
Which of these can be made into unitary representations? H† = −H, E† =
F , and F † = E. If we have a Hermitian inner product ( , ), we see that

(vj+2, vj+2) =
2

λ+ j + 1
(Evj , vj+2)

=
2

λ+ j + 1
(vj ,−Fvj+2)

= −
2

λ+ j + 1

λ− j − 1

2
(vj , vj) > 0

So we want −λ−1−j

λ+j+1
to be real and positive whenever j, j + 2 are non-zero

eigenvectors. So

−(λ− 1− j)(λ+ 1 + j) = −λ2 + (j + 1)2

should be positive for all j. Conversely, when we have this condition, the rep-
resentations have a positive semi definite Hermitian form.

This condition is satisfied in the following cases:

1. λ2 ≤ 0. These representations are called PRINCIPAL SERIES represen-
tations. These are all irreducible except when λ = 0 and n is odd, in which
case it is the sum of two limits of discrete series representations

2. 0 < λ < 1 and j even. These are called COMPLEMENTARY SERIES.
They are annoying, and you spend a lot of time trying to show that they
don’t occur in cases you are interested in, such as the Selberg conjecture.

3. λ2 = n2 for n ≥ 1 (for some of the irreducible pieces).

If λ = 1, we get a 1-dimensional subrepresentation, which is unitary, and
the quotient is the sum of two Verma modules (discrete series representa-
tions).

We see that we get two discrete series and a 1 dimensional representation,
all of which are unitary

For λ = 2 (this is the more generic one), we have a 2-dimensional middle
representation (where (j + 1)2 < λ2 = 4 that is not unitary, which we
already knew. So the discrete series representations are unitary, and the
finite dimensional representations of dimension greater than or equal to 2
are not.

Summary: the irreducible unitary representations of SL2(R) are given by

1. the 1 dimensional representation

2. Discrete series representations for any λ ∈ Z r {0}

3. Two limit of discrete series representations for λ = 0

4. Two series of principal series representations:

j even: λ ∈ iR, λ ≥ 0
j odd: λ ∈ iR, λ > 0
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5. Complementary series: parametrized by λ, with 0 < λ < 1.

There seems to be a puzzle here: the discrete series representations of the
group are (completions of) Verma modules, whereas we claimed earlier that
Verma modules were never associated to representations of the group. The
difference is that we are looking at Verma modules for different Cartan subal-
gebras. For the split Cartan subalgebra there is a Weyl group element acting as
−1 on the Lie algebra, which implies that representations of the group cannot be
Verma modules whose weights are not invariant under −1. On the other hand,
for the compact Cartan subalgebra there is no element of the group acting as −1
on its Lie algebra, so this argument no longer applies, and we can have Verma
modules that are (essentially) representations of the group, at least if we take a
completion of them.

The unitary representations have an obvious topology (for general groups
there is also such a topology, called the Fell topology). This topology is not
Hausdorff: for example, the two limits of discrete series representations are limits
of the same continuous series representations, and the two smallest discrete
series representations and the trivial representation are all some sort of limit of
complementary series representations as λ tens to 1.

The nice stuff that happened for SL2(R) breaks down for more complicated
Lie groups. In particular if the rank is grater than 1 then the Casimir eigenvalue
does not unambiguously determine what the analogues of the operators FE and
so on do.

Representations of finite covers of SL2(R) are similar, except j need not be

integral. For example, for the double cover ŜL2(R) = Mp2(R), 2j ∈ Z.

Exercise 296 Find the irreducible unitary representations of Mp2(R).

Random things not covered: Plancherel measure for SL2(R) (note that 1
is not in the support!), holomorphic modular forms are highest weights for
discrete series representations, Maass wave forms are eigenvectors for principal
series representations, characters of representations.

24 Serre relations

We now construct all the simple complex Lie algebras using the Serre relations.
The Cartan matrix of a root system with simple roots ri is given by aij =
2(ri, rj)/(ri, ri); these numbers are the integers that appear when reflecting rj
in the hyperplane of ri.

Suppose that aij is a Cartan matrix. We can recover the Lie algebra with
this matrix as the Lie algebra generated by elements hi, ei, fi subject to the
following Serre relations:

[ei, fj ] = hiif i = j, 0otherwise (15)

[hi, ej ] = aijej (16)

[hi, fj ] = −aijej (17)

ad(ei)
1−aijej = 0 (18)

ad(fi)
1−aijfj = 0 (19)
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As usual when objects are defined using a presentation it is easy to find
an upper bound on the size of the object but harder to find a lower bound
on the size. In particular the main problem with the algebra defined by the
Serre relations is to show that it does not collapse to zero. We will do this in
two steps: first show that in the algebra generated by the first 3 relations the
elements hi are linearly independent by finding some explicit representations of
it, then showing that the ideal generated by the last two relations has trivial
intersection with the subalgebra H spanned by the hi.

So we first forget about the last two relations. Suppose that we have a
graded lie algebra, and let F , H and E be the pieces of degree −1, 0, 1. Then

• H is a Lie algebra

• E and F are representations of H

• we have a map E ⊗ F 7→ H of H-modules.

Typical example: H=diagonal matrices, E=the things just above the diag-
onal, and F=things just below. In applications, H will be the (abelian) Cartan
subalgebra, E with be the sum of the simple root spaces, and F with be the
sum of the root spaces of minus the simple roots.

Conversely given the data above, we want to construct a graded Lie algebra
G. Obviously we can define a universal such G by generators and relations, and
the problem is to see what its structure is: in particular is is not obvious that
G is nonzero!

We first bound G from above, which is straightforward.

Lemma 297 The obvious vector space map from Free(F ) ⊕ H ⊕ Free(E) to

G is onto, where Free means “free Lie algebra generated by a vector space”.

Proof This is easy: just check that the image of this map is closed under
brackets by elements of E, F , and H, by induction on length. �

Now we have to show that this map is injective, and in particular that G
does not collapse to nothing. As usual, the best way to show that something
given by generators and relations is non-zero is to construct a representation of
it. The idea is to construct representations as some sort of Verma modules: in
other words we have a “lowest weight space” V acted on by H and killed by
F , where V is any representation of H. This gives the action of F and H, but
we have no idea what E does. We try to build a representation by letting the
action of E be as free as possible: in other words we take TE ⊗ V where TE is
the tensor algebra of E (the UEA of the free Lie algebra generated by E). First
we need a lemma for constructing operators on TE:

Lemma 298 Suppose that E is the free associative algebra generated by ele-

ments ei, and we are given operators bi on E and an element e of E. Then

there is a unique operator b such that b(1) = e and [b, ei] = bi.

Proof The algebra E has a basis of elements ei1ei2 · · · ein for n ≥ 0. We define
b by induction on the length n of a basis element by putting

b(1) = e
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for the basis element of length 0, and

b(ei · · · ) = eib(· · · ) + bi(· · · )

on elements of positive length. �

So if we know that action of some operator on V , and we are given its
commutators with elements of E (which should of course depend linearly on
E), then we get a unique operator on TE ⊗ V . This immediately gives us
operators on TE⊗V corresponding to elements of H and F , using the fact that
we know [h, e] and then [f, e]. To finish the proof that we have a representation,
we need to check that [h1, h2] and [h, f ] have the right values. The idea for
doing this is that if two operators on TE ⊗ V are the same on V and have the
same commutators with elements of E, then they are equal. If we write x′ for
the operator on TE ⊗ V corresponding to x, this means we have to check that
[h′

1, h
′
2] = [h1, h2]

′ and [h, f ]′ = [h′, f ′]. For both identities it is immediate that
they coincide on V , so we just have to check the commutators with and e ∈ E
are the same. This follows from

[e′, [h′
1, h

′
2]] = [[e′, h′

1], h
′
2]+[h′

1, [e
′, h′

2]] = [[e, h1]
′, h′

2]+[h′
1, [e, h2]

′] = [[e, h1], h2]
′+[h1, [e, h2]]

′ = [e, [h1, h2]]
′ =

since we know that ′ is a homomorphism brackets of type [E,H].

Exercise 299 Do the case of [h, f ]′ = [h′, f ′] in the same way.

Exercise 300 Where did the proof use the fact that the map from E⊗F 7→ h
is a homomorphism of H-modules?

In particular we see that Free(E) acts freely on these modules so maps
injectively into G, and by taking V to be any faithful representation of H we
see that H also maps injectively into G. To summarize, we have proved:

Theorem 301 Suppose given a Lie algebra H, and H-modules E and F to-

gether with a map of H-modules from E ⊗ F to H. Then E, F , and H are the

pieces of degree 1, −1 and 0 of a graded Lie algebra G, and the positive part of

G is the free Lie algebra on E. Moreover if V is any representation of H, we

can extend it to a representation of G on TE ⊗ V so that F kills V and E acts

in the obvious way by left multiplication.

Lemma 302 Suppose that g is the Lie algebra generated by elements generated

by elements hi, ei, fi subject to the following relations:

[ei, fj ] = hiif i = j, 0otherwise (20)

[hi, ej ] = aijej (21)

[hi, fj ] = −aijej (22)

Then g can be graded as g = ⊕gm, where g+ = ⊕m>0gm is the subalgebra

generated by the ei, g− = ⊕m>0gm is the subalgebra generated by the fi, and g0

is the subalgebra generated by the hi and is abelian.

122



Proof This is a fairly straightforward check.
We define the grading by giving each ei degree 1, each fi degree −1, and

each hi degree 0. This defines a grading as all the relations are homogeneous.
(More generally, we could give ei and positive degree di provided we give fi
degree −di, which is occasionally useful.)

The fact that the subalgebra H generated by the elements hi is abelian
follows from

[hi, hj ] = [hi, [ej , fj ]] = [[hi, ej ], fj ] + [ej , [hi, fj ]] = [aijej , fj ] + [ej , [−aijfj ] = 0

so all the elements hi commute with each other, and in particular H is spanned
by the elements hi.

If we write E, F , and H = g0 for the subalgebras generated by the elements
ei, fi, and hi then the defining relations imply [fi, E] ⊆ E, [fi, E] ⊆ H ⊕ E,
[fi, H] ⊆ F , so the subspace E⊕H ⊕F is closed under fi. Similarly it is closed
under ei and is therefore equal to g as these elements generate g. �

Now we come to the first key point, which is showing that the algebra g does
not collapse.

Lemma 303 The elements hi of the Lie algebra g are linearly independent.

Proof This follows from the previous theorem. �
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