
23 Infinite dimensional unitary representations

Last lecture, we found the finite dimensional (non-unitary) representations of
SL2(R).

23.1 Background about infinite dimensional representa-

tions

(of a Lie group G) What is an infinite dimensional representation?

1st guess Banach space acted on by G?

This is no good for the following reasons: Look at the action of G on the
functions on G (by left translation). We could use L2 functions, or L1 or
Lp. These are completely different Banach spaces, but they are essentially
the same representation.

2nd guess Hilbert space acted on by G? This is sort of okay.

The problem is that finite dimensional representations of SL2(R) are NOT
Hilbert space representations, so we are throwing away some interesting
representations.

Solution (Harish-Chandra) Take g to be the Lie algebra of G, and let K be the
maximal compact subgroup. If V is an infinite dimensional representation
of G, there is no reason why g should act on V .

The simplest example fails. Let R act on L2(R) by left translation. Then
the Lie algebra is generated by d

dx
(or i d

dx
) acting on L2(R), but d

dx
of an

L2 function is not in L2 in general.

Let V be a Hilbert space. Set Vω to be the K-finite vectors of V , which
are the vectors contained in a finite dimensional representation of K. The
point is that K is compact, so V splits into a Hilbert space direct sum
finite dimensional representations of K, at least if V is a Hilbert space.
Then Vω is a representation of the Lie algebra g, not a representation of G.
Vω is a representation of the group K. It is a (g,K)-module, which means
that it is acted on by g and K in a “compatible” way, where compatible
means that

1. they give the same representations of the Lie algebra of K.

2. k(u)v = k(u(k−1v)) for k ∈ K, u ∈ g, and v ∈ V .

The K-finite vectors of an irreducible unitary representation of G is AD-
MISSIBLE, which means that every representation of K only occurs a
finite number of times. The GOOD category of representations is the
representations of admissible (g,K)-modules. It turns out that this is a
really well behaved category.

We want to find the unitary irreducible representations of G. We will do
this in several steps:

1. Classify all irreducible admissible representations of G. This was solved
by Langlands, Harish-Chandra et. al.

115



2. Find which have Hermitian inner products ( , ). This is easy.

3. Find which ones are positive definite. This is very hard, and has not been
solved for all simple Lie groups, though it has been done for some infinite
series such as general linear groups. We will only do this for the simplest
case: SL2(R), which is much easier than most other cases.

23.2 The group SL2(R)

We found some generators (in Lie(SL2(R))⊗C last time: E, F ,H, with [H,E] =
2E, [H,F ] = −2F , and [E,F ] = H. We have that H = −i

(

0 1
−1 0

)

, E =
1

2

(

1 i
i −1

)

, and F = 1

2

(

1 −i
−i −1

)

. Why not use the old
(

1 0
0 −1

)

, ( 0 1
0 0 ), and ( 0 0

1 0 )?

Because SL2(R) has two different classes of Cartan subgroup:
(

a 0

0 a−1

)

,

spanned by
(

1 0
0 −1

)

, and
(

cos θ sin θ
− sin θ cos θ

)

, spanned by
(

0 1
−1 0

)

, and the second one
is COMPACT. The point is that non-compact (abelian) groups need not have
eigenvectors on infinite dimensional spaces. An eigenvector is the same as a
weight space. The first thing you do is split it into weight spaces, and if your
Cartan subgroup is not compact, you cannot get started. We work with the
compact subalgebra so that the weight spaces exist.

Given the representation V , we can write it as some direct sum of eigenspaces
of H, as the Lie group H generates is compact (isomorphic to S1). In the finite
dimensional case, we found a HIGHEST weight, which gave us complete control
over the representation. The trouble is that in infinite dimensions, there is no
reason for the highest weight to exist, and in general they do not as there may
be an infinite number of eigenvalues.

A good substituted for the highest weight vector: Look at the Casimir oper-
ator Ω = 2EF + 2FE +H2 + 1. The key point is that Ω is in the center of the
universal enveloping algebra. As V is assumed admissible, we can conclude that
Ω has eigenvectors (because we can find a finite dimensional space acted on by
Ω). As V is irreducible and Ω commutes with G, all of V is an eigenspace of
Ω. We will see that this gives us about as much information as a highest weight
vector.

Let the eigenvalue of Ω on V be λ2 (the square will make the most interesting
representations have integral λ; the +1 in Ω is for the same reason).

Suppose v ∈ Vn, where Vn is the space of vectors where H has eigenvalue n.
In the finite dimensional case, we looked at Ev, and saw that HEv = (n+2)Ev.
What is FEv? If v was a highest weight vector, we could control this. Notice
that Ω = 4FE + H2 + 2H + 1 (using [E,F ] = H), and Ωv = λ2v. This says
that 4FEv + n2v + 2nv + v = λ2v. This shows that FEv is a multiple of v.

Now we can draw a picture of what the representation looks like: There is a
basis . . . vn−2, vn, vn+2, . . ., with

• Hvn = nvn

• Evn = some multiple of vn+2

• Fvn = some multiple of vn−2

Thus, Vω is spanned by Vn+2k, where k is an integer. The non-zero elements
among the Vn+2k are linearly independent as they have different eigenvalues.
The only question remaining is whether any of the Vn+2k vanish.

There are four possible shapes for an irreducible representation
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• infinite in both directions:

• a lowest weight, and infinite in the other direction:

• a highest weight, and infinite in the other direction:

• we have a highest weight and a lowest weight, in which case it is finite
dimensional

We will see that all these show up. We also see that an irreducible representation
is completely determined once we know λ and some n for which Vn 6= 0. The
remaining question is to construct representations with all possible values of
λ ∈ C and n ∈ Z. n is an integer because it must be a representations of the
circle group.

We can write down explicit representations as follows, by copying the for-
mulas for Verma modules and not cutting them off at the highest weight. We
get a representatino with basis vi where i runs through either all even integers
or all odd integers, and the action is given by

• Hvn = nvn

• Evn = λ+n+1

2
vn+2

• Fvn = λ−n−1

2
vn−2

It is easy to check that these maps satisfy [E,F ] = H, [H,E] = 2E, and
[H,F ] = −2F

Problem: These may not be irreducible, and we want to decompose them
into irreducible representations. The only way they can fail to be irreducible if
if Evn = 0 of Fvn = 0 for some n (otherwise, from any vector, we can generate
the whole space). The only ways that can happen is if

n even: λ an odd integer
n odd: λ an even integer.

What happens in these cases? The easiest thing is probably just to write out
an example.

Example 293 Take n even, and λ = 3, so we have two submodules: one with
basis v4, v6, · · · , and the other with basis v

−4, v−6, . . .. So V has two irreducible
subrepresentations V

−
and V+, and V/(V

−
⊕V+) is an irreducible 3 dimensional

representation with basis v
−2, v0, v2.

Example 294 If n is even, but λ is negative, say λ = −3, we get a subrepre-
sentation with basis v

−2, v0, v2.
Here we have an irreducible finite dimensional representation. If we quotient

out by that subrepresentation, we get V+ ⊕ V
−
. So this is like the previous

example, except that it has been turned upside down.

In particular we can see that the representations are not completely reducible
in general.

There is one case when something slightly different happens:
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Exercise 295 Show that for n odd, and λ = 0, then V splits are a direct sum
of two irreducible submodules: V = V+⊕V

−
. (These are called limits of discrete

series representations.)

So we have a complete list of all irreducible admissible representations:

1. if λ 6∈ Z, we get one representation (remember λ ≡ −λ). This is the
bi-infinite case.

2. Finite dimensional representation for each n ≥ 1 (λ = ±n)

3. Discrete series for each λ ∈ Zr {0}, which is the half infinite case: we get
a lowest weight when λ < 0 and a highest weight when λ > 0.

4. two “limits of discrete series” where n is odd and λ = 0.
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