
3. Some Lie groups do not correspond to ANY algebraic group. We give two
examples here. There are two ways that a group might not be algebraic:
its center might be too small or too large.

The Heisenberg group is the subgroup of symmetries of L2(R) generated by
translations (f(t) 7→ f(t+x)), multiplication by e2πity (f(t) 7→ e2πityf(t)),
and multiplication by e2πiz (f(t) 7→ e2πizf(t)). The general element is of
the form f(t) 7→ e2πi(yt+z)f(t+ x). This can also be modeled as
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It has the property that in any finite dimensional representation, the center
(elements with x = y = 0) acts trivially, so it cannot be isomorphic to any
algebraic group. In some sense this fails to be algebraic because the center
is too small: if we take the universal cover, making the center larger, it
becomes algebraic.

It is somewhat easier to study the representations of its Lie algebra, which
has a basis of 3 elements X, Y , Z with [X,Y ] = Z. We can represent
this in infinite dimensions by putting X = x, Y = d/dx, Z = 1 acting on
polynomials (this is Leibniz’s rule!) In quantum meachanics this algebra
turns up a lot where X is the position operator and Y the momentum
operator. But it has not finite dimensional representations with Z acting
as 1 because the trace of Z must be 0.

The metaplectic group. Let’s try to find all connected groups with Lie
algebra sl2(R) = {

(

a b
c d

)

|a+ d = 0}. There are two obvious ones: SL2(R)
and PSL2(R). There aren’t any other ones that can be represented as
groups of finite dimensional matrices. However, if you look at SL2(R),
you’ll find that it is not simply connected. To see this, we will use Iwasawa
decomposition.

Theorem 16 (Iwasawa decomposition) If G is a (connected) semisim-
ple Lie group, then there are closed subgroups K, A, and N , with K
compact, A abelian, and N unipotent, such that the multiplication map
K × A×N → G is a surjective diffeomorphism. Moreover, A and N are
simply connected.

In the case of SLn, this is the statement that any basis can be obtained
uniquely by taking an orthonormal basis (K = SOn), scaling by positive
reals (A is the group of diagonal matrices with positive real entries), and

shearing (N is the group
( 1. . .

∗
0 1

)

). This is exactly the result of the

Gram-Schmidt process.

The upshot is that G ≃ K ×A×N (topologically), and A and N do not
contribute to the fundamental group, so the fundamental group of G is
the same as that of K. In our case, K = SO2(R) is isomorphic to a circle,
so the fundamental group of SL2(R) is Z.

So the universal cover S̃L2(R) has center Z. Any finite dimensional rep-

resentation of S̃L2(R) factors through SL2(R), so none of the covers of
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SL2(R) can be written as a group of finite dimensional matrices. The
universal cover fails to be algebraic because the center is too large.

The most important case is the metaplectic group Mp2(R), which is the
connected double cover of SL2(R). It turns up in the theory of modular
forms of half-integral weight and has a representation called the metaplec-
tic representation. This appears in the theory of modular forms of half
integral weight.

p-adic Lie groups are defined in a similar way to Lie groups using p-adic
manifolds rather than smooth manifolds. They turn up a lot in number theory
and algebraic geometry. For example, Galois groups act on varieties defined
over number fields, and therefore act on their (etale) cohomology groups, which
are vector spaces over p-adic fields, sometimes with bilinear forms coming from
Poincare duality. So we get representations of Galois groups into p-adic Lie
groups. These see much more of the Galois group than representations into real
Lie groups, which tend to have finite images.

1.4 Lie groups and Lie algebras

Lie groups can have a rather complicated global structure. For example, what
does GLn(R) look like as a topological space, and what are its homology groups?
Lie algebras are a way to linearize Lie groups. The Lie algebra is just the tangent
space to the identity, with a Lie bracket [, ] which is a sort of ghost of the
commutator in the Lie group. The Lie algebra is almost enough to determine
the connected component of the Lie group. (Obviously it cannot see any of the
components other than the identity.)

Exercise 17 The Lie algebra of GLn(R) is Mn(R), with Lie bracket [A,B] =
AB − BA, corresponding to the fact that if A and B are small then the com-
mutator (1 + A)(1 + B)(1 + A)−1(1 + B)−1 = 1 + [A,B]+ higher order terms.
Show that [A,B] = −[B,A] and prove the Jacobi identity

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0

An abstract Lie algebra over a field is a vector space with a bracket satisfying
these two identities.

We have an equivalence of categories between simply connected Lie groups
and Lie algebras. The correspondence cannot detect

• Non-trivial components of G. For example, SOn and On have the same
Lie algebra.

• Discrete normal (therefore central) subgroups of G. If Z ⊆ G is any
discrete normal subgroup, then G and G/Z have the same Lie algebra.
For example, SU(2) has the same Lie algebra as PSU(2) ≃ SO3(R).

If G̃ is a connected and simply connected Lie group with Lie algebra g, then any
other connected group G with Lie algebra g must be isomorphic to G̃/Z, where
Z is some discrete subgroup of the center. Thus, if you know all the discrete
subgroups of the center of G̃, you can read off all the connected Lie groups with
the given Lie algebra.
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Let’s find all the groups with the algebra so4(R). First let’s find a simply
connected group with this Lie algebra. You might guess SO4(R), but that isn’t
simply connected. The simply connected one is S3 × S3 as we saw earlier (it
is a product of two simply connected groups, so it is simply connected). The
center of S3 is generated by −1, so the center of S3 × S3 is (Z/2Z)2, the Klein
four group. There are three subgroups of order 2

Therefore, there are 5 groups with Lie algebra so4.
Formal groups are intermediate between Lie algebras and Lie groups: We

get maps (Lie groups) to (Formal groups) to (Lie algebras). In characteristic 0
there is little difference between formal groups and Lie algebras, but over more
general rings there is a big difference. Roughly speaking, Lie algebras seem to
the the “wrong” objects in this case as they do not see enough of the group,
and formal groups seem to be a good replacement.

A 1-dimensional formal group is a power series F (x, y) = x + y + · · · that
is associative in the obvious sense F (x, F (y, z)) = F (F (x, y), z). For example
F (x+ y) = x+ y is a formal group called the additive formal group.

Exercise 18 Show that F (x + y) = x + y + xy is a formal group, and chack
that over the rationals it is isomorphic to the additive formal group (in other
words there is a power series with rational coefficients such that F (f(x), f(y)) =
f(x+ y)). These formal groups are not isomorphic over the integers.

Higher dimensional formal groups are defined similarly, except they are given
by several power series in several variables.

1.5 Important Lie groups

Dimension 1: There are just R and S1 = R/Z.
Dimension 2: The abelian groups are quotients of R2 by some discrete sub-

group; there are three cases: R2, R2/Z = R× S1, and R2/Z2 = S1 × S1.
There is also a non-abelian group, the group of all matrices of the form

(

a b
0 a−1

)

, where a > 0. The Lie algebra is the subalgebra of 2×2 matrices of the

form
(

h x
0 −h

)

, which is generated by two elements H and X, with [H,X] = 2X.
This is the smallest example of a solvable but non-abelian connected Lie group.

Dimension 3: There are some abelian and solvable groups, such as R2⋉R1, or
the direct sum of R1 with one of the two dimensional groups. As the dimension
increases, the number of solvable groups gets huge, so we ignore them from here
on.

The group SL2(R), which is the most important Lie group of all. We saw
earlier that SL2(R) has fundamental group Z. The metaplectic double cover
Mp2(R) is important. The quotient PSL2(R) is simple, and acts on the open
upper half plane by linear fractional transformations

Closely related to SL2(R) is the compact group SU2. We know that SU2 ≃
S3, and it covers SO3(R), with kernel ±1. After we learn about Spin groups,
we will see that SU2

∼= Spin3(R). The Lie algebra su2 is generated by three
elementsX, Y , and Z with relations [X,Y ] = 2Z, [Y, Z] = 2X, and [Z,X] = 2Y .
An explicit representation is given by X =

(

0 1
−1 0

)

, Y = ( 0 i
i 0 ), and Z =

(

i 0
0 −i

)

.
The cross product on R3 gives it the structure of this Lie algebra.

The Lie algebras sl2(R) and su2 are non-isomorphic, but when you complex-
ify, they both become isomorphic to sl2(C).

14



There is another interesting 3 dimensional algebra. The Heisenberg algebra
is the Lie algebra of the Heisenberg group. It is generated by X,Y, Z, with
[X,Y ] = Z and Z central. You can think of this as strictly upper triangular
matrices.

Dimension 6: (nothing interesting happens in dimensions 4,5) We get the
group SL2(C). This is the smallest complex simple Lie group. Later, we will
see that it is also Spin1,3(R), the double cover of rotations in Minkowski space,
so is used a lot in special relativity.

Dimension 8: We have SU3(R) and SL3(R). This is the first time we get a
2-dimensional root system.

Dimension 10: The symplectic group Sp2(R). This is the first example of a
simple group that is not some variation of a special linear group. It has tradi-
tionally been the group where people discover phenomena that cannot be seen
in general linear groups (such as the existence of cuspidal unipotent represen-
tations).

Dimension 14: G2, the first exceptional simple group. It is more or less the
automorphisms of the Octonions, an 8-dimensional non-associative algebra.

Dimension 248: E8, which gets into the newspapers more than any other Lie
group.

This class is mostly about finite dimensional algebras, but let’s mention some
infinite dimensional Lie groups or Lie algebras.

1. Automorphisms of a Hilbert space form a Lie group.

2. Diffeomorphisms of a manifold form a Lie group. There is some physics
stuff related to this.

3. Gauge groups are (continuous, smooth, analytic, or whatever) maps from
a manifold M to a group G.

4. The Virasoro algebra is generated by Ln for n ∈ Z and c, with relations

[Ln, Lm] = (n − m)Ln+m + δn+m,0
n3

−n
12 c, where c is central (called the

central charge). If you set c = 0, you get (complexified) vector fields on
S1, where we think of Ln as ieinθ ∂

∂θ
. Thus, the Virasoro algebra is a

central extension

0 → cC → Virasoro → Vect(S1) → 0.

5. Affine Kac-Moody algebras, which are more or less central extensions of
certain gauge groups over the circle.

15


