
19 Quivers and tilting

We will describe an unexpected connection between representations of quivers
and simple Lie algebras. To summarize, the quivers with a finite number of
indecomposable representations correspond to certain semisimple Lie algebras,
the indecomposable representations correspond to positive roots, and the irre-
ducible representations correspond to simple roots.

Definition 241 A quiver is a finite directed graph (possible with multiple edges
and loops). A representation of a quiver (over some fixed field) consists of a
vector space for each vertex of the graph and a linear map between the corre-
sponding vector spaces for each edge.

Example 242 Representations of a point are just vector spaces. Representa-
tions of a point with a loop are vector spaces with an endomorphism. Over
an algebraically closed field the indecomposable representations are classified
by Jordan blocks. Representations of 2 points joined by a line are just linear
maps of vector spaces. There are 3 indecomposable representations: a map
from a 0-dimensional space to a 1-dimensional one, a map from a 1-dimensional
space to a 0-dimensional one, and a map from a 1-dimensional space onto a
1-dimensional one. More generally, stars with n incoming arrows correspond to
n maps to a vector space. When n = 2 there are 6 indecomposable representa-
tions, and when n = 4 there are 12. When n = 4 there is a qualitative change:
there are now infinitely many indecomposables. For example we can take 4
1-dimensional subspaces of a 2-dimensional space. The first two determine a
base (0, 1) and (1, 0), the third is spanned by (1, 1) and determines the ratio
between the two bases, but nor the 4th space can be spanned by (1, a) for any
a, so we get a 1-parameter family of indecomposables. Although there are an
infinite number of indecomposables, it is not hard to classify them explicitly:
it is a “tame” problem. For stars with 5 incoming vertices the indecomposable
representations are “wild”: there is no neat description of them. We will see
that the cases with a finite number of indecomposables correspond to Dynkin
diagrams of the finite dimensional semisimple Lie algebras with all roots the
same length, and the tame cases correspond to affine Dynkin diagrams.

The representations of a quiver are the same as modules over a certain ring
associated with the quiver. This ring has an idempotent for each vertex, with
the idempotents commuting and summing to 1. There is also an element for
each edge, subject to some obvious relations. The algebra is finite dimensional
if the quiver contains no cycles.

There are two titling functors we can apply to modules over quivers:

• If a vertex a is a source, then we can change all the arrows to point into
a, and change the vector space of a to be Coker(Va 7→ ⊕a→bVb).

• If a vertex a is a sink, then we can change all the arrows to point out of
a, and change the vector space of a to be Ker(⊕b→aVb 7→ Va)

The functors take representations of a quiver to representations of a different
quiver, with a source changed to a sink or a sink changed to a source. They
are almost but not quite inverses of each other. They are inverses provided
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Va 7→ ⊕a→bVb is injective, or ⊕b→aVb 7→ Va is surjective. In particular they are
inverses of each other on indecomposable modules, except for the special case
of indecomposable modules of total dimension 1.

The idea is that we try to classify irreducible modules by repeated applying
tilting functors, trying to make the module vanish. If we succeed then we
can recover the original module from a 1-dimensional module by applying the
“almost inverse” tilting functors in the opposite order. We will see that we can
do this provided the quiver is one of the diagrams An, Dn, E6, E7, and E8,

Take a vector space spanned by the vertices of a quiver, and give it an inner
product such that the vertices of a quiver have norm 2, and their inner product
is minus the number of lines joining them. Then the dimension vector of a
quiver can be represented by a point in this space in the obvious way, and the
effect of tilting by a source or sink a is just reflection in the hyperplane a⊥

(except on the vector a itself).
We want to find a sequence of tiltings so that the dimension vector has a

negative coefficient. It is easy enough to find a sequence of reflections of simple
roots that do this: the problem is that we have a constraint that we can only
use a reflection of a simple root if it is a source or a sink for the quiver. To do
this we will use Coxeter elements.

A Coxeter element of a reflection group is a product of the reflections of
simple roots in some order.

Lemma 243 If a Coxeter element of a reflection group fixes a vector then the
vector is orthogonal to all simple roots..

Proof If a vector a =
∑

anvn is fixed by a Coxeter element (for simple roots
vi) then the reflection of vi is the only one that can change the coefficient of vi,
so it must fix a. So a is fixed by all reflections of simple roots, and is therefore
orthogonal to all simple roots, so is 0. �

Corollary 244 If σ is a Coxeter element of a finite reflection group and a is a
non-zero vector, then σk(a) has a negative coefficient for some k.

Proof Otherwise we could find a non-zero fixed vector a+σ(a)+σ2(a)+ · · ·+
σh−1(a), where h is the order of the Coxeter element. �

Exercise 245 Show that if a Coxeter diagram of a reflection group is a tree
then any two Coxeter elements are conjugate, and in particular have the same
order (called the Coxeter number).

Exercise 246 Find the order of the Coxeter elements of An.

We now construct a special Coxeter element σ associated to a given quiver as
follows. First take the reflection of some source, change the source to a sink, and
then mark that vertex as used. Keep repeating this until all vertices have been
used. The result is the original quiver, as each edge has had its direction changed
twice. So we have found a sequence of reflections of sources that preserves the
quiver. This means that we can keep on repeating the sequence of reflections of
the Coxeter element, and every time we will be reflecting in some source.
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We can now show that the indecomposable representations of any quiver of
type An, Dn, or En correspond to the positive roots of the associated root sys-
tem: in fact we can apply tiltings until the dimension vector becomes a simple
root, when it is trivial to find the unique indecomposable. Take the dimension
vector a of any indecomposable representation. As σk(a) has negative coeffi-
cients for some k, we can find a finite sequence of tiltings so that some coefficient
of the dimension vector becomes negative, which means that there is some se-
quence of tiltings reducing the dimension vector to a simple root. In particular
the dimension vector must have been a positive root, and there is a unique in-
decomposable representation with this dimension vector (given by applying the
sequence of tiltings in reverse order to the representation corresponding to a
simple root).

For affine root systems this argument fails but only just: the inner product
space spanned by simple roots has a 1-dimensional subspace that has inner
product 0 with all vectors, and the dimension vector of an indecomposable is
either conjugate to a simple root by a series of tiltings, or is in this 1-dimensional
subspace. We saw an example of the latter for the root system of affine D4.

Exercise 247 If a quiver contains a cycle show that it has an infinite number
of inequivalent indecomposable representations. Show more precisely that there
are an infinite number of dimension vectors corresponding to indecomposable
representations, and (over infinite fields) there is a dimension vector with an
infinite number of corresponding indecomposable representations.

For the affine diagrams of types An, Dn, E6, E7, E8 there are an infinite number
of indecomposables, but their classification is tame, meaning roughly that it can
be described explicitly. The dimension vectors just correspond to the positive
roots of affine Kac-Moody algebras. For non-affine diagrams the classification
is wild and very hard to describe. For example for a point with two loops the
representations are just pairs of matrices acting on a vector space, which are
notoriously hard to classify.
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