
26 Invariants of reflection groups

The ring of invarinats of a Weyl group turns up a lot in representation theory.
For example, Harish-Chandra showed that the center of the UEA of a semisimple
Lie algebra (the “higher Casimir s”) is isomorphic to the ring of invariants of
the Weyl group. The rational homology of the compact Lie group can be read
off from the ring of invariants of the Weyl group. Fortunately it turns out to
have a very easy structure: it is a polynomial ring. (This is unusual: rings of
invariants of finite groups are usually very complicated.)

For the reflection group Sn acting onRn the invariants are just the symmetric
functions, which form a polynomial ring generated by the usual elementary
symmetric functions.

Exercise 313 Show that the ring of invariants of the reflection group Sn =
An−1 acting on R

n−1 (identified with the vector space of vectors in R
n whose

sum of coordinates is 0) is the polynomial ring C[e2, · · · en] in n− 1 generators.

Exercise 314 Show that the rings of invariants of the reflection groups Bn and
Dn are polynomial rings, and find sets of generators.

Exercise 315 Show that the ring of invariants of the alternating group acting
on x1, · · · , xn is generated by the invariants C[e1, . . . , en] of the symmetric group
together with the invariant ∆ =

∏
i<j(xi − xj). Show that ∆2 is a polynomial

in C[e1, . . . , en] and find this polynomial explicitly when n is 2 or 3. Show that
if n = 3 the ring of invariants is not a polynomial ring.

Example 316 Suppose G is the dihedral group of order 2n acting on R2. We
will find its ring of invariants. The obvious coordinate are x and y, but it is
easier to use z = x + iy and z = x − iy as coordinates. Then one generator of
G takes z to ζz and z to ζz, while the other exchanges z and z. The ring of
invariants is generated by zz and zn + zn.

The invariants of a finite complex reflection group form a polynomial algebra.
This was first proved by Shephard and Todd who classified all complex reflection
groups into 3 infinite series and 34 exceptional cases, and found the ring of
invariants cases by case. Shortly after Chevalley gave a uniform proof.

Lemma 317 If H is a homogeneous polynomial in I1, . . . and
∂H
∂I1

is a linear

combination of ∂H
∂I2

, . . ., then ∂H
∂I1

= 0.

Proof Look at the terms of H containing a smallest power of I1. This shows
that H must contain terms not involving I1. Moreover we get a linear relation
between the terms of ∂H

∂x2

. . . that do not involve I1. Now use induction on
H(0, I2, · · · ). � Most rings

of invariants are not polynomial rings, so we need to find and use some special
property of rings of invariants when the group is generated by reflections. The
following is the special property of rings of invariants of groups generated by
reflections that implies they are polynomial rings.
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Lemma 318 If I1, . . . are homogeneous invariants of a complex reflection group
such that I1 is not in the ideal generated by I2, . . ., and there is some relations

p1I1 + p2I2 + · · · = 0

for homogeneous polynomials pi, then p1 is in the ideal generated by invariants
of positive degree.

Proof The special property of reflections that we will use is that if g is a
reflection with hyperplane f = 0 then p− gp is divisible by f . So we find

gp1 − p1

f
I1 +

gp2 − p2

f
I2 + · · · = 0

and by induction on the degree of p1 we see that gp1 − p1 is in the ideal gen-
erated by invariants of positive degree. So taking an average over g ∈ G shows
that |G|p1 is a linear combination of an invariant and an element in the ideal
generated by positive degree invariants. By assumption p1 cannot have degree
0, so must be in the ideal generated by invariants of positive degree. �

Theorem 319 (Chevalley-Shepherd-Todd) The ring of invariants of a complex
reflection group is a polynomial algebra.

Proof Pick a minimal set of homogeneous invariants I1, I2, . . . that generate the
ideal generated by positive degree invariants (so that by Hilbert’s theorem they
also generate the ring of invariants), We will show that they are algebraically
independent. Suppose that H(I1, I2, . . .) = 0 for some homogeneous polynomial
H. Then

∂H

∂I1

∂I1

∂xi

+
∂H

∂I2

∂I2

∂xi

+ · · · = 0

Choose I1 so that it is degree at least that of I2, · · · . Then ∂H
∂I1

is an invariant

polynomial in x1, . . .. It has degree at most equal to that of ∂H
∂I2

, . . . so by lemma

??? is is not in the ideal generated by ∂H
∂I2

, . . .. By lemma ??? this shows that

its coefficient ∂I1
∂xi

is in the ideal generated by invariants of positive degree. But
then

deg(I1)I1 =
∑

xi

∂I1

∂xi

is also in this ideal, contradicting the fact that I1 is not in the ideal generated
by the other invariants I2, . . .. This shows that the invariants I1, I2, . . . are
algebraically independent, so the ring of invariants is the polynomial ring in
these generators. �

Theorem 320 (Molien) If G is a finite group acting on a vector space V , then
the Poincar series of its ring of invariants S(V )G is

∑

n

tn dim((SnV )G) =
1

|G|

∑

g∈G

1

det(1− tg)
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Proof A single element g acting on⊕tnSn(V ) has trace 1
det(1−tg) , as one can see

by diagonalizing g. But the dimension of the invariant space of a representation
is just the average of the trace of all elements of g. �

In particular if the ring of invariants of a group is polynomial with generators
of degrees di, we find

∏ 1

1− tdi

=
1

|G|

∑

g∈G

1

det(1− tg)

because the left hand side is the Poincar series of the polynomial ring. Multi-
plying both sides by (1− t)n for n = dim(V ) we find

∏ 1

1 + t+ · · ·+ tdi − 1
=

1

|G|

∑

g∈G

(1− t)n

det(1− tg)

Setting t = 1 we find all terms on the left vanish except for the term corre-
sponding to the identity element of G, so we find

∏
di = |G|.

Exercise 321 By examining the derivative of both sides at t = 1 show that

∑
(di − 1) = half the number of (non-trivial) reflections of G

The degrees di of the generating invariants of a Weyl group control the
corresponding compact Lie group. For example, the real cohomology of the
group is an exterior algebra on generators of degrees 2di − 1, and the center of
the UEA is a polynomial algebra generated by elements of degrees di and, the
order of a “simply connected” Chevalley group is given by q

∑
di−1

∏
(qdi − 1).

Example 322 The rings of invariants of groups that are not reflection groups
tend to be rather complicated. For example, if we take a cyclic group of order
n acting on C[x, y] where the generator multiplies both x and y by a primitive
nth root of 1, then the invariants are generated by the n+ 1 monomials xiyn−i

which is usually not a polynomial ring. There are many relations between these
generators. In general the ring of invariants of a finite group is finitely generated
by Hilbert’s theorem, but the number of generators can be very large, and is
usually much larger than the dimension of the representation.

This still leaves the problem of finding the degrees of the polynomial genera-
tors of the Weyl groups of F4, E6, E7, E8. One way is to use the following fact:
count the number of positive roots of given height (where the simple roots have
height 1). Then the degrees of the invariants are the heights where the number
of roots drops by 1.

Exercise 323 Find the heights of the 24 positive roots of F4, and use the fact
mentioned above to show that the degrees of the fundamnetal invariants are
2, 6, 8, 12. If you are feeling ambitious, try E6, E7, E8.
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