
22 Representations of SL2

Finite dimensional complex representations of the following are much the same:
SL2(R), sl2R, sl2C (as a complex Lie algebra), su2R, and SU2. This is because
finite dimensional representations of a simply connected Lie group are in bi-
jection with representations of the Lie algebra. Complex representations of a
REAL Lie algebra L correspond to complex representations of its complexifica-
tion L⊗ C considered as a COMPLEX Lie algebra.

Note that complex representations of a COMPLEX Lie algebra L⊗C are not
the same as complex representations of the REAL Lie algebra L⊗C ∼= L+L. The
representations of the real Lie algebra correspond roughly to (reps of L)⊗(reps
of L).

Strictly speaking, SL2(R) is not simply connected, which is not important
for finite dimensional representations.

Set Ω = 2EF + 2FE +H2 ∈ U(sl2R). The main point is that Ω commutes
with sl2R. You can check this by brute force:

[H,Ω] = 2 ([H,E]F + E[H,F ])
︸ ︷︷ ︸

0

+ · · ·

[E,Ω] = 2[E,E]F + 2E[F,E] + 2[E,F ]E

+ 2F [E,E] + [E,H]H +H[E,H] = 0

[F,Ω] = Similar

Thus, Ω is in the center of U(sl2R). In fact, it generates the center. This does
not really explain where Ω comes from. Why does Ω exist? The answer is that it
comes from a symmetric invariant bilinear form on the Lie algebra sl2R given by
(E,F ) = 1, (E,E) = (F, F ) = (F,H) = (E,H) = 0, (H,H) = 2. This bilinear
form is an invariant map L ⊗ L → C, where L = sl2R, which by duality gives
an invariant element in L⊗L, which turns out to be 2E⊗F +2F ⊗E+H⊗H.
The invariance of this element corresponds to Ω being in the center of U(sl2R).

The bilinear form on SL2(R) in turn can be constructed as (a, b) = TraceV (ab)
for some representation V . When V is the adjoint representation this is the
Killing form. By a deep theorem of Cartan this form is non-degenerate when
the Lie algebra is semisimple, though of course for SL2(R) this is easy to check
directly.

Since Ω is in the center of U(sl2R), it acts on each irreducible representation
as multiplication by a constant. We can work out what this constant is for the
finite dimensional representations. Apply Ω to the highest vector wn:

(2EF + 2FE +HH)wn = (2n+ 0 + n2)wn

= (2n+ n2)wn

So Ω has eigenvalue 2n+n2 on the irreducible representation of dimension n+1.
Thus, Ω has DISTINCT eigenvalues on different irreducible representations,
so it can be used to separate different irreducible representations. For more
general semisimple Lie groups, the Casimir operator may take the same value
on different irreducible representations, though it always distinguishes the trivial
1-dimensional representation from the others.

Theorem 282 Finite dimensional representations of the complex Lie algebra

sl2(C) are completely reducible.

111



This is the key property that makes the representation theory easy. In particular
the representation theory of this non-abelian Lie algebra is easier than that of
apparently simpler algebras such as the abelian Lie algebra R2 (classification of
2 commuting matrices is a hard problem).
Proof We will give two proofs of this result, both of which use important ideas.

For the first proof, we use the fact that all finite dimensional representations
of compact groups are completely reducible. Since the finite dimensional com-
plex representations of the complex Lie algebra sl2(C) are “the same” as the fi-
nite dimensional complex representations of the real Lie algebra of SU(2), which
are in turn the same as the finite-dimensional representations of the compact
group SU(2), its finite dimensional representations are completely reducible.
(Its infinite dimensional representations are quite unlike those of SU(2), and
are not completely reducible.) This is Weyl’s famous unitarian trick.

The second proof uses the Casimir operator, and illustrates how to use ele-
ments of the center of the UEA. This is an algebraic proof, that also works for
some infinite dimensional Lie algebras when the “analytic” proof fails. The key
point is that the Casimir operator can be used to separate the different irre-
ducible representations, and in particular can separate the trivial representation
from the others.

The key case is to show that if we have an exact sequence of modules

0 → V → W → C → 0

with V simple, then it splits. If V is the trivial 1-dimensional module, then this
follows because SL2(C) is prefect: it has no nontrivial 2-dimensional represen-
tations that are strictly upper triangular. If V is nontrivial we use the Casimir
operator: it has different eigenvalues for V and C, so W can be split as the
sum of eigenspaces of the Casimir, and this splitting is invariant under sl2(C)
because the Casimir commutes with sl2(C).

The general case follows from the key case above by linear algebra as follows.
Any exact sequence of the form

0 → V → W → C → 0

for a possibly reducible V splits by induction on the length of V : we can split
off a top irreducible component of V and work down. Now if we have a general
exact sequence of the form

0 → X → Y → Z → 0

We want to find a splitting of this sequence, which is given by a sl2(C)-invariant
map from Y to X that is the identity on X. we let V be the subspace of
HomC(Y,X) of elements that act as a constant on X ⊆ Y , and let W be the
codimension 1 subspace of elements where this constant is 0, so we have an
exact sequence

0 → V → W → C → 0.

This splits, in other words we get a map from C to W whose image is fixed by
sl2(C), in other words a sl2(C) linear map from Y to X that is a (nonzero!)
constant on X. This gives the desired splitting of

0 → X → Y → Z → 0.
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There are two properties of sl2(C) that make the proof of complete reducibil-
ity work: first, it is perfect, so extensions of trivial modules split, and second it
has a Casimir element that separates the trivial module from others. The proof
works for any other Lie algebra with these two properties, which we will later
see includes all finite dimensional semisimple complex Lie algebras. For SL2

the Casimir operator distinguishes any two non-isomorphic finite dimensional
representations, but this is no longer true for higher rank Lie algebras: there can
be several different irreducible representations with the same eigenvalue for the
Casimir operator. However there are “higher Casimir” operators in the center of
the universal enveloping algebra that separate all finite dimensional irreducible
representations.

Complete reducibility is quite rare: in general it fails for infinite dimen-
sional Lie algebras, or simple Lie algebras in positive characteristic, or infinite
dimensional representations of simple complex Lie algebras.

Exercise 283 Find an infinite dimensional representation of sl2(C) that is not
completely reducible. Find a perfect finite dimensional complex Lie algebra
whose finite dimensional representations are not completely reducible.

Exercise 284 Show that the adjoint representation of sln(Fp) on gln(Fp) is
not completely reducible if p divides n.

Exercise 285 Show that if the finite dimensional representations of a finite
dimensional Lie algebra over some field are completely reducible, then the Lie
algebra is a direct sum of simple Lie algebras.

Exercise 286 Classify the finite dimensional indecomposable representations
of the 1-dimensional abelian complex Lie algebra. What does this have to do
with Jordan blocks of the Jordan normal form of a matrix?
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