
To do this we use the Casimir element. Recall that we have a symmetric
invariant bilinear on the Lie algebra, which gives us an element of the center of
the UEA of the form

∑
aiai′ where ai forms a basis and ai′ is the dual basis.

In our case the Casimir is given by
∑

α eαe−α +
∑

hihi′. We want to apply
this to a highest weight vector of a Verma module, so we move all the vectors of
negative root spaces over to the left, picking up a term [e−α, eα] for each positive
root α. So the eigenvalue on a highest weight vector with highest weight λ is
λ2 + (λ, 2ρ) = (λ + ρ)2 − ρ2. In particular two Verma modules have the same
eigenvalue of the Casimir only if they have the same value of (λ+ ρ)2.

This is enough to complete the proof of the Weyl character formula, because
any possible highest weight µ that is in the fundamental chamber of the Weyl
group and is of the form λ− sum of positive roots satisfies (µ+ ρ)2 < (λ+ ρ)2

unless λ = µ by elementary geometry.

Example 342 We can work out the characters of representations of B2 using
the fact that the alternating sum over an octagon of the root multiplicities
is usually zero. We can also decompose representations by writing them as a
linear combination of irreducible characters, or more efficiently by observing
that the multiplicity of highest weight vectors is given by an alternating sum
over octagons. For example, 4× 10 = 20⊕ 16⊕ 4.

For rank 2 groups A2
1, A2, B2, G2, we get the multiplicities of representations

by looking at alternating sums over a square, hexagon, octagon, or dodecagon.
This polygon is easy to remember, as it starts off with the origin and the two
simple roots.

We can also work out the dimension of a representation from the Weyl
character formula. Substituting in the identity element of the group direct fails
badly, because both the numerator and the denominator have a zero of high
order (half the number of roots) at the identity. In fact, from this point of view
the identity element is the most complicated element of the group! (It is also
the place where the set of unipotent elements has the worst singularity.) So
instead we examine the asymptotic behavior of the numerator and denominator
of the Weyl character formula on a carefully chosen set of elements that tend
to the identity.

For this we use the Weyl denominator formulas

∑

w∈W

ǫ(w)ew(ρ) = e−ρ
∏

α>0

(1− eα)

which gives ∑

w∈W

ǫ(w)e(w(ρ),tβ) =
∏

α>0

(e(α/2,tβ) − e(−α/2,tβ))

for any real t and any β in the dual of the Cartan subalgebra. We rewrite
this as

∑

w∈W

ǫ(w)e(w(β),tρ) =
∏

α>0

t
(e(α/2,tβ) − e(−α/2,tβ))

t

and examine the behavior as t tens to 0. The right hand side behaves like

tN
∏

α>0

(α, β) + higher powers oft
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so this gives the asymptotic behavior of the numerator and denominator of the
Weyl character formula on the elements tρ. We can now cancel out the factors
of tN and take the limit as t tends to 0, to find that the dimension is

∏

α>0

λ+ ρ, α)

ρ, α

Example 343 We check the Weyl dimension formula on G2. If α and β are
the long and short simple roots of norms 6 and 2 then the positive roots are
β, α, α + β, α + 2β, α + 3β, 2α + 3β. Suppose the highest weight lambda has
inner product 3m with α and n with β, with m and n non-negative integers.
Then the dimension is

n+ 1

1
×

3m+ 3

3
×

3m+ n+ 4

4
×

3m+ 2n+ 5

5
×

3m+ 3n+ 6

6
×

6m+ 3n+ 9

9

For m = 0, n = 2 this gives the dimension 27 that we found earlier.

Example 344 If we take nρ as a highest weight, we see that there are irre-
ducible representations of dimension nN where N is the number of positive
roots. This is related to the Steinberg representation of a finite group of Lie
type over a field of order q, an irreducible representation of dimension qN .
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