
The character table is almost unitary except that we have to weight the
columns by the sizes of the conjugacy classes. The transpose of a unitary matrix
is also unitary, so the columns of a character table are orthogonal (for the
hermitian inner product) and have norms given by |G|/size of conjugacy class
which is just the order of the centralizer of an element of the conjugacy class.
The orthogonality of characters makes it very easy to work with representations.
For example:

• We can count the number of times an irreducible representation occurs in
some representation by taking the inner product of their characters.

• A representation is irreducible if and only if its character has norm 1.

• Two representations are isomorphic if and only if they have the same char-
acter. (The analogue of this fails in cases when we do not have complete
reducibility, such as modular representations of finite groups.)

We can use this to decompose the regular representation: its character is |G|
at the identity and 0 elsewhere. So its inner product with the character of any
irreducible representation V is dim(V ), so V occurs dim(V ) times. In particular
|G| =

∑
dim(V )2, and we can use this to check that a list of irreducibles is

complete.

Theorem 267 The number of irreducible characters of a finite group is equal

to the number of conjugacy classes, and the irreducible characters form an or-

thonormal basis for the class functions.

Proof The irreducible characters are orthogonal class functions, so it is suf-
ficient to show that the number of conjugacy classes is at most the number of
irreducible representations. The key point is to observe that any class function
is in the center of the group ring and so by Schur’s lemma acts as a scalar on any
irreducible representation. If the number of conjugacy classes were greater than
the number of irreducibles, we could therefore find a non-zero class function
acting as 0 on all irreducibles, and therefore as 0 in the regular representation,
which is nonsense. �

It is natural to ask if there is a canonical correspondence between irreducibles
and conjugacy classes. At first glance, the answer seems to be obviously no. For
example, for infinite compact groups the number of conjugacy classes cane un-
countable while the number of irreducibles is countable, and for even the cyclic
group of order 3 there is no canonical way to match up the irreducibles with
elements of the group. However a close look show that in many cases there does
indeed seem to be some sort of natural correspondence. For example, for sym-
metric groups the conjugacy classes correspond to partitions, and we will later
see the same is true for their representations. An even deeper look shows that
representations of semisimple Lie groups (and automorphic forms) correspond to
conjugacy classes of their “Langlands dual group” though this correspondence
need not be 1:1 in general. This is closely related to Langlands functoriality: if
the correspondence were 1:1 (which it is not in general) then a homomorphism
of Langlands dual groups would induce a map between representations or au-
tomorphic forms on different groups. This is expected to hold and is known as
Langlands functoriality.
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We can describe the irreducible representations of a group most conveniently
by giving their character tables: These are just square matrices giving the values
of the characters on the conjugacy classes.

One reason why character tables are useful is that they are usually easy to
compute. (This only applies to complex character tables: modular character
tables are far harder to compute.)

Examples: We compute the character tables of S3, S4, S5 using ad hoc meth-
ods. (In fact we will see later how to compute the characters of all symmetric
groups in a uniform way.)

We can guess the character table of SU(2). has an obvious 2-dimensional
representation. Its conjugacy classes correspond to diagonal matrices with en-
tries u, u−1 for u of absolute value 1, except that we can exchange the entries by
conjugating by ( 0 i

i 0
) (generating the Weyl group: note that there is no matrix of

order 2 in SU(2) swapping the entries). The trace of this on the 2-dimensional
representation is just u + u−1. We can also take the representation consisting
of polynomials of degree n on this 2-dimensional representation. This has a
basis xn, xn−1y, . . . , yn on which the trace is un + un−2 + · · ·u−n, so this is
the character of this n + 1-dimensional representation. So the characters are
given by (un+1 − u−n−1)/(u− u−1), which will turn out to be a special case of
the Weyl character formula. We will soon see that these are all the irreducible
representations.

What about orthogonality of characters? The characters are orthogonal even
functions on the unit circle if we change the measure by a factor of (u− u−1)2.
Where has this funny-looking factor come from? The answer is that we should
really be integrating over the whole of SU(2), not just over the torus. While
the torus does contain a representative of each conjugacy class, we cannot just
change integrals of class functions on the group to integrals over the torus,
because some conjugacy classes are in some sense bigger than others. The
factor (u− u−1)2 accounts for the fact that some conjugacy classes are bigger,
and is essentially the Weyl integration formula for SU(2).

104


