant normalized dif-
ferential operators of order at most 1, and simply threw away the higher order
operators. This turns out to lose no information, because we can reconstruct
these higher order differential operators from the Lie algebra by taking the “uni-
versal enveloping algebra”, which partly justifies the claim that the Lie algebra
captures the Lie group locally.

The universal enveloping algebra Ug of a Lie algebra g is the associative
algebra generated by the module g, with the relations [A,B] = AB − BA. A
module over a Lie algebra g is a vector space together with a linear map f from
g to operators on the space such that f([a, b]) = f(a)f(b)− f(b)f(a).

Exercise 32 Show that modules over the algebra Ug are the same as modules
over the Lie algebra g, and show that Ug is universal in the sense that any map
from the Lie algebra to an associative algebra such that [A,B] = AB − BA
factors through it. (Category theorists would say that the universal enveloping
algebra is a functor that is left adjoint to the functor taking an associative
algebra to its underlying Lie algebra.)

The universal enveloping algebra of a Lie algebra can be thought of as the
ring of all left invariant differential operators on the group (while the Lie algebra
consists of the normalized ones of order at most 1). Actually this is only correct
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in characteristic 0: over fields of prime characteristic it breaks down because not
all left invariant differential operators can be generated by left invariant vector
fields. We can see this even in the case of the 1-dimensional abelian Lie algebra
over the integers.

Exercise 33 Show that the space of translation-invariant differential operators
on Z[x] has a basis of elements 1

n!

d
n

dxn

So these are definitely not generated by d

dx
. If we reduce mod p we get similar

problems over fields of characteristic p. This is really a sign that in character-
istic p > 0 the Lie algebra is not the right object (and does NOT capture the
Lie group locally): the correct replacement is the algebra of all left invariant
differential operators, or something closely related such as a formal group.

We need some control over the size of the universal enveloping algebra. Sup-
pose that g is a free module over a ring. It is easy to find a good upper bound
on the size of Ug. We can filter Ug by U0 ⊂ U1 ⊂ U2 · · · where Un is spanned
by monomials that are products of at most n elements of g.

Exercise 34 The associated graded ring U0 ⊕ U1/U0 ⊕ · · · has the following
properties: is is generated by U1, and is commutative.

Commutativity follows using AB − BA = [A,B]. So this graded algebra is a
quotient of the polynomial ring on g, which gives an upper bound on the size
of Ug.

Theorem 35 The Poincaré-Birkoff-Witt theorem says that the map from the

polynomial ring S(g) to this graded algebra G(Ug) of U(g) is an isomorphism,

in other words there is no further collapse.

In particular the map from the Lie algebra to the UEA is injective, or in other
words we can find faithful representations of the Lie algebra.
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