
2 Lie algebras

Lie groups such as GLn(R) are quite complicated nonlinear objects. A Lie
algebra is a way of linearizing a Lie group, which is often easier to handle.
Roughly speaking, the addition and Lie bracket of the Lie algebra are given by
the lowest order terms in the product and commutator of the Lie group. By
a minor miracle (the Campbell-Baker-Hausdorff formula) we do not need any
higher order terms: the Lie algebra is enough to determine the group product
locally. We first recall some background about vector fields and differential
operators on a manifold. We will then define the Lie algebra of a Lie group to
be the left invariant vector fields on the group.

For any algebra over a ring we define the Lie bracket [a, b] to be ab− ba. It
satisfies the identities

• [a, b] is bilinear

• [a, b] = −[b, a]

• [[a, b], c] + [[b, c], a] + [[c, a], b] = 0 (Jacobi identity)

Definition 19 A Lie algebra over a ring is a module with a bracket satisfying

the conditions above, in other words it is bilinear, skey symmetric, and satisfies

the Jacobi idenity.

These conditions make sense in any additive tensor category, so for example
we can define Lie algebras of sheaves, or graded Lie algebras. An intersting
variation is Lie superalgebras, where we use the tensor category of supermodules
over a ring or field. Some authors add the non-linear condition that [a, a] = 0.

Example 20 The basic example of a Lie algebra is given by taking V to be an
associative algebra and defining [a, b] to be [ab− ba].

The Lie algebra of a Lie group can be defined as its tangent space at the
identity, with the Lie bracket given by the lowest order part of the commutator.
The lowest-order terms of the group law are just given by addition on the Lie
algebra, as can be seen in GLn(
R): the product of 1 + ǫA and 1 + ǫB is 1 + ǫ(A + B) to first order. However
defining the Lie bracket in terms of the commutator is a little messy, and it is
technically more convenient to define the Lie algebra as the left invariant vector
fields on the manifold.

There are several different ways to think of vector fields:

• Informally, a vector field is a little tangent vector at each point.

• A vector field is informally an infinitesimal diffeomorphism, where we get
an infinitesimal diffeomorphism from a vector field by pushing each point
slightly in the direction of the vector field.

• More formally, a vector field is a section of the tangent bundle or sheaf.

• A vector field is a normalized differential operator of order at most 1

• A vector field is a derivation of the ring of smooth functions.
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The last two seem less intuitive but turn out to be the easiest definitions to
work with.

Suppose we have a manifold M , with its ring R of smooth functions. A
differential operator on M should be something that in local coordinates looks
like a partial differential operator times a smooth function. It is easier to forget
about local coordinates, and just use the following key property of differential
operators: the commutator of an nth order operator with a smooth function is a
differential operator of smaller order. This is really just a form of Leibniz’s rule
for differentiating a product. We will use this to DEFINE differential operators
as follows.

Definition 21 A differential operator of order less than 0 is 0. A differential

operator of order at most n ≥ 0 is an operator on R whose commutator with

elements of R is a differential operator of order at most n− 1.

Differential operators on R form a filtered ring D0 ⊂ D1 ⊂ D2 · · · , where Dn is
the differential operators of order at most n. The differential operators of order
at most 0 can be identified with the ring R (look at their action on 1), and
any differential operator can be normalized by adding a function so that it kills
1. So a differential operator can be written canonically as a function (order 0
operator) plus a normalized differential operator.

The product of differential operators of orders at mostm, n has order at most
m + n. Differential operators do not quite commute with each other; however
the commutator or Lie bracket [D1, D2] of operators of orders at most m, n has
order at most m+ n− 1; in other words differential operators commute “up to
lower order terms”. This means that the associated graded ring D0 ⊕D1/D0 ⊕

D2/D1⊕· · · is a commutative graded ring (whose elements are sometimes called
symbols).

We will call a differential operator normalized if it kills the function 1. Dif-
ferential operators of order at most 1 can be written canonically as the sum of an
order 0 differential operator and a normalized differential operator. (However
there is no canonical way to write an operator of order n > 1 as an operator of
order less than n and something “homogeneous” of order n.) A vector field on
a manifold is the same as a normalized differential operator of order at most 1.
Vector fields are closed under the Lie bracket, and in particular form a Lie alge-
bra. It is useful to think of a vector field as a sort of infinitesimal diffeomorphism
of the manifold: each point is moved an infinitesimal distance in the direction
of the vector at that point. Since the Lie algebra of a group can be thought of
as the “infinitesimal” elements of the group, this means that the vector fields
on a manifold are more or less the Lie algebra of the group of diffeomorphisms.

The Lie algebra of vector fields is an infinite dimensional Lie algebra, which
is too big for this course, so we cut it down.

Definition 22 The Lie algebra of a Lie group is the Lie algebra of left-invariant

vector fields on the group.

We explain what this means. The group is a manifold, so we have the Lie
algebra of all vector fields on it forming an infinite dimensional lie algebra. The
group acts on itself by left translation, and so acts on everything constructed
from the manifold, such as vector fields. We just take the vector fields fixed by
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this action of left translation. It is automatically a subalgebra of the lie algebra
of all vector fields, as the group action preserves the Lie bracket.

We can also identify the Lie algebra of the group with the tangent space at
the origin. The reason is that if we pick a tangent vector at the origin, there
is a unique vector field on G given by left translating this vector everywhere.
We could have defined the Lie algebra to be the tangent space at the origin,
but then it would not have been so clear how (or why) we can define the Lie
bracket.

Now we will calculate the left invariant vector fields on the group GLn(R)
and find the Lie bracket. We will then be able to find the Lie algebras of other
groups by mapping them to GLn(R). There are obvious coordinates xij for
GLn(R) ⊂ Rn×n, and corresponding vector fields ∂/∂xij . Of course there are
not left invariant under GLn(R): they are left invariant vector fields on the

abelian group Rn2

, and have zero Lie bracket.
We let x = (xij) be the matrix whose entries are the coordinate functions.

We can think of x as the identity function from Rn2

to itself, so might guess
that G acts trivially on it, but this is wrong: the point is that the two copies
of Rn2

are not really the same as the domain is acted on by G by translations,
while the range is acted on trivially by G. This is very confusing. The action of
an element g on x is given by right multiplying it by g−1. Next if a = (aij) is a
matrix we can consider the matrix of differential operators with entries aij We
consider the matrix D of differential operators xik∂/∂xjk (using the Einstein
summation convention). This acts on x as left multiplication by the matrix eij
(one entry in position i, j, other entries 0). Since left multiplication by a matrix
commutes with right multiplication we see that these differential operators all
commute with left translation on the entries of x, and therefore are left invariant
differential operators.

So we get a natural correspondence between n by n matrices and these left
invariant differential operators. Finally we can work out the Lie bracket of two
such differential operators

[xik

∂

∂xjk

, xi′k′

∂

∂xj′k′

] = [j = i′]xij

∂

∂xj′k

− [i = j′]xi′j

∂

∂xj′k

, and we see that it just corresponds to the Lie bracket

[eij , ei′j′] = [j = i′]eij′ − [i = j′]ei′j

of n by n matrices eij that have a one in position (i, j) and are zero elsewhwere.
To summarize, the Lie algebra of GLn(R) is justMn(R), with the Lie bracket

given by [A,B] = AB −BA.
To find the Lie algebras of subgroups of general linear groups, which covers

most practical cases, we just have to find the tangent space at the identity. The
easy way to do this to to find the matrices A such that 1 + ǫA satisfies the
equations defining the Lie group, where ǫ2 = 0.

Example 23 The orthogonal group consists of matrices g such that ggT = I.
So its Lie algebra conssits of matrices a such that (1+ ǫa)(1+ ǫAT ) = 1 to first
order in ǫ, in other words a+ aT = 0, so that a s skew-symmetric.
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Example 24 The special linear group consists of matrices g such that det g = 1.
So its Lie algebra consits of matrices a such that det(1 + ǫa) = 1 to first order
in ǫ. Since det(1 + a) = 1 + Trace(A)ǫ to first order in epsilon, the Lie algebra
consists of the matrices of trace 0.

Exercise 25 Show that the Lie algebra of the unitary group consists of skew
Hermitian matrices, which are Hermitian matrices multiplied by i.

Identifying skew hermitean matrices with hermitean matrices by multiplica-
tion by i shows that defining [a, b]− i(ab− ba) makes Hermitean matrices into a
Lie algebra. This Lie bracket is not the only interesting algebraic structure one
can put on Hermitian matrices.

Exercise 26 Show that if a and b are Hermitian then so is their Jordan product
a◦b = (ab+ba)/2. Show that this is a commutative but non-associative product,
satisfying the Jordan identity (x ◦ y) ◦ (x ◦ x) = x ◦ (y ◦ (x ◦ x)). Algebras with
these properties are called Jordan algebras.

In the early days of quantum mechanics it was hoped that a suitable Jordan al-
gebra would explain the universe, but this hope was abandoned when the simple
finite dimensional Jordan algebras were classified: they are mostly algebras of
Hermitean matrices, and none of them explain the known elementary particles.

Exercise 27 Find the Lie algebra of the group Sp2n(R) of symplectic matrices.
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