
We will now find the irreducible finite dimensional representations of the Lie
algebra sl2R, which has basis H =

(
1 0
0 −1

)
, E = ( 0 1

0 0 ), and F = ( 0 0
1 0 ). H is a

basis for the Cartan subalgebra
(
a 0
0 −a

)
. E spans the root space of the simple

root. F spans the root space of the negative of the simple root. We find that
[H,E] = 2E, [H,F ] = −2F (so E and F are eigenvectors of H), and you can
check that [E,F ] = H.

The Weyl group is generated by ω =
(

0 1
−1 0

)
and ω2 =

(
−1 0
0 −1

)
.

Let V be a finite dimensional irreducible complex representation of sl2R.
First decompose V into eigenspaces of the Cartan subalgebra (weight spaces)
(i.e. eigenspaces of the element H). Note that eigenspaces of H exist because
V is finite dimensional and complex. Look at the LARGEST eigenvalue of H
(exists since V is finite dimensional), with eigenvector v. We have that Hv = nv
for some n. Compute

H(Ev) = [H,E]v + E(Hv)

= 2Ev + Env = (n+ 2)Ev

So Ev = 0 (otherwise it would be an eigenvector of H with higher eigenvalue).
[E,−] increases weights by 2 and [F,−] decreases weights by 2, and [H,−] fixes
weights.

We have that E kills v, and H multiplies it by n. What does F do to v?
What is E(Fv)?

EFv = FEv + [E,F ]v

= 0 +Hv = nv

In general, we have

H(F iv) = (n− 2i)F iv

E(F iv) = (ni− i(i− 1))F i−1v

F (F iv) = F i+1v

So the vectors F iv span V because they span an invariant subspace. This gives
us an infinite number of vectors in distinct eigenspaces of H, and V is finite
dimensional. Thus, F kv = 0 for some k. Suppose k is the smallest integer such
that F kv = 0. Then

0 = E(F kv) = (nk − k(k − 1))EF k−1v
︸ ︷︷ ︸

6=0

So nk − k(k − 1) = 0, and k 6= 0, so n− (k − 1) = 0, so k = n+ 1 . So V has
a basis consisting of v, Fv, . . . , Fnv. The formulas become a little better if we

use the basis wn = v, wn−2 = Fv,wn−4 = F 2v
2! , F 3v

3! , . . . , Fnv
n! .

This says that E(w2) = 5w4 for example. So we’ve found a complete de-
scription of all finite dimensional irreducible complex representations of sl2R.

These representations all lift to the group SL2(R): SL2(R) acts on homo-
geneous polynomials of degree n by

(
a b
c d

)
f(x, y) = f(ax+ by, cx+ dy). This is

an n+1 dimensional space, and you can check that the eigenspaces are xiyn−i.
We have implicitly constructed Verma modules. We have a basis

wn, wn−2, . . . , wn−2i, . . .
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with relations
H(wn−2i) = (n− 2i)wn−2i

,
Ewn−2i = (n− i+ 1)wn−2i+2

, and
Fwn−2i = (i+ 1)wn−2i−2

. These are obtained by copying the formulas from the finite dimensional case,
but allow it to be infinite dimensional. This is the universal representation
generated by the highest weight vector wn with eigenvalue n under H (highest
weight just means E(wn) = 0).

For general semisimple groups, a Verma module is the universal module
generated by a highest weight vector: a vector that is an eigenvector of the
Cartan subalgebra (eigenvalue=weight) and killed by positive root spaces. They
are easy to handle because one can start at the highest weight vector and work
down. Any finite-dimensional irreducible module has a highest weight, so is a
quotient of some Verma module. This suggests that it is useful to study the
submodule structure of Verma modules. In general this is quite complicated:
the solution involves Kazhdan-Lusztig polynomials, but for SL2(R) it is much
easier and we can do it as follows.

We can start by asking when a Verma module Vλ with some highest weight
λ is irreducible. So it has a basis vλ, vλ−2, . . ., If we have some submodule W
then by decomposing W into eigenspaces of H we may assume that W contains
some eigenvector vµ. Take µ to be as large as possible, so µ is killed by E. So
we want to solve the following problem: which vectors vµ are highest weight
vectors? This is easy using the explicit formula Ewλ−2i = (λ − i + 1)wλ−2i+2

for the action of E: we see that it is only possible if λ − i + 1 = 0 (or i = 0)
for some positive integer i. So generically Verma modules are irreducible: the
only exceptions are the modules Vλ for λ a non-negative integer, which have a
unique nonzero proper submodule isomorphic to V−λ−2.

There is an alternative argument for testing when one Verma module is
in another, which generalizes better to higher rank Lie algebras. For this we
observe that the Casimir operator acts on a Verma module as multiplication by
a scalar, so one Verma module maps non-trivially to another only if they have
the same eigenvalue for the Casimir. To calculate this eigenvalue it is enough
to do so for the highest weight vector, as this generates the Verma module and
the Casimir commutes with the Lie algebra. To compute the eigenvalue on the
highest weight vector it is convenient to rewrite the Casimir as

Ω = 2EF + 2FE +H2 = 2FE + 2[E,F ] + 2FE +H2 = 4FE +H2 + 2H

because the term FE vanishes on the highest weight vector. So if the highest
weight is λ, then the Casimir acts as multiplication by λ2 + 2λ = (λ+ 1)2 − 12.
So if there is a non-zero map between two Verma modules with highest weights
λ, µ then (λ+1)2 = (µ+1)2, in other words λ+1 and µ+1 are conjugate under
the Weyl group {±1}. For higher rank Lie algebras the analogous theorem says
that two Verma modules with highest weights λ and µ have the same eigenvalues
for ALL Casimir operators if and only if λ + ρ and µ + ρ are conjugate under
the Weyl group, where ρ is a vector called the Weyl vector, equal to half the
sum of the positive roots.
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The quotient Vλ/V−λ−2 is the finite dimensional module of dimension λ+1.
So we get an exact sequence

0 → V−λ−2 → Vλ → (λ+ 1)− dim rep

Verma modules are rank 1 free modules over the universal enveloping algebra
of F , with character qλ/(1 − q2). If we pretend we do not know the character
of the finite dimensional modules, we can work it out from this resolution by
Verma modules by taking the alternating sum over the characters of the Verma
modules, so we get (qλ − q−λ−2)/(1 − q2). The number of Verma modules
appearing in this resolution is the order of the Weyl group. In fact if we look
at the character formulas

∑

w ew(λ+ρ)

∏

α>0 e
ρ(1− e−α)

=
∑

w

ew(λ+ρ)−ρ

∏

α>0(1− e−α)

we see that it is expressing the character of a finite dimensional representation
as an alternating sum of characters of Verma modules with highest weights
w(λ+ ρ)− ρ, coming from a resolution.

The factor q − q−1 in the denominator of the character formula appears
for completely different reasons in these two approaches to the representation
theory. In the analytic approach where we integrate over compact groups, q−q−1

appears as the square root of the fudge factor needed to convert integrals over
the group to integrals over the Cartan subgroup. In the algebraic approach, it
appears as the inverse of the character of a Verma module.

Let’s look at some things that go wrong in infinite dimensions.

Warning 287 Representations corresponding to the Verma modules never lift
to representations of SL2(R), or even to its universal cover. The reason: look
at the Weyl group (generated by

(
0 1
−1 0

)
) of SL2(R) acting on 〈H〉; it changes

H to −H. It maps eigenspaces with eigenvalue m to eigenvalue −m. But
if you look at the Verma module, it has eigenspaces n, n − 2, n − 4, . . . , and
this set is obviously not invariant under changing sign. The usual proof that
representations of the Lie algebra lifts uses the exponential map of matrices,
which doesn’t converge in infinite dimensions.

Remark 288 The universal cover S̃L2(R) of SL2(R), or even the double cover
Mp2(R), has no faithful finite dimensional representations. Proof Any finite
dimensional representation comes from a finite dimensional representation of
the Lie algebra sl2R. All such finite dimensional representations factor through
SL2(R). �

There is an obvious integral form of the UEA of SL2, given as the one
generated by E, F and H, in other words the UEA of the Lie algebra over the
integers. However this is not really a very good integral form: for example,
its dual (a commutative ring) ought to be something like a completion of a
coordinate ring of the group, but is not. The right integral form was found
by Chevalley, and can be motivated by trying to find an integral from that
preserves the obvious integral form of the finite-dimensional representations.
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Exercise 289 Show that the elements En/n!, Fn/n! preserve the integral forms
of finite dimensional representations and Verma modules given above. (The
integral form of Verma modules is not the one generated by the action of F on
the highest weight vector!)

So Chevalley’s integral form of the universal enveloping algebra is the subalgebra
generated by these elements. It has the useful property that coefficients of
exp(tE) and exp(tF ) are in the integral form. Since E and F act nilpotently on
finite dimensional representations this means that exp(tE) and exp(tF ) make
sense over any commutative ring.

Exercise 290 Show that Hn/n! does not usually preserve the integral form of
finite dimensional representations, but that

(
H
n

)
does. Show that these elements

are in the integral form generated by En/n! and Fn/n!.

Exercise 291 Show that the dual of the integral form above is a power series
ring in 3 variables. (The integral form is a cocommutative Hopf algebra, so its
dual is a commutative ring.)
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