
We will need to use duals of representations. These can get rather confusing
because there are in fact 8 different natural ways of constructing a new repre-
sentation from an old one, many of which have been called the dual. The three
main ways are as follows:

• The complex conjugate of a representation V : keep the same G-action,
but change the action of i to −i. If we represent the elements of G by
complex matrices, this corresponds to taking the complex conjugate of a
matrix.

• Change the left action on V to a right action. If we define vg = gv with
does not work (why?) but we get a right action by putting vg = g−1v.
(This is really using the antipode of the group ring of G thought of as a
Hoof algebra: any left module over a Hopf algebra can be turned into a
right module in a similar way.) This corresponds to taking inverses of a
matrix.

• The usual vector space dual of V is a representation, but we have to
be careful how we define the G-action. Putting (gf)(v) = f(gv) fails.
However we can make the dual into a right G-module by putting (fg)(v) =
f(gv). This operation corresponds to taking transposes of a matrix.

By combining these three operations in various ways we can construct other
representations. For example if we want the dual to be a left module, we first
construct the dual as a right module, then change it to a left module, so we
use the transpose inverse of matrices. If we want the Hermitian dual as a right
module we take the complex conjugate of the dual; if we like we can turn this
into a left module by taking inverses as well. (Physicists like to leave it as a
right module in their bra-ket notation, while mathematician like to make it into
a left module.)

For finite (and compact) groups all irreducible complex representations are
unitary (or rather can be made unitary in a way that is unique up to multiplica-
tion by non-zero scalars). If we work with unitary representations then taking
conjugate inverse transpose leaves everything fixed there are only 4 things we
can do, and if we stick to left modules this leaves just two things: V and its
dual, which can be given by taking complex conjugates. However if we work
with non-unitary representations then there are still 4 left modules we can con-
struct from V and taking ordinary or Hermitian duals is no longer the same as
taking complex conjugates.

Example 254 The G to be the circle group R/2πZ. Then its irreducible rep-
resentations are 1-dimensional and are given by x 7→ einx for integers n. There
functions form an orthonormal base for the L2 functions on G (using Lebesgue
measure divided by 2π), and in particular every L2 function can be written as a
linear combination of them: this is just its Fourier series expansion. In this case
the dual of a representation is given by the complex conjugate, as we expect for
compact groups.

Exercise 255 Show that the representations of a finite abelian group give an
orthonormal basis for the functions on the group in a similar way.
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We would like to generalize this to all finite (and compact) groups: in other
words find an orthonormal basis for functions on G related to the irreducible
representations.

Lemma 256 (Schur’s lemma). Suppose V and W are irreducible representa-
tions of a group G over some field k. Then the algebra of linear transformations
of V that commute with G is a division algebra over k. The space of linear
transformations commuting with G from V to W is 0 if V is not isomorphic to
W .

Proof This is almost trivial: suppose T is any endomorphism commuting with
G. Then the image and kernel of T are invariant subspaces, so must be 0 on
the whole space. So either T is 0, or it has zero kernel so is an isomorphism and
has an inverse. �

For complex representations the only finite dimensional division algebra over
C is C, so the space of linear maps from V to itself is 1-dimensional. Over other
fields more interesting things can happen:

Example 257 If G is the group of order 4 acting on the real plane by rotations,
then the algebra of endomorphisms commuting with is is the algebra of complex
numbers. This also gives an example of a representation that is irreducible but
not absolutely irreducible: it becomes reducible over an algebraic closure.

Example 258 If G is the quaternion group of order 8 acting by left multiplica-
tion on the quaternions (thought of as a 4-dimensional real vector space) then
the algebra commuting with it is the algebra of quaternions (acting by right
multiplication in itself).

If G is a finite group we can construct its group ring C[G]: this is the complex
algebra with basis G and multiplication given by the product of G. Alternatively
we can think of it as functions on G with the product given by convolution: this
definition generalizes better to Lie groups. The regular representation of G is
the action of G on its group algebra by left multiplication.

The functions 〈gv, w〉 are called matrix coefficients of the representation: if
we choose a basis for V and the dual basis for W they the endomorphisms of
V are given by matrices, and the representation of G is given by matrix-valued
functions of G. We will now show that these matrix coefficients are mostly
orthogonal to each other under the obvious inner product on C[G] where the
elements of G form an orthonormal base.

Lemma 259 Suppose the representation V does not contain the trivial repre-
sentation. Then

∑
g〈gv, w〉 = 0 for any v ∈ V , w ∈ V ∗.

Proof The vector
∑

g gv is fixed by G and is therefore 0, so has bracket 0 with
any w. �

Lemma 260 If the irreducible representations V and W are not dual, then
matrix coefficients of V are orthogonal to matrix coefficients of W under the
symmetric inner product on C[G].
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Proof By assumption V ⊗W does not contain the trivial representation (using
Schur’s lemma) so

∑

g∈G

〈g(a), c〉〈g(b), d〉 =
∑

g∈G

〈g(a× b), c× d〉 = 0

�

The character of the dual of a unitary representation is given by taking the
complex conjugate, so we get:

Lemma 261 If V and W are irreducible and not isomorphic, then the matrix
coefficients of V and W are orthogonal under the hermitian inner product of
C[G].

Exercise 262 If V is an irreducible complex representation with some basis
show that the sum of matrix coefficients

∑
g∈G gijg

−1

kl is |G|/ dim(V ) if i = l,
j = k and 0 otherwise. (This is similar to the proof when we have two different
representations, except that now there is a non-trivial map from V to V that
makes some of the inner products of matrix coefficients non-zero.)

We give the group ring the Hermitian scalar product such that the elements
of G are orthogonal and have norm 1/|G|. To summarize: if we take a repre-
sentative of each irreducible representation of G and take an orthonormal base
of each representation, then the matrix coefficients we get form an orthogonal
set in the group ring of G. The norms are given by 1/ dim (if we normalize the
measure on G so that G has measure 1: this generalizes to compact groups).

Definition 263 The character of a representation is the function from G to C

given by the trace.

The character is just the sum of the diagonal entries of a matrix, so by the
orthogonality for matrix coefficients we see that the characters of irreducible
representations form an orthonormal set of irreducible functions on G. Char-
acters are rather spacial functions on G because they are class functions: this
means they only depend on the conjugacy class of an element of G (which follows
from the fact that matrices g−1hg and h have the same trace).

Exercise 264 If V and W are representations, show that V ⊗W is a represen-
tation whose character is the product of the characters of V and W .

Exercise 265 If G acts on a set S, form a representation of G on the vector
space with basis S. Show that the character of this representation is given by
taking the number of fixed points of an element of G. Show that this rep-
resentation always contains the trivial 1-dimensional representation as a sub-
representation. How many times does the trivial 1-dimensional representation
occur?

Exercise 266 Show that the character of the symmetric square of a represen-
tation with character χ is given by (χ(g)2 +χ(g2))/2 and find a formula for the
character of the alternating square. (If g has eigenvalues λi, then the eigenvalues
on the symmetric square or alternating square are λiλj for i ≤ j or i < j.)
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