
The Lie algebras we get like this are usually infinite dimensional, as they
contain free lie algebras on E. The key idea is that if we have a subspace X of
Free(E) that is mapped to itself by F and H, then the subspace it generates
under the action of E is still acted on by F and H, so is an ideal of G contained
in Free(E), and therefore having zero intersection with H. So if we can find
such subspaces X we can reduce the size of G. In general there need not be any
such subspaces, but for the special case of the Serre relations we can find some.

The final step is to include the relations ad(ei)
1−aijej = 0 ad(fi)

1−aijfj = 0
and in particular we need to show that these do not cause the Lie algebra to
collapse to 0.

Lemma 304 If i 6= j then the element ad(ei)
1−aijej = 0 of E is is killed by fk.

Proof It is obviously killed by fk if k is not i or j, as then fk commutes with
both ei and ej .

To show that it is killed by fj we have two cases depending on whether aij
is 0 or not.

[fj [ei, [· · · [ei, ej ] · · · ] = [ei, [· · · [ei, [fj , ej ] · · · ] (23)

= −[ei, [· · · [ei, hj ] · · · ] = aij [ei, . . . , , ei] · · · ] (24)

If aij = 0 this vanishes as it contains a factor of aij , while if aij > 0 it vanishes
because 1− aij ≥ 2 so it contains a term [ei, ei].

Finally we show that ad(ei)
1−aijej = 0 is killed by fi, which is where we need

to use the funny-looking exponent 1 − aij . For this we look at the subalgebra
generated by ei, fi, and hi, which is isomorphic to sl2. Moreover the element ej
is killed by fi so generates a Verma module for sl2. The lowest weight ej of this
Verma module has eigenvalue aij for hi, so by the theory of sl2 Verma modules,
the element ad(ei)

nej = 0 for n > 0 is killed by fj if (and only if) n = 1− aij .
�

Theorem 305 In the Lie algebra defined by the Serre relations, the elements

hi, ei, and fi are linearly independent.

Corollary 306 Each of the copies of sl2 spanned by ei, fi, hi act on the Lie

algebra as a sum of finite dimensional representations.

Proof This follows by first checking that each generator of the Lie algebra
lies in a finite dimensional representation (using the extra Serre relations) then
showing that the elements of the Lie algebra with this property are closed under
the Lie bracket. �

Corollary 307 The action of each Lie algebra sl2 spanned by ei, fi, hi lifts to

an action of the Lie group SL2. In particular the Weyl group element
(

0 1
−1 0

)

acts on the Lie algebra, and acts on the Cartan subalgebra as the reflection of

the corresponding simple root, so we get an action of the Weyl group on the

roots.
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This is enough to show that the Lie algebra is finite dimensional: more
precisely every root is conjugate to a simple root under the Weyl group and
therefore has multiplicity 1. (This fails for infinite root systems: for general
Kac-Moody algebras there are more roots that are not conjugate to simple
roots, called imaginary roots, and they can have multiplicity greater than 1.)

Example 308 We can work this out explicitly for the rank 2 algebras, and
write down explicit bases.

Theorem 309 Every root is conjugate to a simple root under the Weyl group.

Proof We need to use the fact that to root system and Weyl group are fi-
nite: the theorem fails for infinite dimensional Kac-Moody algebras, which have
“imaginary” roots not conjugate to simple roots. In particular there is a positive
definite quadratic form preserved by the Weyl group. Look at the Weyl cham-
ber W of the simple roots, and its dual convex cone C generated by the simple
roots. Any positive root is contained in C, and its orthogonal complement has
codimension at least 2 in W unless the root is simple. The conjugates of the
Weyl chamber W under the Weyl group cover the whole space, so if a root is not
conjugate to a simple root under the Weyl group, its orthogonal complement
has codimension at least 2 in the whole space , which is impossible. �

To summarize, we have an explicit description of the Lie algebra: it is a sum
of the Cartan subalgebra H (with basis hi), and a 1-dimensional root space for
each root of the root system, for which we can easily write down an explicit
basis element if we want to.

Exercise 310 Show that the Lie algebra constructed from an irreducible finite
crystallographic root system is simple. (Irreducible means that it is not the sum
of two orthogonal root systems: in the case the Lie algebra splits as the direct
sum of corresponding Lie algebras.) The idea is to look at eigenvectors of the
Cartan subalgebra. If α is some eigenvalue of some element in an ideal, then
show that so is β for and β not orthogonal to α.

Much, but not all, of this theory works for infinite root systems, and the
corresponding Lie algebras are called Kac-Moody algebras. We still get an
action of the Weyl group on the roots, but as mentioned above roots need not
be conjugate to simple roots: the proof above fails because the union of Weyl
chambers need not cover space when the Weyl group is infinite.

25 The Weyl groups of exceptional groups

We use a vector notation in which powers represent repetitions: so (18) =

(1, 1, 1, 1, 1, 1, 1, 1) and (± 1

2

2
, 06) = (± 1

2
,± 1

2
, 0, 0, 0, 0, 0, 0).

Recall that E8 has the Dynkin diagram
where each vertex is a root r with (r, r) = 2; (r, s) = 0 when r and s are

not joined, and (r, s) = −1 when r and s are joined. We choose an orthonormal
basis e1, . . . , e8, in which the roots are as given.

We want to figure out what the root lattice L of E8 is (this is the lattice
generated by the roots). If we take {ei − ei+1} ∪ (−15, 13) (all the A7 vectors
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plus twice the strange vector), they generate the D8 lattice = {(x1, . . . , x8)|xi ∈
Z,

∑

xi even}. So the E8 lattice consists of two cosets of this lattice, where
the other coset is {(x1, . . . , x8)|xi ∈ Z+ 1

2
,

∑

xi odd}.
Alternative version: If we reflect this lattice through the hyperplane e⊥1 , then

we get the same thing except that
∑

xi is always even. We will freely use both
characterizations, depending on which is more convenient for the calculation at
hand.

We should also work out the weight lattice, which is the vectors s such that
(r, r)/2 divides (r, s) for all roots r. Notice that the weight lattice of E8 is
contained in the weight lattice of D8, which is the union of four cosets of D8:

D8, D8 + (1, 07), D8 + ( 1
2

8
) and D8 + (− 1

2
, 1

2

7
). Which of these have integral

inner product with the vector (− 1

2

5
, 1

2

3
)? They are the first and the last, so the

weight lattice of E8 is D8 ∪D8 + (− 1

2
, 1

2

7
), which is equal to the root lattice of

E8.
In other words, the E8 lattice L is unimodular (equal to its dual L′), where

the dual is the lattice of vectors having integral inner product with all lattice
vectors. This is also true of G2 and F4, but is not in general true of Lie algebra
lattices.

The E8 lattice is even, which means that the inner product of any vector
with itself is always even.

Even unimodular lattices in R
n only exist if 8|n (this 8 is the same 8 that

shows up in the periodicity of Clifford groups). The E8 lattice is the only
example in dimension equal to 8 (up to isomorphism, of course). There are two
in dimension 16 (one of which is L ⊕ L, the other is D16∪ some coset). There
are 24 in dimension 24, which are the Niemeier lattices. In 32 dimensions, there
are more than a billion!

The Weyl group of E8 is generated by the reflections through s⊥ where s ∈ L
and (s, s) = 2 (these are called roots). First, let’s find all the roots: (x1, . . . , x8)
such that

∑

x2
i = 2 with xi ∈ Z or Z+ 1

2
and

∑

xi even. If xi ∈ Z, obviously the

only solutions are permutations of (±1,±1, 06), of which there are
(

8

2

)

×22 = 112
choices. In the Z + 1

2
case, we can choose the first 7 places to be ± 1

2
, and the

last coordinate is forced, so there are 27 choices. Thus, we get 240 roots.
Let’s find the orbits of the roots under the action of the Weyl group. We

don’t yet know what the Weyl group looks like, but we can find a large subgroup
that is easy to work with. Let’s use the Weyl group of D8, which consists of the
following: we can apply all permutations of the coordinates, or we can change
the sign of an even number of coordinates (e.g., reflection in (1,−1, 06) swaps
the first two coordinates, and reflection in (1, −1, 06) followed by reflection in
(1, 1, 06) changes the sign of the first two coordinates.)

Notice that under the Weyl group of D8, the roots form two orbits: the set

which is all permutations of (±12, 06), and the set (± 1

2

8
). Do these become

the same orbit under the Weyl group of E8? Yes; to show this, we just need
one element of the Weyl group of E8 taking some element of the first orbit to

the second orbit. Take reflection in ( 1
2

8
)⊥ and apply it to (12, 06): you get

( 1
2

2
,− 1

2

6
), which is in the second orbit. So there is just one orbit of roots under

the Weyl group.
What do orbits of W (E8) on other vectors look like? We’re interested in

this because we might want to do representation theory. The character of a
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representation is a map from weights to integers, which is W (E8)-invariant.
Let’s look at vectors of norm 4 for example. So

∑

x2
i = 4,

∑

xi even, and
xi ∈ Z or xi ∈ Z + 1

2
. There are 8 × 2 possibilities which are permutations of

(±2, 07). There are
(

8

4

)

× 24 permutations of (±14, 04), and there are 8 × 27

permutations of (± 3

2
,± 1

2

7
). So there are a total of 240 × 9 of these vectors.

There are 3 orbits under W (D8), and as before, they are all one orbit under the

action of W (E8). Just reflect (2, 0
7) and (13,−1, 04) through ( 1

2

8
).

Exercise 311 Show that the number of norm 6 vectors is 240 × 28, and they
form one orbit

(If you’ve seen a course on modular forms, you’ll know that the number of
vectors of norm 2n is given by 240×

∑

d|n d
3. If we let call these cn, then

∑

cnq
n

is a modular form of level 1 (E8 even, unimodular), weight 4 (dimE8/2).)
For norm 8 there are two orbits, because we have vectors that are twice a

norm 2 vector, and vectors that are not. As the norm gets bigger, there are a
large number of orbits.
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