
What is the order of the Weyl group of E8? We’ll do this by 4 different
methods, which illustrate the different techniques for this kind of thing:

(1) This is a good one as a mnemonic. The order of E8 is given by

|W (E8)| = 8!×
∏

(
numbers on the

affine E8 diagram

)

×
Weight lattice of E8

Root lattice of E8

= 8!× (1.2.3.4.5.6.4.2.3)× 1

= 214 × 35 × 52 × 7

These are the numbers giving highest root.

We can do the same thing for any other Lie algebra, for example,

|W (F4)| = 4!× (1.2.3.4.2)× 1

= 27 × 32

(2) The order of a reflection group is equal to the products of degrees of the
fundamental invariants. For E8, the fundamental invariants are of degrees
2,8,12,14,18,20,24,30 (primes +1).

(3) This one is actually an honest method (without quoting weird facts). The
only fact we will use is the following: suppose G acts transitively on a set
X with H = the group fixing some point; then |G| = |H| · |X|.

This is a general purpose method for working out the orders of groups.
First, we need a set acted on by the Weyl group of E8. Let’s take the
root vectors (vectors of norm 2). This set has 240 elements, and the Weyl
group of E8 acts transitively on it. So |W (E8)| = 240 × |subgroup fixing
(1,−1, 06)|. But what is the order of this subgroup (call it G1)? Let’s find
a set acted on by this group. It acts on the set of norm 2 vectors, but the
action is not transitive. What are the orbits? G1 fixes s1 = (1,−1, 06).
For other roots r, G1 obviously fixes (r, s). So how many roots are there
with a given inner product with s?

(s, r) number choices
2 1 s

1 56 (1, 0,±16), (0,−1,±16), ( 12 ,−
1
2 ,

1
2

6
)

0 126
−1 56
−2 1 −s

So there are at least 5 orbits under G1. In fact, each of these sets is
a single orbit under G1. How can we see this? Find a large subgroup
of G1. Take W (D6), which is generated by all permutations of the last
6 coordinates and all even sign changes of the last 6 coordinates. It is
generated by reflections associated to the roots orthogonal to e1 and e2
(those that start with two 0s). The three cases with inner product 1 are
three orbits under W (D6). To see that there is a single orbit under G1, we
just need some reflections that mess up these orbits. If we take a vector

( 12 ,
1
2 ,±

1
2

6
) and reflect norm 2 vectors through it, this mixes up the orbits
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under W (D6), so we get exactly 5 orbits. So G1 acts transitively on these
orbits.

In fact G1 is the Weyl group of E7, as we will see during the calculation.
We also obtain the decomposition of the Lie algebra E8 under the action
of E7: it splits as representations of dimensions 1, 56, 133, 1, 56, 1. If we
look a bit more closely we see that in fact there is a subgroup E7× SL2,
and E8 decomposes as 133⊗1⊕56⊗2⊕1⊗3. One can see directly from the
roots that the 56 dimensional representation has an invariant bilinear form
induced by the Lie bracket of E8. The 56 dimensional representation of E7

has the special property that all its weights are conjugate under the Weyl
group: such representations are called minuscule, and tend to be rather
special: they include spin representations and some vector representations.

We’ll use the orbit of the 56 vectors r with (r, s1) = −1. Let G2 be
the generated by reflections of vectors orthogonal to s1 and s2 where
S2 = (0, 1,−1, 0, 0, 0, 0, 0).

We have that |G1| = |G2| · 56.

G2 is the Weyl group of E6. We can see that E7 decomposes under E6

as 133 = 78 + 1 + 27 + 27: we get two dual 27 dimensional minuscule
representations of E6. We can also decompose E8 as a representation of
E6, or better as a representation of E6 + sl2, and we get 240 = 78 × 1 +
27× 3 + 27× 3 + 1× 8.

Our plan is to chose vectors acted on by Gi, fixed by Gi+1 which give us
the Dynkin diagram of E8. So the next step is to try to find vectors r
such that s1, s2, r form a Dynkin diagram A3, in other words r has inner
product −1 with s2 and 0 with s1. The possibilities for r are (−1,−1, 0, 05)
(one of these), (0, 0, 1,±1, 04) and permutations of its last five coordinates

(10 of these), and (− 1
2 ,−

1
2 ,

1
2 ,±

1
2

5
) (there are 16 of these), so we get 27

total. Then we should check that they form one orbit, which is boring so
we leave it as an exercise.

Next we find vectors r such that s1, s2, s3, r form a Dynkin diagram A4,
where s3 is of course 0, 0, 1,−1, 0, 0, 0, 0),

i.e., whose inner product is −1 with s3 and zero with s1, s2. The possi-
bilities are permutations of the last four coords of (0, 0, 0, 1,±1, 03) (8 of

these) and (− 1
2 ,−

1
2 ,−

1
2 ,

1
2 ,±

1
2

4
) (8 of these), so there are 16 total. Again

we should check transitivity, but ill not bother.

For the next step, we want vectors r such that s1, s2, s3, s4, r form a Dynkin
diagram A5; the possibilities are (04, 1,±1, 02) and permutations of the

last three coords (6 of these), and (− 1
2

4
, 1
2 ,±

1
2

3
) (4 of these) for a total of

10 vectors r, and as usual these form a single orbit under G5.

For the next step, we want vectors r such that s1, s2, s3, s4, s5, r form a
Dynkin diagram A6; the possibilities are (05, 1,±1, 0) and permutations

of the last two coords (4 of these), and (− 1
2

5
, 1
2 ,±

1
2

2
) (2 of these) for a

total of 6 vectors r, and as usual these form a single orbit under G6.

The next case is tricky: we want vectors r such that s1, s2, s3, s4, s5, s6, r
form a Dynkin diagram A7;, the possibilities are (06, 1,±1) (2 of these)
and ((− 1

2 )
6, 1

2 ,
1
2 ) (just 1). The proof of transitivity fails at this point.
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The group G7 we are using by now doesn’t even act transitively on the
pair (06, 1,±1) (we can’t get between them by changing an even number
of signs). What elements of W (E8) fix all of these first 6 points? We want
to find roots perpendicular to all of these vectors, and the only possibility
is (( 12 )

8). How does reflection in this root act on the three vectors above?

(06, 12) 7→ ((− 1
2 )

6, 1
2

2
) and (06, 1,−1) maps to itself. Is this last vector in

the same orbit? In fact they are in different orbits. To see this, look for
vectors completing the E8 diagram. In the (06, 1, 1) case, we can take the
vector ((− 1

2 )
5, 1

2 ,
1
2 ,−

1
2 ). But in the other case, we can show that there

are no possibilities. So these really are different orbits. In other words,
there are 3 possible roots r, but these form two orbits under G7 of sizes 1
and 2.

We use the orbit with 2 elements, and check that there are no automor-
phisms fixing s1 to s7, so we find

|W (E8)| = 240× 56×

order of W (E6)
︷ ︸︸ ︷

27× 16× 10× 6× 2× 1
︸ ︷︷ ︸

order of W (E7)

because the group fixing all 8 vectors must be trivial. We also get that

|W (“E5”)| = 16× 10×

|W (A2×A1)|
︷ ︸︸ ︷

6× 2× 1
︸ ︷︷ ︸

|W (A4)|

where “E5” is the algebra with diagram (that is, D5). Similarly, E4 is A4

and E3 is A2 ×A1.

We got some other information. We found that the Weyl group of E8

acts transitively on all the configurations A1, A2, A3, A4, A5, A6, but not
on A7. Obviously a similar method can be used to find orbits of other
reflection groups on other configurations of roots.

The sequence of numbers 1, 2 (or 3), 6, 10, 16, 27, 56, 240 tends to turn
up in a few other places, such as the number of exceptional curves on a
del Pezzo surface (blow up the plane at some points). In particular the
number 27 is the same 27 that appears in the 27 lines on a cubic surface
(=plane blown up at 6 points).

(4)

We now give the fourth method of finding the order of W (E8). Let L be the
E8 lattice. Look at L/2L, which has 256 elements. Look at this as a set acted
on by W (E8). There is an orbit of size 1 (represented by 0). There is an orbit
of size 240/2 = 120, which are the roots (a root is congruent mod 2L to it’s
negative). Left over are 135 elements. Let’s look at norm 4 vectors. Each norm
4 vector, r, satisfies r ≡ −r mod 2, and there are 240 ·9 of them, which is a lot,
so norm 4 vectors must be congruent mod 2 to other norm 4 vectors. Let’s look
at r = (2, 0, 0, 0, 0, 0, 0, 0). Notice that it is congruent to vectors of the form
(0 · · · ± 2 . . . 0), of which there are 16. It is easy to check that these are the only
norm 4 vectors congruent to r mod 2. So we can partition the norm 4 vectors
into 240 ·9/16 = 135 subsets of 16 elements. So L/2L has 1+120+135 elements,
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where 1 is the zero, 120 is represented by 2 elements of norm 2, and 135 is
represented by 16 elements of norm 4. A set of 16 elements of norm 4 which are
all congruent is called a FRAME. It consists of elements ±e1, . . . ,±e8, where
e2i = 4 and (ei, ej) = 1 for i 6= j, so up to sign it is an orthogonal basis.

Then we have

|W (E8)| = (# frames)× |subgroup fixing a frame|

because we know that W (E8) acts transitively on frames. So we need to know
what the automorphisms of an orthogonal base are. A frame is 8 subsets of the
form (r,−r), and isometries of a frame form the group (Z/2Z)8 ·S8, but these are
not all in the Weyl group. In the Weyl group, we found a (Z/2Z)7 ·S8, where the
first part is the group of sign changes of an even number of coordinates. So the
subgroup fixing a frame must be in between these two groups, and since these
groups differ by a factor of 2, it must be one of them. Observe that changing
an odd number of signs doesn’t preserve the E8 lattice, so it must be the group
(Z/2Z)7 · S8, which has order 27 · 8!. So the order of the Weyl group is

135 · 27 · 8! = |27 · S8| ×
# norm 4 elements

2× dimL

Remark 312 Conway used a similar method to calculate the order of his
largest simple group. In this case if we take the Leech lattice mod 2, it de-
composes rather like E8 mod 2 except there are 4 orbits: the zero vector, orbits
represented by a pair ±r of norm 4 vectors, orbits represented by a pair ±r of
norm 6 vectors, and orbits represented by a frame of 48 norm 8 vectors. The
subgroup fixing a frame is 212.M24, If Λ is the Leech lattice, we find the order
of its automorphism group is

|212 ·M24| ·
# norm 8 elements

2× dimΛ

where M24 is the Mathieu group (one of the sporadic simple groups). Conway’s
simple group has half this order, as one gets it by quotienting out the center
±1. The Leech lattice seems very much to be trying to be the root lattice of the
monster group, or something like that, with its automorphism group behaving
rather like a Weyl group, but no one has really been able to make sense of this
idea.

W (E8) acts on (Z/2Z)8, which is a vector space over F2, with quadratic

form N(a) = (a,a)
2 mod 2, so we get a map

±1 → W (E8) → O+
8 (F2)

which has kernel ±1 and is surjective, as can be seen by comparing the orders
of both sides. O+

8 is one of the 8 dimensional orthogonal groups over F2. So
the Weyl group of E8 is a double cover of an orthogonal group of a vector space
over F2.
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