
Let us check directly that this is indeed the right factor for converting in-
tegrals of class functions into integrals over the torus. To see this it is easiest
to identify SU(2) with the sphere of unit quaternions, so its maximal torus is
the circle of quaternions eix. Two unit quaternions are conjugate if and only if
they have the same real part. So to each element u = eix of the circle S1 we
get a 2-sphere of unit quaternions conjugate to it. The volume of this 2-sphere
is 4π sin(x)2, so we see that if f is a class function then

∫
S3

f(g)dg =
4π sin(x)2

2

∫
x mod 2π

f(eix)dx

The factor of 2 in the denominator comes from the fact that there are 2 points
in S1 for most conjugacy classes, and is the the order of the Weyl group.

We can now check directly that we have found an orthonormal base for the
class functions on S3, because the functions un+1 − u−n−1 form an orthogonal
basis for the odd functions on the unit circle.

This shows that the representations we have found are irreducible because
their characters have norm 1 (when the measure on the group is normalized
to have volume 1). We can also check directly that the representations are
irreducible. For example, any nonzero subrepresentation splits as a sum of
eigenspaces of the torus S1, in other words a sum of spaces generated by mono-
mials xnyn−i, and if we are given such a monomial we can recover the other
eigenspaces by acting on it with suitable elements of SU(2) and then taking
eigenspaces again.

We will restate the relation between representations of S3 and its torus in a
way that generalizes to compact groups:

• Conjugacy classes of S3 correspond to elements of the torus modulo the
action of the Weyl group.

• The irreducible representations of the torus form a lattice acted on by the
Weyl group.

• The irreducible representations of the compact group correspond to orbits
of the Weyl group on representations of the torus on which the Weyl group
acts faithfully.

• There is a fudge factor relating integration of class functions on the group
to integration of Weyl-invariant functions on the torus.

• The character of a representation is an alternating sum over the Weyl
group divided by the square root of the fudge factor. (It seems to be a
lucky coincidence that the fudge factor for S3 happens to be a square: in
fact this always happens, essentially because the roots of a Lie group come
in opposite pairs.)

• Orthogonality for characters of S3 reduces to orthogonality of characters
on the torus. Completeness of characters of S3 reduces to completeness
for functions on the torus that are alternating under the action of the
Weyl group.
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Example 268 We can decompose tensor products and symmetric squares of
representations by calculating characters. For example, the tensor product of
the 6 and 3 dimensional representations is the sum of the 4, 6, and 8 dimensional
representations, and the symmetric square of the 6-dimensional representation
is the sum of the 9, 5, and 1-dimensional representations.

The characters of SU(2) are unimodal. This means the coefficient of qn is at
least that of qn+2 whenever n ≥ 0. They are also symmetric under changing q to
q−1. Unimodal polynomials often turn out to be characters of representations
of SU(2).

Example 269 Show that the Hopf manifold C2/(x, y) = (2x, 2y) is not Kaehler.
The underlying topological space is S1 ×S3, so the character of its cohomology
ring is 1+ q+ q3+ q4 which is not unimodal: there is a gap at q2. However they
theory of Kaehler manifolds shows that the cohomology is a representation of
SU(2) with the various cohomology groups corresponding to the eigenspaces of
a torus. So the character of the cohomology ring has to be a character of SU(2)
(shifted by a power of q).

Exercise 270 The Gaussian binomial coefficients (or q-binomial coefficients)
are given by

(1− q)(1− q2) · · · (1− qn)

(1− q)(1− q2) · · · (1− qk)× (1− q)(1− q2) · · · (1− qn−k)

Show that they are (up to a power of q) characters of SU(2) (in fact the k exterior
power of the n-dimensional irreducible character), and therefore unimodal.

We show that we can find any irreducible representation V inside the regular
representation. For this we pick any nonzero vector w in the dual of V . Then
we can map any vector v ∈ V to the function on G taking g to w(g(v)). This
embeds the representation V into the group ring, so we can find all irreducible
representations by decomposing the regular representation. In fact we can do
better than this. Instead of fixing w we can do this simultaneously for all w in
the dual, and we get a linear map from V ⊗ V ∗ = End(V ) to the group ring.
Moreover the group ring is not just a representation of G, but of G×G, because
G can act by multiplication on either the left or the right and these two actions
commute.

So for each irreducible representation V we can find an image of End(V )
inside the group ring. There are two natural questions: is the map from End(V )
to the group ring injective, and is the group ring the direct sum of these spaces?
Over general fields the answer to both questions is no. For example, over the
real numbers this fails even for the cyclic group of order 3 which has irreducible
representations of dimensions 1 and 2, and over algebraically closed fields of
positive characteristic dividing the order of G it fails badly because the group
ring of G has a large radical (a nilpotent ideal). However it does hold over the
complex numbers: the group ring is the direct sum of matrix rings of irreducible
representations.

Example 271 In particular this shows that the sum of the squares of the ir-
reducible complex representations of a finite group is the order of the group.
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This sometimes gives a quick way to check that we have found all irreducible
representations.

Remark 272 This generalizes to compact (Lie) groups when it is called the
Peter-Weyl theorem: the space of L2 functions on a compact group splits as
a direct sum of spaces naturally isomorphic to the endomorphism rings of the
irreducible representations. In general the representation theory of compact Lie
groups is rather similar to the representation theory of finite groups. For non-
compact groups the result can fail drastically: there are sometimes irreducible
unitary representations that cannot be seen inside the regular representation,
and this is one reason why finding the irreducible unitary representations of a
non-compact Lie group can be rather hard. (In technical terms the support
of the Plancherel measure need not be the whole space of unitary irreducible
representations.)

Remark 273 This is all closely related to the Wedderburn structure theorem
for finite-dimensional semisimple algebras over a field. This says that such an
algebra is a direct sum of matrix algebras over division rings. The group ring of
a finite group over a field of characteristic 0 is semisimple so splits as a direct
sum of matrix algebras over division rings, where each matrix algebra Mn(D)
corresponds to an irreducible representation of dimension n dim(D) where the
algebra of endomorphisms commuting with G is the division algebra D. So the
order of the group is the sum of numbers n2d corresponding to representations
of dimension nd. Over the complex numbers the division algebras D are all just
the complex numbers and the numbers d are all 1.
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